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a b s t r a c t

Customer satisfaction is crucially affected by energy consumption in mobile devices. One of the most
energy-consuming parts of an application is images. This paper, first, investigates that there is a
correlation between energy consumption and image quality as well as image file size. Therefore,
these two can be considered as a proxy for energy consumption. In the next step, we focused on
proposing a multi-objective strategy to enhance image quality and reduce image file size based on
the quantisation table (QT) in JPEG image compression. To this end, we have used two general
multi-objective approaches: scalarisation and Pareto-based. In this paper, we embed our strategy into
five scalarisation algorithms, including energy-aware multi-objective genetic algorithm (EnMOGA),
energy-aware multi-objective particle swarm optimisation (EnMOPSO), energy-aware multi-objective
differential evolution (EnMODE), energy-aware multi-objective evolutionary strategy (EnMOES), and
energy-aware multi-objective pattern search (EnMOPS). Also, two Pareto-based methods, including a
non-dominated sorting genetic algorithm (NSGA-II) and a reference-point-based NSGA-II (NSGA-III)
are used for the embedding scheme, and two Pareto-based algorithms, EnNSGAII and EnNSGAIII, are
presented. With our proposed scalarisation method, user’s preferences can be set before starting the
optimisation process and the algorithm generates only one solution based on the preference, while
our Pareto-based approaches generate a set of solutions so that a user can select one of the preferred
solutions after the optimisation process.

Experimental studies show that the performance of the baseline algorithm is improved by em-
bedding the proposed strategy into metaheuristic algorithms. In particular, EnMOGA, EnMOPS, and
EnNSGA-II can perform competitively, among others. From the results, the baseline algorithm in all
cases and in comparison to all algorithms yields the worst results. Among the scalarisation methods,
EnMOGA and EnMOPS can achieve the first rank in 6 and 7 out of 13 cases and the second rank
in 7 and 5 cases in terms of objective function. Also, EnMOES achieved the fifth or worst rank
among the scalarisation algorithms. Regarding the Pareto-based algorithms, the table shows that
EnNSGAII outperforms EnNSGAIII in 10 out of 13 cases in terms of hyper-volume measure, while
it fails in 3 cases. Furthermore, we statistically verify the proposed algorithm’s effectiveness based
on the Wilcoxon-signed rank test. Finally, a sensitivity analysis of the parameters is provided. The
source code for reproducing the results is available in: https://github.com/SeyedJalaleddinMousavirad/
MultiobjectiveJPEGImageCompression.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

Mobile devices such as smartphones and tablets are ubiq-
itous and receiving much attention for their energy efficiency
ince customer satisfaction relies heavily on battery uptime.
n addition, battery uptime plays a crucial role for developers
ince anomalous draining usually warrants negative app store
atings [1].
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ttps://doi.org/10.1016/j.asoc.2023.110278
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In recent years, several studies [2–7] have concentrated on
documenting energy-aware programming trends in the context of
Android, the leading mobile ecosystem, and finding better alter-
natives. But images have not been seriously discussed, while they
are one of the most important components of mobile software,
particularly in games.

JPEG (Joint Photographic Experts Group) format is the most
commonly used method of compression for digital images, and is
based on the Discrete Cosine Transform(DCT) [8]. The process of
JPEG compression is started with representation of the original
uncompressed image in YCbCr colour space, where Y, Cb and
Cr indicate luminance, blue and red chrominance components,
respectively; and each component is handled independently. We
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hall simply use the luminance component, Y, for the sake of
implicity, while for other components, the process is the same.
he image’s component Y is divided into 8 × 8 blocks, each of

which is separately modified. Before using the DCT, the 8 × 8
locks are zero-shifted by deducting 128 from the element values.
hen, each modified block is quantised. The primary mechanism
or compression, quantisation, also results in information loss due
o the representation of the DCT coefficients. Each block may
e effectively entropy encoded after quantisation [9], with no
nformation being lost in the process.

The quantisation table (QT) plays a crucial role in the JPEG
mage compression. Annex K variant [10], the most important
ariant of JPEG implementation, employs two quantisation ta-
les, called luminance quantisation table (LQT) and chrominance
uantisation table (CQT). The main responsibility of these two is
o quantise the DCT coefficient blocks of luminance and chromi-
ance elements, respectively. The process of finding proper values
or both quantisation tables is a challenging and difficult task
ince each image needs its own table, although most implemen-
ations use a conventional value for the tables.

To design the best quantisation table, meta-heuristic algo-
ithms (MA) such as genetic algorithm (GA) [11] and particle
warm optimisation(PSO) [12] can be used. MAs are iterative,
tochastic, and problem-independent algorithms that solve an
ptimisation problem by using a number of operators to guide the
earch process. Also, they can provide a close to optimal solution,
ut they are not able to guarantee a global optimum solution. In
ecent years, different MAs are applied for the construction of the
PEG QTs [13–16].

While images are one of the primary sources of energy con-
umption in smartphones, it is challenging to measure the
mount of energy consumed for a specific operation in a typical
mage. Most of the current methods in the literature can measure
he power of a battery or, at best, for a particular application [17].
o tackle this, we used the energy profiler of Android Studio and
lot Digitiser software, manually and not in an automatic way,
o verify that image quality and file size play a crucial role in the
nergy consumption of an application. In other words, smaller file
izes and lower image quality consume less energy. A developer
as two main goals in selecting an image: 1) they tend to select
n image with high quality, and 2) they prefer to choose an image
ith smaller file size. As a result, there are two conflicting criteria

or a mobile developer. Since an operation’s energy for an image
annot be calculated as a straightforward process, file size and
uality can act as a proxy for energy consumption.
These two criteria, file size and image quality, are two conflict-

ng objectives. Therefore, multi-objective metaheuristic optimisa-
ion (MOMO) algorithms can be used to tackle this issue. MOMO
ddresses optimising a problem based on two or more conflict-
ng objective. There are two general approaches for solving a
ulti-objective problem, namely, scalarisation and Pareto-based
pproaches [18]. Scalarisation approaches solve a multi-objective
roblem by converting it into a single-objective problem, while
areto-based approaches generate a set of optimal solutions.
From another perspective, MOMO algorithms can be per-

ormed by a priori, interactive, or a posteriori methods. In the a
riori methods, the users set their preferences prior to conducting
he optimisation algorithm. As a result, a priori multi-objective
ptimisation does not yield several solutions, but rather only
ne compromise option. The scalarisation methods incorporate
ulti-objective functions into one single scalar objective function
nd can be solved by using a single objective metaheuristic
lgorithm. To the best of our knowledge, there is no scalarisation
ethod, in the literature, for multi-objective JPEG image com-
ression. A posteriori approach for multi-objective optimisation

enerates a set of solutions (instead of only one solution), from

2

which the user can select the preferred solution. One of the
most important a posteriori approaches is the non-dominated
sorting genetic algorithm (NSGA-II) [19]. NSGA-II tries to find
the optimal set of solutions by using several concepts such as
non-dominated sorting, elite preserve operator, and crowding
distance. This algorithm has shown competitive performance
in solving complex multi-objective optimisation problems [20–
22]. Later, a reference-point based non-dominated sorting ge-
netic algorithm (NSGA-III) [23] is introduced by introducing a
pre-defined set of reference points to guarantee diversity in
the solutions, which has shown an acceptable performance in
different types of optimisation problems [24,25]. From the liter-
ature, we can see that [26] proposed a set of solutions instead
on only one single solution based on the NSGA-II approach.
They compared NSGA-II with some standard algorithms such
as standard JPEG and indicated that this approach can provide
satisfactory QTs. In interactive methods, the user has a chance to
indicate preferences, while multiple solutions are created during
the optimisation process. There are several general approaches to
interactive methods. For instance, calculating ideal and approxi-
mated nadir objective vectors and indicating them to a user is
one of the well-known methods. Another method is to generate
a new Pareto optimal solution(s) in terms of the new preferences.

This paper proposes an energy-aware JPEG Image compression
strategy. The main contributions of this paper are as follows:

• We investigate, based on an energy profiler, that there is
a high correlation between energy consumption and image
quality. Such a condition is also valid for image file size.
• We propose a multi-objective strategy for handling both

image file size and image quality.
• To the best of our knowledge, there is no a priory scalari-

sation method in the multi-objective JPEG image compres-
sion. Therefore, first, the proposed multi-objective strategy
is embedded into five a priory scalarisation methods in-
cluding a genetic algorithm (GA), differential evolution (DE),
particle swarm optimisation (PSO), evolutionary strategy
(ES), and pattern search (PS). Therefore, five scalarisation-
based multi-objective techniques for JPEG image compres-
sion are introduced, namely, EnMOGA, EnMODE, EnMOPSO,
EnMOES, and EnMOPS. As a result, a user, such as a devel-
oper, can set a preference before starting the optimisation
process and the algorithm produces only one solution based
on the preference.
• We also embed the proposed strategy into two well-known

a posteriori Pareto-based approaches, the non-dominated
sorting genetic algorithm (NSGA-II) [19] and reference-
point-based non-dominated sorting genetic algorithm
(NSGA-III) [23]. As a result, two Pareto-based techniques
are introduced here, namely, EnNSGAII and EnNSGAIII. As a
result, a user, such as a developer, can select one of the gen-
erated images based on the priorities after the optimisation
process.
• Generally speaking, not only the proposed strategy for JPEG

image compression is novel, but also most algorithms se-
lected are not used and assessed in JPEG image compression.
For instance, adaptive PSO, pattern search and NSGA-III have
not been used so far for JPEG image compression.
• To the best of our knowledge, there is no research on the

computational complexity of population-based JPEG image
compression. This paper presents the computational com-
plexity of all algorithms.
• We provided an extensive set of experiments for validating

the algorithms.

This paper is organised as follows: Section 2 provides a com-
prehensive review on the literature review. Section 3 explains
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riefly some challenges in the paper, while Section 4 introduces
ackground knowledge. Section 5 explains the metaheuristic al-
orithms used in the paper. The proposed algorithms are in-
roduced in Section 6, whereas we provide a set of extensive
xperiments in Section 7. Finally, the paper is concluded in Sec-
ion 8.

. Literature review

To the best of our knowledge, no research investigates the
elationship between energy consumption and image characteris-
ics, but little research has been done on finding the proper values
or QTs by using meta-heuristic algorithms. Therefore, this section
ims to provide a holistic review of the recent works on the JPEG
Ts created by meta-heuristic algorithms.
In one of the first efforts to use MA for the construction of

he JPEG QTs, [15] proposed a GA algorithm to find the quan-
isation table so that the chromosome is an array of size 64,
hile the objective function is the mean square error between the
riginal image and the compressed image. In another work, [27]
ncorporated GA to design a JPEG image quantisation table to
ompress iris images in iris recognition systems. [28] represents
ach QT as a candidate solution and found the optimal values for
T based on the GA algorithm and for medical images. To enhance
he performance of GA, [29] employed a real-coded quantum GA
RCQGA) for generating the optimal QT. RCQGA is more ben-
ficial in the optimisation process compared to the standard
A since good candidate solutions are less likely to disappear
fter subsequent iterations. In another study, [26] proposed a
et of solutions instead of only one single solution based on a
ulti-objective approach. They compared their algorithm with
ome standard algorithms such as standard JPEG and showed
hat this approach can provide satisfactory QTs. [30] proposed a
nowledge-based GA to find the quantisation table. To this end,
mage characteristics and knowledge about image compression
re integrated into the GA algorithm. For instance, the candidate
olutions are randomly generated, but values in the top left sub-
able in QT are less than in the bottom right sub-table since, due
o the knowledge domain, the value of the QT at the top left
hould be less than that at the bottom right of the QT.
Differential evolution (DE) [31] is another evolutionary-based

A used for JPEG image compression. [13] compared DE with GA
lgorithms in optimising the QT for the JPEG baseline algorithm.
hey showed that DE could outperform canonical GA. Another
tudy [32] proposes a knowledge-based DE to improve the per-
ormance of DE. The knowledge embedded in this research was
imilar to the earlier research [30]. To lessen the computation
ime of the DE algorithm,[33] employed a problem approximation
urrogate model (PASM) to aid the DE algorithm in finding the
ptimal values of QT. PASM reduced the computation time of
he DE algorithm. Also, they embedded the domain knowledge
o improve performance.

From the literature, we can also observe some other MA al-
orithms for designing QTs in JPEG. For instance, the Firefly
lgorithm (FA) [34] is employed to optimise the QT in JPEG image
ompression based on a similarity-based objective function. They
ompared the FA algorithm with standard JPEG image compres-
ion and indicated that FA can provide satisfactory results. A
imilar work has been done using firework algorithm [35]. PSO
nd dual SA are employed to find the optimal QTs in [36], while
hey optimised a Lagrangian Rate-Distortion objective function
nd a fixed quality expected rate gain. In one of the recent
orks, simulated annealing (SA) [37] as a single-solution-based
A is employed to optimise the QT values. [38] employs a SA
lgorithm to strike a balance between the computational time
nd image-specific optimality by offering a novel idea of texturing
3

mosaic images. The SA algorithm is utilised on texture mosaic
images to find the best QT for each texture category instead of
optimising a single image or a set of sample images. To learn
the texture features and predict the texture distribution of a new
image, they employed the pre-trained VGG-16 CNN model. They
then combine the optimal texture tables to produce an ideal QT
tailored to the particular image.

We can also see that few researchers boost the performance
of JPEG image compression by fusing several algorithms. For in-
stance, [39] proposed a combination of FA and teaching–learning-
based optimisation (TLBO) to select the QT. To this end, TLBO
is added to the FA algorithm to explore the search space more
effectively.

3. Key challenge

One of the main challenges in calculating the energy consump-
tion of an application is figuring out how to do it. Some research
uses hardware devices for this purpose [40], which is hard to set
up. They calculate the energy consumption of the battery and not
an android application. Some others try to estimate the energy
profile of an android application, which is not straightforward to
do as well [17].

This section investigates the effect of image file size and im-
age quality on energy consumption. To this end, we used an
energy profiler in the Android Studio software [41] and a plot
digitiser [42] to estimate energy consumption. Plot digitisers are
tools to convert a specific curve to digitised numbers. To this
end, first, the digitiser should be calibrated for the curve (here
between 0 and 2000). In other words, we should specify the
minimum and maximum values on the y-axis. In this case, the
minimum and maximum values are not critical since we only
need a comparison between the results (and not an exact number
for energy consumption).

To design the experiment, we compress an image at different
levels (90%, 70%, 50%, 30% and 10%), and the energy consumption
(EC) for each image is calculated. To this end, an image loading
program is written, located in a loop with 1000000 iterations
and then, the energy profile is achieved for this during five
independent runs (Fig. 1). Then, the energy profiler yielded is
fed to the plot digitiser to convert it to digit numbers, and for
each run, the total energy consumption is estimated. Finally, the
average over five runs is obtained as the EC measure. The size
and quality (based on PSNR) are also reported for each image. The
results can be seen in Table 1. From the table, we can conclude
that:

1. By decreasing the image compression level, the EC is de-
creased as well.

2. By decreasing the image compression level, as expected,
the file size is decreased as well.

3. By decreasing the image compression level, as expected,
the image quality deteriorated.

4. By decreasing the image size, the image quality is also
reduced.

All in all, reducing the compression level reduces the file
size, image quality, and energy consumption, while the developer
tends to use higher image quality and smaller file size. Therefore,
these two objectives, image quality and image size, are in conflict.

The correlation between image size and image quality (based
on the information available in Table 1) is demonstrated in Ta-
ble 2 to show this contradiction. This table clearly verifies a
conflict between higher image quality and smaller file size since
the correlation is a high positive number, close to 1.

In conclusion, file size and image quality can be considered
proxies of energy consumption. While developers tend towards
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Fig. 1. Energy profiler for an image loading program in 5 independent runs.
s

Table 1
Effect of image size and image quality on the energy consumption.
Level EC File size (Mb) PSNR

Original 2769.52 3.07 ∞

90 2734.73 1.90 38.6913
70 2682.73 1.50 37.5774
50 2638.61 0.98 35.1707
30 2566.47 0.66 33.0362
10 2511.69 0.27 28.3434

Table 2
Correlation between EC criterion and file size with other.
Correlation File size PSNR

EC 0.9433 0.9754
File size 1 0.9615

smaller file sizes and higher image quality, these two objectives
conflict with each other since higher image quality will increase
the file size and energy consumption. As a result, it is necessary
to strike a balance between image quality and file size.

4. Preliminaries

This section provides background knowledge of our research
ncluding multi-objective optimisation and JPEG image compres-
ion.

.1. Multi-objective optimisation

Multi-objective optimisation (MO) is the process of finding
he minimum or maximum of two conflicting objective functions.
ithout loss of generality, a multi-objective optimisation prob-

em (MOP), formally, can be stated as a minimisation problem as

inimise F (x) = (f1, f2, . . . , fM )
subject to x ∈ Ω

(1)

where Ω is the decision space, and F : Ω → RM is the objec-
tive function in which M is the number of different real-valued
objective functions, and RM shows the objective space.

There are two general metaheuristic approaches for tackling
multi-objective optimisation, scalarisation and Pareto-based ap-
proaches [18]. Scalarisation approaches solve a multi-objective
problem by converting it into a single-objective problem, while
Pareto-based techniques find a set of optimal solutions.
4

Scalarisation approaches incorporate multi-objective functions
into one single scalar objective function as

G(x) = w1f1(x)+ w2f2(x)+ · · · + wM fM (x) (2)

The real-valued positive weights, wi, i = 1, 2, . . . ,M , indi-
cate the performance priority. A larger weight shows that the
corresponding objective function has a higher priority than the
objective function with a smaller weight. When the priority of
objective functions is not clear in advance, one of the most com-
mon methods is to use Equal Weights [18], in which the weights
are given by

wi =
1
M

(3)

where i = 1, 2, . . . ,M .
After scalarisation, all single-solution-based metaheuristic al-

gorithms such as GA [11], PSO [43], and DE [31] can be used to
find the optimal solution.

There is usually no single solution that can simultaneously
minimise all the objective functions since the objectives are in-
herently competing. To tackle this, a set of optimal solutions,
called Pareto optimal solutions, can be defined, with corresponding
localisation in the objective space called the Pareto front.

In single-objective optimisation, the superiority of one solu-
tion over another can be easily obtained by comparing the objec-
tive functions, while the quality of a solution can be achieved by
the concept of dominance in multi-objective optimisation.

Definition 1 (Pareto Dominance). A solution x1 dominates another
olution x2 (denoted by x1 ≺ x2) if and only if:

1. ∀i ∈ {1, 2, . . . ,M} : fi(x1) ⩽ fi(x2), where M is the num-
ber of objective functions. In other words, in all objective
functions, solution x1 should not be worse than x2.

2. ∃j ∈ {1, 2, . . . ,M} : fi(x2) < fi(x1); meaning that solution
x1 is strictly superior to solution x2 in at least one objective
function.

Definition 2 (Non-dominated Solution). A solution x1 is called
Pareto optimal solution or non-dominated solution if it is not
dominated by other solutions in the whole search space. It can
be mathematically defined as

∄x2 ∈ X : x2 ≺ x1 (4)

Fig. 2 indicates non-dominated solutions among other solu-

tions in a bi-objective minimisation problem. f1 and f2 are two
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Fig. 2. Non-dominated solutions in a bi-objective optimisation problem.
Fig. 3. The main components of the JPEG image compression.
onflicting objectives which should be minimised simultaneously.
rom the figure, x3 has a lower value than x1 in both objective

functions. Therefore, we can say that x1 is dominated by x3. In
other words, x3 is a non-dominated solution. In addition, x2, x4,
x5 and x6 are also non-dominated solutions since there is no other
solution that dominates them in both objective functions.

Definition 3 (Pareto Front). The set of all non-dominated solutions
is called Pareto optimal set (PS), which is stated as

PS = {u ∈ X |∄v ∈ X, u ≺ v} (5)

The Pareto front (PF) corresponds to the Pareto optimal set in
the objective space, and is denoted as

PF = {F (x)|x ∈ PS} (6)

4.2. The JPEG image compression

Fig. 3 shows the main components of JPEG image compression.
The encoder is responsible for converting the original image into
the JPEG compression variant of the original image, while the
reverse task is carried out by the decoder. In the following, we

explain the main components in more detail. o

5

4.2.1. DCT and IDCT components
The source image is first divided into 8 × 8 blocks. Then, the

values of the blocks are shifted from [0, 2p
−1] to [−2p−1, 2p−1

−

1], in which p is the number of bits per pixel (in the baseline
JPEG compression, p = 8). Each block of 8 × 8 pixels can
be seen as a vector with a size of 64 × 1, which should be
fed into the Discrete Cosine Transform (DCT) [44] component.
The DCT block decomposes the input signal into 64 basis-signal
amplitudes, called DCT coefficients. Mathematically, the DCT can
be expressed as

F (u, v) =
1
4
cucv

⎡⎣ 7∑
x=0

7∑
y=0

f (x, y) cos
(
(2x+ 1)uπ

16

)
cos

(
(2y+ 1)vπ

16

)⎤⎦
(7)

where

cr =

{
1
√
2

r = 0
1 r > 0,

(8)

The DC coefficient is the one corresponding to u, v = 0, while the
ther 63 coefficients are known as the AC coefficients.
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Inverse DCT (IDCT) is the reverse of DCT component to recon-
struct the original image, which is stated as

F (x, y) =
1
4
cucv

[
7∑

u=0

7∑
v=0

f (u, v) cos
(
(2x+ 1)uπ

16

)
cos

(
(2y+ 1)vπ

16

)]
(9)

In the absence of the quantisation step, the original 64-point
ignal is precisely restored.

.2.2. The quantisation and dequantisation components
The quantisation step works based on a 64-element quantisa-

ion table, which should be known in advance. Each table entry
efines the step size of the quantiser for its related DCT coefficient
nd belongs to [1,255]. Quantisation aims to achieve compression
hile maintaining image quality by removing information that is
ot visually important.
The quantisation component is defined as

(u, v) = round
(

F (u, v)
Q (u, v)

)
, (10)

here L(u, v) are the quantised DCT coefficients, F (u, v) are the
CT coefficients, Q (u, v) indicates the corresponding element of
he quantisation table, and round(x) is the closets integer number
o x. It is worth mentioning that the larger the value of Q (u, v),
he larger the information loss.

The de-quantisation component of the decoder reverses the
uantisation process to recreate a rough estimate of F (u, v) from
(u, v) as

¯ (u, v) = L(u, v)× Q (u, v), (11)

This step plays a crucial role in the process of JPEG com-
ression since the quantisation table generates a loss of infor-
ation. Thus, it is necessary to establish the quantisation table

o strike a compromise between compression effectiveness and
econstructed image quality.

.2.3. Symbol coding
The 63 AC coefficients of the 8 × 8 block are handled inde-

endently from the DC coefficient after quantisation. The Differ-
ntial Pulse Code Modulation (DPCM) is used to encode the DC
oefficient as

IFFi = DCi − DCi−1 (12)

here DCi and DCi−1 are the DC coefficients for the current 8 × 8
lock and the prior 8 × 8 block, respectively.
In order to format the quantised 63 AC coefficients for entropy

oding, a zigzag scan [45] can be used. After the zigzag scan,
he AC coefficients show diminishing variances and rising spatial
requencies.

.2.4. Entropy coding
After the quantisation process, there are often a few nonzero

nd several zero-valued DCT coefficients. Entropy coding’s goal
s to compress the quantised DCT coefficients by making use of
heir statistical properties. The baseline technique used by JPEG
s the Huffman coding, which employs two DC and two AC Huff-
an tables for the luminance and chrominance DCT coefficients,

espectively [45].

. Algorithms

Due to the introduction of a vast and varied range of meta-
euristic techniques in the literature, it is evident that we cannot
nalyse all of them. Also, the main focus of this paper is not
6

enchmarking all algorithms but introducing a general strategy
or multi-objective JPEG image compression. Therefore, for our
tudy, we have chosen a variety of state-of-the-art algorithms. In
he following, we briefly outline the selected algorithms, while
he cited publications are referred to for further details.

.1. Scalarisation methods

• Genetic algorithm (GA) [11] is the oldest metaheuristic al-
gorithm, and includes three significant operators: selection,
crossover, and mutation. The selection operator is respon-
sible for selecting candidate solutions who contribute to
the next generation’s population. The information from the
parents is integrated into the crossover operator, while ran-
dom modifications are made to one or more components of
a potential solution in the mutation operator. Based on the
"survival of the fittest" premise, solutions are transferred
from one iteration to the next.
• Differential evolution (DE) [31] is another metaheuris-

tic algorithm including three main operators, mutation,
crossover, and selection. Mutation creates candidate solu-
tions based on the differences among candidate solutions
as

vi = xr1 + SF (xr2 − xr3), (13)

where SF signifies a scaling factor, and xr1, xr2, and xr3 are
three distinct randomly selected candidate solutions from
the current population, and vi is called a mutant vector.
Crossover is responsible for integrating the mutant vector
with a target vector selected from the current population.
Eventually, a candidate solution is selected by a selection
operator depending on its quality.
• Particle swarm optimisation [12] is a swarm-based optimi-

sation approach, and its updating scheme is based on the
best position found for each candidate solution and a global
best position. The velocity vector of a particle is updated as

vt+1 = ωvt + c1r1(pt − xt )+ c2r2(gt − xt ), (14)

where t shows the current iteration, xt is the current
position, r1 and r2 are random numbers generated from a
uniform distribution in the range of [0, 1], pt is the personal
best position, and gt indicates the global best position.
Then, a candidate solution is updated as

xt+1 = xt + vt+1, (15)

• Evolutionary strategy [46] is a metaheuristic algorithm
where each offspring is generated based on a Gaussian
random number as

xnew = xold + N(0, σ 2), (16)

where N(0, σ 2) is a Gaussian random number with mean
0 and variance σ 2. Then, competition should be done for
each individual and finally, the best individuals transfer to
the next generation.
• Pattern search [47] is a simple yet effective optimisation al-

gorithm that, in an iterative manner, combines exploratory
and pattern moves to find the best solution to a problem.
The exploratory move tries one direction, and if that does
not work, it tries the other. In particular, it generates a new
solution as

x+ = x+ ρ, (17)

where x+ is the new solution based on the current solution

x, and ρ is called the step size or exploratory radius. If
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this move cannot improve the current solution, it attempts
another direction

x+ = x− ρ, (18)

If the moves in all directions fail, then the radius is halved.

.2. Pareto-based techniques

.2.1. Non-dominated sorting genetic algorithm II
The Non-Dominated Sorting Genetic Algorithm (NSGA-II) [19]

s one of the state-of-the-art approaches for Pareto-based multi-
bjective optimisation. NSGA-II is based on four basic opera-
ors, including, Non-Dominated Sorting, Elite Preserving Operator,
rowding Distance, and Selection Operator, which are described
elow in more detail.
Non-Dominated Sorting: The notion of Pareto dominance is

used in this process to sort the population members. In the
first step, the non-dominated members of the initial population
are assigned to the first rank. These top-ranked individuals are
subsequently put in the first front and eliminated from the cur-
rent population. The remaining population members are then
subjected to the non-dominated sorting technique. The remain-
ing population’s non-dominated individuals are given the second
rank and positioned in the second front. This procedure continues
until all population members are distributed across various fronts
in accordance with their rankings, as seen in Fig. 4.

Elite Preserving Operator: Elite solutions are maintained by
being immediately passed on to the next generation as part of
an elite preservation strategy. In other words, the non-dominated
solutions identified in each generation transfer to the next gen-
erations until some solutions dominate them.

Crowding Distance: The crowding distance determines the
density of solutions around a specific solution. It is the average
distance between two solutions along each of the objectives
on each side of the solution. When two solutions with varying
crowding distances are compared, the solution with the greater
crowding distance is assumed to be present in a less crowded
area. The crowded distance of the ith solution is computed based
on the average side-length of the cuboid (Fig. 5). Mathematically,
the crowding distance is defined as

CDi =

k∑ f i+1j − f i−1j

f max
− f min , (19)
j=1 j j

7

where f ij shows the jth value of an objective function for the ith
solution, f max

j and f min
j signify the maximum and minimum values

of jth objective function among the current population, and k is
the number of objective functions.

Selection Operator: A crowded tournament selection operator
is used to choose the population for the next generation. This op-
erator selects the population based on the rank of the population
members and the crowding distances between them. The follow-
ing rules apply when choosing one of two population members to
represent the next generation: 1) If the two population members
are of different ranks, the higher rank one is chosen; and 2) If the
two population members are of the same rank, the member with
the greater crowding distance is chosen.

Procedure: The NSGA-II algorithm starts by creating an initial
population Pt of size N . Following crossover and mutation oper-
ations on the population, Pt , a new population, Qt , is produced.
Then, the non-dominated sorting operation is carried out on the
new population, Rt , created by combining the populations Pt and
Qt . The Rt population members are then divided into several
fronts based on their non-dominance levels.

The next step is to choose N candidate solutions from Rt in
order to produce Pt+1. If the size of the first front is greater than
or equal to N , only N members are chosen from the least crowded
area of the first front to create Pt+1. The members of the first
ront are directly moved to the next generation if the size of the
irst front is more than N , and the remaining members are taken
rom the second front’s least crowded area and added to Pt+1.
he process is repeated for the subsequent fronts until the size of
t+1 equals N , if the size of Pt+1 is still less than N . Following the
ame process, the populations Pt+2, Pt+3, Pt+4,. . . ,for subsequent
enerations are created until the stopping criterion is not met.
ig. 6 shows the NSGAII procedure visually.

.3. Reference-point based non-dominated sorting genetic algorithm

The basic framework of Reference-point Based Non-dominated
orting Genetic Algorithm (NSGA-III) [23] is similar to NSGA-
I, but with significant modifications to its selection process.
nlike NSGA-II, NSGA-III adaptively updates several widely used
eference points, which aids in maintaining diversity among pop-
lation members.
As previously mentioned, the NSGA-III employs a pre-defined

et of reference points to guarantee diversity in the solutions
roduced. The standard NSGA-III algorithm benefits from Das
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Fig. 5. Crowding distance.
Fig. 6. The NSGAII procedure.
and Dennis’s [48] approach which assigns points to a normalised
hyper-plane. The total number of reference points (H) in an M
objective problem by P division can be calculated as

H =
(
M + P − 1

P

)
(20)

For instance, in a problem with three objectives (M = 3), the
reference points are made on a triangle whose apex is at (1, 0, 0),
(0, 1, 0), and (0,0,1). For each objective axis, four divisions (P = 3)
will result, and therefore a total of 10 reference points (Fig. 7).

NSGA-II utilises the crowding distance to pick the remaining
members after non-dominated sorting, while with NSGA-III, the
reference points are used to select the remaining members. To do
this, the range of objective values and reference points are first
normalised to be the same. Afterwards, the orthogonal distance
between each reference line and a member of Pt is calculated.
The reference point with the shortest orthogonal distance is then
used to associate the member with.

The number of individuals who are connected to each refer-
ence point, known as the niche count for each reference point,
is then computed for further analysis. Then, the reference point
with the lowest niche point is found and the member from the
last front that is associated with it should be included in the final
population. It is important to note that a reference point need not
have any population members linked with it and may have one
or more related population members. For the jth reference point,
the number of population members that are associated with
each reference point is counted and denoted as niche count (ρj).
NSGA-III employs a niche-preserving operator as follows. First, a
reference point set, J = j : argmin ρ is defined, including a
min j j

8

Fig. 7. 3D plot of the 10 reference points with p = 3.

minimum ρj. When there are several of these reference points,
one (j∗ ∈ jmin) is selected at random. If ρj∗ = 0 (meaning
that there is no associated member to the reference point j),
two scenarios can happen. First, the reference point j is already
connected to one or more of the members in front of F1. In this
case, the one closest to the reference line perpendicularly is added
to P . Second, the front F does not have any members linked to
t+1 1
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he reference point. In this case, the reference point is not taken
nto account anymore for the current generation.

In the case of ρj ≥ 1 (indicating that one member associated
with the reference point exists in Pt/FL), a randomly selected
number from front FL that is associated with the reference point
ρj is added to Pt+1. After updating the niche counts, the process
is repeated K times in total to bring Pt+1’s population size to N .

6. Proposed methods

This paper proposes a general strategy for multi-objective op-
timisation of JPEG implementation. As a result, it can be used with
any optimisation algorithm. To this end, we embed our proposed
scheme into five scalarisation algorithms, GA, DE, PSO, ES, and
PS, and two Pareto-front-based algorithms, NSGA-II and NSGA-III.
First, we define the solution representation and objective func-
tion in the following. Then, by embedding the proposed strategy
within seven backbone optimisation algorithms, we obtain seven
new algorithms, namely EnMOGA, EnMODE, EnMOPSO, EnMOES,
EnMOPS, EnNSGAII, and EnNSGAIII, respectively.

6.1. Solution representation

Our proposed algorithm aims to find multi-objective optimal
quantisation tables, including luminance quantisation table (LQT)
and chrominance quantisation table (CQT). To this end, each 8-
by-8 quantisation table is reshaped to a 1-by-64 vector, and then
both are concatenated. Therefore, the representation proposed in
this paper is a vector of dimension 128 as

x = [LQT1,1, . . . , LQT8,8, . . . , CQT1,1, . . . , CQT8,8] (21)

where LQTi,j and CQTi,j show the corresponding element in the
location (i, j) in the LQT matrix and the CQT matrices. In other
words, the first 64 entries are positive integer numbers in [0, 2p

−

1] (where p is the number of bits indicating a pixel, in our case
p = 8) for the LQT table, while the remaining elements are
reserved for the CQT table.

6.2. Objective functions

This paper introduces two main objective functions, file size
and image quality. One is to be minimised (file size) and the other
to be maximised (image quality). To this end, first, the JPEG image
should be achieved using the corresponding candidate solution
for a typical image. The first objective function is file size defined
as

FSobj =
FSJPEG
FSorg

(22)

here FSJPEG is the file size for image after JPEG compression
rocess, and FSorg is the image size for the original image. Lower
Sobj shows a higher capability in the compression process.
The second objective function is Peak Signal to Noise (PSNR),

s one of the most common measures for assessing image quality,
hich is computed as

SNR = 20 log10(255/RMSE), (23)

here RMSE is the root mean squared error which is calculated
s

MSE =

√∑M
i=1

∑N
j=1(I(i, j)− Î(i, j))2

MN
, (24)

here M and N are the image dimensions, and I and Î are
he original and the compressed images. A higher PNSR value
ndicates better performance.
9

Algorithm 1 EnGAMO algorithm in the form of pseudo-code.

1: Inputs: L/U: lower/upper bound; Npop: population size; Nvar :
number of variables; NFEmax: maximum number of function
evaluations; prob: the probability of the crossover, η: the
distribution index.

2: Initialise population of Npop candidate solutions using the
representation introduced in Section 6.1.

3: Calculate objective function values (OFV) of all candidate
solutions (Section 6.2).

4: x∗ = best candidate solution in the initial population
5: NFE = Npop
6: iter = 0
7: while NFE <= NFEmax do
8: iter = iter + 1
9: Perform Tournament selection (Section 6.3.1).

10: Perform SBX crossover (Section 6.3.1).
11: Perform Polynomial mutation (Section 6.3.1).
12: Calculate objective function values of all new candidate

solutions (Section 6.2).
13: Replace the old population by the new one.
14: x+ = best candidate solution in the current population.
15: if OFV of x+ < OFV of x∗ then
16: x∗ = x+
17: end if
18: NFE = NFE + Npop
19: end while

Scalarisation approaches integrate the multi-objective func-
tions into one objective function. Therefore, the objective function
for the scalarisation methods is expressed as

F (x) = w1.FSobj +
w2

PSNR
(25)

where w1 and w2 are two used-defined parameters, indicating the
importance of each objective function.

Pareto-based approaches can work on our two objective func-
tions independently, so there is no need to combine two ob-
jective functions. As a result, the two objective functions for
Pareto-based approaches are FSobj and 1

PSNR .

6.3. Embedding within scalarisation approaches

6.3.1. EnMOGA Algorithm
The EnMOGA begins with forming a random initial popula-

tion from a uniform distribution. Over various generations, new
populations are created by applying crossover, mutation, and
selection operators. The pseudo-code of the EnMOGA algorithm is
given in Algorithm 1, while the components are briefly explained
below.

Selection: We use tournament selection, which promotes
quicker convergence. In tournament selection, the top candidate
solutions are chosen from a random subset of the population for
each tournament. The size of the tournament is determined by
the number of participants in each tournament.

Crossover: We use Simulated Binary Crossover (SBX) [49] for
he crossover operator. A binary notation can express real values,
nd then a point crossover can be performed. By using a proba-
ility distribution model of the binary crossover, SBX replicated
his process. SBX benefits from two leading parameters, including
he probability of a crossover and the distribution index (η).

Mutation: Polynomial Mutation [49] is used in this paper,
which follows the same probability distribution as the SBX op-
erator in the parent’s vicinity. It also has the same parameters as
the SBX operator.
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Algorithm 2 EnMODE algorithm in the form of pseudo-code.

1: Inputs: L/U: lower/upper bound; Npop: population size; Nvar :
number of variables; NFEmax: maximum number of function
evaluations; CR: crossover rate.

2: Initialise population of Npop candidate solutions using the
representation introduced in Section 6.1.

3: Calculate objective function values of all candidate solutions
(Section 6.2).

4: x∗ = best candidate solution in the initial population
5: NFE = Npop
6: iter = 0
7: while NFE <= NFEmax do
8: iter = iter + 1
9: Perform Dither operation (Section 6.3.2).

10: Perform Mutation operator (Section 5.1).
11: Perform Crossover operator (Section 5.1).
12: Calculate objective function values of all new candidate

solutions (Section 6.2).
13: Perform Selection operator (Section 5.1).
14: x∗ = best candidate solution in the current population.
15: end while

6.3.2. EnMODE algorithm
Since EnMODE is a population-based metaheuristic, it is

tarted with a random initial population. It has three main op-
rators, including, mutation, crossover, and selection. For them,
e used the standard operators, described in Section 5.1. Also,
nMODE benefits from Dither [50], a deterministic scheme of
andomisation of the scale factor SF (introduced in Section 5.1).
ither proposes selecting SF from the interval [0.5, 1.0] randomly

for each generation. The pseudo-code of EnMODE is given in
Algorithm 2.

6.3.3. EnMOPSO Algorithm
The EnMOPSO is based on the PSO algorithm. The updating

strategy used here is similar to the standard PSO algorithm in-
troduced in Section 5.1. Standard PSO uses two parameters, c1
and c2. Here, both parameters are updated based on the way
proposed in [51]. To this end, PSO has been placed in 4 states,
including convergence, exploitation, exploration, and jumping
out. In each state, one of the following operations should be
performed.

1. Increasing c1 and decreasing c2 in an exploration state,
2. Increasing c1 slightly and decreasing c2 slightly in an ex-

ploitation State,
3. Increasing c1 slightly and increasing c2 slightly in a conver-

gence state,
4. Decreasing c1 and increasing c2 in a jumping out state.

he evolutionary states estimation process is as follows.

1. Calculate the mean distance of each particle (di) with all
other particles as

di =
1

N − 1

N∑
j=1,j̸=i

√ D∑
k=1

(xki − xkj ) (26)

where N and D are population size and the number of
dimensions, respectively.

2. Calculate the evolutionary factor as

ef =
dg − dmin (27)

dmax − dmin

10
Algorithm 3 EnMOPSO algorithm in the form of Pseudo-code.

1: Inputs: L/U: lower/upper bound; Npop: population size; Nvar :
number of variables; NFEmax: maximum number of function
evaluations; G: maximum number of iterations.

2: g = 1
3: NFE = Npop
4: iter = 0
5: Initialise population of Npop candidate solutions using the

representation introduced in Section 6.1.
6: Calculate objective function values of all candidate solutions

(Section 6.2).
7: Initialise Gbest as a candidate solution with the minimum

value of the population.
8: Initialise Pbest to its initial position for each candidate

solution.
9: while NFE <= NFEmax do

10: iter = iter + 1
11: Estimate the evolutionary states of the algorithm and

calculate evolutionary factor using Eq. (27).
12: Select one of 4 states, including convergence, exploitation,

exploration, and jumping out to update the parameters.
13: Update ω using Eq. (28).
14: Calculate the particle’s velocity according to Eq. (14).
15: Update particle’s position according to Eq. (15).
16: Calculate objective function values of all new candidate

solutions (Section 6.2).
17: Update Gbest and Pbest.
18: x∗ = best candidate solution in the current population.
19: Update NFE
20: end while

where dg means the distance for the global best position,
and dmax and dmin are the maximum and minimum dis-
tances, respectively.

3. Classify ef into one of four sets (based on the rules intro-
duced in [51]), which represents the states of exploration,
exploitation, convergence, and jumping out.

In addition to updating c1 and c2, ω also updates based on a
Sigmoid function as

ω(ef ) =
1

1+ 1.5e−2.6ef
(28)

The EnMOPSO algorithm in the form of Pseudo-code is given
in Algorithm 3.

6.3.4. EnMOES algorithm
EnMOES algorithm is inspired by evolutionary strategy [46],

and includes two leading operators, namely mutation and se-
lection. Mutation operator is performed using Eq. (16), while
selection is based on objective function ranking. The EnMOES
algorithm in the form of pseudo-code is given in Algorithm 4.

6.3.5. EnMOPS algorithm
EnMOPS works based on pattern search; therefore, it tries to

find the optimal point by comparing, at each iteration, its value
with a finite set of trial points. The Pseudo-code of EnPS-MO
algorithm is given in Algorithm 5.

6.4. Embedding within Pareto-based techniques

This subsection presents how to embed the proposed multi-
objective JPEG image compression strategy into two well-known
Pareto-based techniques, NSGA-II and NSGAIII.
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Algorithm 4 EnMOES algorithm in form of Pseudo-code.

1: Inputs: L/U: lower/upper bound; Npop: number of bids; Nvar :
number of variables; NFEmax: maximum number of function
evaluations; σ : variance value for Gaussian distribution.

2: Initialise population of Npop candidate solutions using the
representation introduced in Section 6.1.

3: Calculate objective function values of all candidate solutions
(Section 6.2).

4: x∗ = best candidate solution in the initial population.
5: NFE = Npop
6: iter = 0
7: while NFE <= NFEmax do
8: iter = iter + 1
9: Select parents in a random manner.

10: Generate offspring using Eq. (16).
11: Calculate objective function values of all offspring (Sec-

tion 6.2).
12: Select the best candidate solutions among the combination

of offspring and parents.
13: x∗ = best candidate solution in the current population.
14: end while

6.4.1. EnNSGAII algorithm
EnNSGAII algorithm is a Pareto-based technique and generates

set of solutions instead of a single solution. EnNSGAII employs
he NGSA-II algorithm for the optimisation process introduced
n Section 5.2.1. We have used the same operators for EnNS-
AII algorithm including non-dominated sorting, elite preserving
perator, crowding distance, and selection operator. For the evo-
utionary step, we have used similar operators to the ones used
n EnMOGA. In other words, we have used tournament selection,
BX crossover, and Polynomial mutation. Algorithm 6 presents
he pseudo-code for the EnNSGAII algorithm.

.4.2. EnNSGAIII algorithm
EnNSGAIII is similar to EnNSGAII except that it employs ref-

rence directions rather than crowding distance. Therefore, all
perators we used for EnNSGAIII are similar to EnNSGAII. In other
ords, EnNSGAIII employs non-dominated sorting, elite preserv-

ng operator, tournament selection, SBX operator, and Polynomial
utation for the optimisation process. The EnNSGAIII algorithm

n the form of pseudo-code is given in Algorithm 7.

.5. Computational complexity

This section provides a computational complexity analysis
f the proposed algorithms. Generally speaking, the computa-
ional complexity of an approach based on a metaheuristic al-
orithm depends on different criteria such as population size
Npop), objective function, the number of iterations (I), problem
dimensions(d), and operators. The computational complexity of
the operators in our problem is usually lower than the com-
plexity of the objective function. As a result, the complexity of
the operators can be ignored in most cases. In the following,
first, we discussed the computational complexity of JPEG image
compression since it is the main part of the objective function.
Then, we explain the computational complexity of our proposed
algorithms.

JPEG Image Compression: the computational complexity of
JPEG image compression is mainly dependent on the compo-
nents of the algorithm and the size of the input image. The
computational complexity of colour space conversion is O(N),
here N is the number of pixels in the input image. The DCT

s performed on 8 × 8 blocks of pixels, and its computational
11
Algorithm 5 EnMOPS algorithm in the form of Pseudo-code.

1: Inputs: L/U: lower/upper bound; Nvar : number of variables;
NFEmax: maximum number of function evaluations; ρ: step
size

2: Generate a randomly candidate solution (x) using the
representation introduced in Section 6.1.

3: Calculate objective function values (OFV) of the candidate
solution (Section 6.2).

4: NFE = 1
5: iter = 0
6: while NFE <= NFEmax do
7: iter = iter + 1
8: Generate one trial solution (x+) using Eq. (17).
9: Calculate objective function values of the new trial

solution (Section 6.2).
10: if x+ is better than the current solution then
11: replace the current solution by x+.
12: else
13: Generate one trial solution (x+) using Eq. (18).
14: Calculate objective function values of the new trial

solution (Section 6.2).
15: if x+ is better than the current solution then
16: replace the current solution by x+.
17: end if
18: end if
19: if x+ is worse than the current solution then
20: ρ ←

ρ

2
21: end if
22: end while

Algorithm 6 EnNSGAII algorithm in the form of Pseudo-code.

1: Inputs: L/U: lower/upper bound; Npop: number of bids; Nvar :
number of variables; NFEmax: maximum number of func-
tion evaluations; prob: the probability of a crossover, η: the
distribution index.

2: Initialise population of Npop candidate solution using the
representation introduced in Section 6.1.

3: Calculate objective function values of all candidate solutions
(Section 6.2).

4: Assign (level) rank based on Pareto sorting.
5: NFE = Npop
6: iter = 0
7: while NFE <= NFEmax do
8: iter = iter + 1
9: Perform Tournament selection (Section 6.3.1).

10: Perform SBX mutation (Section 6.3.1).
11: Perform Polynomial mutation (Section 6.3.1).
12: Calculate objective function values of all new candidate

solutions (Section 6.2).
13: Rt ← Combine parent and offspring population.
14: Assign (level) rank based on Pareto sorting.
15: Generate sets of non-dominated solutions.
16: Add solutions to next generation starting from the first

front to Npop individuals.
17: Determine crowding distance.
18: Select points on the lower front with high crowding

distance.
19: Update NEF .
20: end while

complexity is O(N2). The quantisation stage involves dividing
the DCT coefficients by quantisation values and rounding to the
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earest integer, and its computational complexity is O(N). The
ntropy coding stage here was based on the Huffman coding, with
computational complexity of O(NlogN). Therefore, the overall
omputational complexity of JPEG image compression is O(N2).
EnMOGA algorithm: Our proposed EnMOGA algorithm in-

ludes four main operators, tournament selection, SBX muta-
ion operator, objective function, and Polynomial mutation. Other
arts of EnMOGA are computationally inexpensive. The compu-
ational complexity of tournament selection is O(mNpop), where
is the number of candidate solutions in the tournament. This

s because in tournament selection, m candidate solutions are
andomly selected from the population, and the best individual
mong these m candidate solutions is selected for reproduction.
his process is repeated for each candidate solution in the new
opulation. In SBX, each dimension of the offspring is generated
y combining the corresponding dimensions of the two parent
olutions. The generation of each dimension is a computationally
nexpensive operation, which contributes to the overall O(d) time
omplexity of SBX. In addition, in Polynomial mutation, each
imension of the solution is mutated by applying a polynomial
unction. The computation of the polynomial function is the main
peration in Polynomial mutation, and it is a computationally
nexpensive operation, contributing to the overall O(d) time com-
lexity. Therefore, the complexity of one iteration in total is
(mNpop + d + d + N2). In the real world, the number of pixels
n a typical image is usually bigger than the population size.
or instance, the population size is usually selected as a number
etween 5 and 200, while the number of pixels for a small image
ith a size of 75 × 75 is 5625. Also, m is a small number less
han the population size. Therefore, assuming that the number
f pixels is significantly larger than the population size, we can
onclude that the computational complexity of the EnMOGA algo-
ithm for one iteration is O(NpopN2), and for the whole algorithm
s O(INpopN2).

EnMODE algorithm: Our proposed EnMODE consists of three
omputational components of Dither, standard mutation, and
rossover. The computational complexity of the Dither operation
s O(d) since it only involves simple arithmetic operations on d-
dimensional vectors. The computational complexity for the muta-
tion and crossover is also O(d). Also, in each iteration, DE requires
to evaluate Npop candidate solutions. Since the computation com-
plexity of the objective function is significantly larger than O(d),
the computational complexity of the EnMODE algorithm is also
O(INpopN2).

EnMOPSO algorithm: in this paper, we used an adaptive
PSO, in which the computational components are position up-
dating strategy, estimation of evolutionary states, ω updating,
and objective function. In each iteration of PSO, the position
of each particle is updated based on its current velocity and a
combination of its personal best solution and the global best
solution found so far. This update involves performing d dimen-
sional vector arithmetic operations, including addition, subtrac-
tion, and multiplication. These operations are relatively simple
and computationally efficient. Therefore, the computational com-
plexity of the updating strategy is O(d). The computation com-
plexity of the evolutionary states estimation process is O(Npopd).
Also, ω updating benefits from addition, division, and multipli-
cation, resulting in O(1). Since again O(N2) is significantly bigger
than O(Npopd), the computational complexity of EnMOPSO is also
O(INpopN2).

EnMOES algorithm: For the EnMOES algorithm, we have the
same conditions as the earlier algorithms and the most dominant
component based on the computational complexity is the objec-
tive function. Therefore, again EnMOES algorithms benefit from a
computational complexity of O(INpopN2).
12
EnMOPS algorithm: in each iteration of EnMOPS, two equa-
tions should be calculated that are computationally inexpensive
since they only include addition and subtraction operations. Also,
the objective function should be computed 2 times in each itera-
tion. As a result, since EnMOPS is a single-solution-based MA, the
computation complexity of EnMOPS is O(IN2).

EnNSGAII algorithm: from [19], the computational complex-
ity of NSGA-II for each iteration is O(MN2

pop), where M is the
number of objective functions. In the paper, the authors assumed
that the objective function is computationally inexpensive. There-
fore, for this problem, we should add the objective function
to the computation complexity. In addition, the computational
complexity of the operators, as already mentioned, is significantly
lower than O(N2). In other words, it can be seen as O(I(N2

pop +

NpopN2)). With our previous assumption on the number of pix-
els and population size, the overall complexity of EnNSGAII is
O(INpopN2), which is governed by the objective function.

EnNSGAIII algorithm: [23] indicates that the computational
complexity of NSGA-III for one generation is O(MN2

pop). Therefore,
We have the same circumstance with EnNSGAII for the EnNSGAIII
algorithm, resulting in a computational complexity of O(INpopN2).

All in all, the overall computational complexity of all algo-
rithms, except one, is the same, which is governed by the pop-
ulation size and the objective function. It is worthwhile to note
that, to have a fair comparison in the experimental section, the
stopping criterion is selected as the number of function evalu-
ations rather than the number of iterations, leading to granting
them the same computational budget.

6.6. Limitations

Despite the effectiveness of the proposed approach, it suffers
from several limitations. The first challenge is finding priorities.
In other words, what is a higher-priority goal for a developer?
Sometimes even a developer does not know which objective has
higher priority. Therefore, he/she will not be able to give proper
weights to the objective functions. Despite the existence of this
challenge, it can be moderated by using default weights for each
objective in case a developer does not have an idea in mind.

Another limitation is to ignore the user’s opinion regarding the
image properties. As mentioned, in multi-objective optimisation,
there are several objectives. The importance of each objective
function is determined using weights in a priori algorithms. In
other words, a user can embed the importance of the objectives
as the preference in the objective function. For example, if the
file size is more important to the user compared to the quality,
more weight is given to the file size in the objective function.
Despite embedding this preference, the output may not be what
the user intended since only the importance of the functions is
considered in terms of each other. Assume an Android developer
is thinking about creating a small-sized app. Here, the user gives
more weight to the file size than the quality, but the exact
amount of size the user is considering is not stated. With this
app’s optimisation algorithms, the algorithm might find an image
with a low file size, but it might be very different from the
desired file size. In other words, the exact user’s opinion about the
specification of the output file is not considered in the proposed
approach.

7. Experimental results

To demonstrate the superiority of our proposed strategy, an
extensive set of experiments is provided. To this end, we have
used 7 popular benchmark images in image compression, includ-
ing, Airplane, Barbara, Lena, Mandrill, Peppers, Tiffany, andSailboat,

as well as 6 images suggested in [52] for image quantisation
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Table 3
Parameter settings.
Algorithm Parameter Value

EnMOGA

Prob for crossover 0.9
η for crossover 20
Prob for mutation 0.3
η for mutation 20

EnMOPSO – –

EnMODE CR 0.2

EnMOES – –

EnMOPS ρ 0.5

EnNSGA-II

Prob for crossover 0.9
η for crossover 20
Prob for mutation 0.3
η for mutation 20

EnNSGA-III

Prob for crossover 0.9
η for crossover 20
Prob for mutation 0.3
η for mutation 20
f
t
r
t
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f

Algorithm 7 EnNSGAIII algorithm in the form of Pseudo-code.

1: Inputs: L/U: lower/upper bound; Npop: number of bids; Nvar :
number of variables; NFEmax: maximum number of func-
tion evaluations; prob: the probability of a crossover, η: the
distribution index.

2: Initialise population of Npop candidate solution using the
representation introduced in Section 6.1.

3: Calculate objective function values of all candidate solutions
(Section 6.2).

4: Assign (level) rank based on Pareto sorting.
5: NFE = Npop
6: iter = 0
7: while NFE <= NFEmax do
8: iter = iter + 1
9: Perform Tournament selection (Section 6.3.1).

10: Perform SBX mutation (Section 6.3.1).
11: Perform Polynomial mutation (Section 6.3.1).
12: Calculate objective function values of all new candidate

solutions (Section 6.2).
13: Rt ← Combine parent and offspring population.
14: Assign (level) rank based on Pareto sorting.
15: Generate sets of non-dominated solutions.
16: Add solutions to next generation starting from the first

front to Npop individuals.
17: Normalise objective function and create reference set.
18: Assign each member to a reference point.
19: Compute niche count of each reference point.
20: Add new members to the new population based on the

niche count.
21: Update NEF .
22: end while

benchmarking, including, Snowman, Beach, Cathedrals beach,
essert, Headbands, and Landscape. Fig. 8 shows the benchmark
mages.

Our proposed strategy is embedded in five scalarisation and
wo Pareto-based methods. All algorithms are run 30 times in-
ependently to provide a fair comparison, and their statistical
esults, including average and standard deviation, are presented.
he population size and the number of function evaluations for
ll algorithms are set to 50 and 1000, respectively. For other
arameters, we used the default parameters that can be seen in
able 3.
13
All algorithms are implemented in Python and with the Pymoo
ramework [53], an open-source framework including state-of-
he-art single-and multi-objective algorithms as well as features
elated to multi-objective optimisation such as visualisation, in-
roduced in 2020.

.1. Results of scalarisation approaches

This section aims to find answers to two central questions, as
ollows:

• Is the proposed strategy able to provide higher quality
results than the baseline algorithm? (Here, the baseline
algorithm means the standard JPEG compression method).
• Among the embedded scalarisation methods, which algo-

rithm has been able to provide a better solution?

To this end, Table 4 compares the results of the baseline
algorithm with other algorithms in terms of mean and standard
deviation of the objective function yielded by each algorithm.
All algorithms except the baseline algorithm are run 30 times
since the baseline algorithm is deterministic. Therefore, we do
not provide any standard deviation for the baseline algorithm.
Also, the rank of each algorithm per image is indicated from the
smallest mean to the highest mean in Table 4. In the last row of
the table, the average rank of each algorithm and subsequently,
the overall ranks are reported as well.

From Table 4, and by a comparison between the baseline
algorithm with others, we can observe that the baseline algorithm
in all cases and in comparison to all algorithms achieves the
worst results. For instance, for the Airplane image, the objective
function for the baseline algorithm is 1.7839, while for others, it is
between 1.4185 and 1.4700, indicating a significant improvement
in the proposed strategy. Therefore, in short, we can say that our
strategy, independent of the embedding algorithm, can provide
competitive results compared to the baseline algorithm.

As mentioned, we employed five scalarisation methods. Here,
we compare the results of scalarisation methods together. The
results can be seen in Table 4. From the table, we can observe
that EnMOGA can achieve the first rank in 6 out of 13 images and
the second rank in 7 out of 13 images. Also, EnMOPS is placed
in the first rank with seven cases, and in the second rank with
five images. EnMOES achieved the fifth or worst rank among the
embedding algorithms in all cases. Therefore, from the last row
of the table, we can say that EnMOGA and EnMOPS provide the
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Fig. 8. Benchmark images.
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Table 4
A comparison between different scalarisation approaches and the baseline algorithm in terms of objective function.
Images Baseline EnMOGA EnMOPSO EnMODE EnMOES EnMOPS

Airplane Mean 1.7839 1.4227 1.4370 1.4596 1.4700 1.4185
Std. – 0.0055 0.0064 0.0051 0.0034 0.0159
rank 6 2 3 4 5 1

Barbara Mean 1.7647 1.3571 1.3688 1.4052 1.4224 1.3731
Std. – 0.0076 0.0079 0.0079 0.0060 0.0265
rank 6 1 2 4 5 3

Lena Mean 1.8552 1.4312 1.4475 1.4665 1.4794 1.4337
Std. – 0.0062 0.0072 0.0054 0.0029 0.0205
rank 6 1 3 4 5 2

Mandrill Mean 1.8961 1.6098 1.6329 1.6666 1.6767 1.5703
Std. – 0.0073 0.0084 0.0041 0.0049 0.0196
rank 6 2 3 4 5 1

Peppers Mean 1.8604 1.5168 1.5313 1.5409 1.5507 1.5004
Std. – 0.0046 0.0048 0.0044 0.0036 0.0120
rank 6 2 3 4 5 1

Sailboat Mean 1.8458 1.5670 1.5839 1.6015 1.6103 1.5379
Std. – 0.0048 0.0063 0.0033 0.0027 0.0150
rank 6 2 3 4 5 1

Snowman Mean 1.8239 1.4041 1.4150 1.4467 1.4611 1.4120
Std. – 0.0071 0.0075 0.0080 0.0054 0.0189
rank 6 1 3 4 5 2

Tiffany Mean 1.8027 1.5109 1.5147 1.5229 1.5282 1.4867
Std. – 0.0018 0.0024 0.0026 0.0023 0.0093
rank 6 2 3 4 5 1

Beach Mean 1.8047 1.4847 1.4956 1.5282 1.5386 1.4723
Std. – 0.0061 0.0081 0.0058 0.0043 0.0186
rank 6 2 3 4 5 1

Cathedrals beach Mean 1.7551 1.3648 1.3748 1.4013 1.4110 1.3647
Std. – 0.0076 0.0080 0.0056 0.0056 0.0175
rank 6 2 3 4 5 1

Dessert Mean 1.8195 1.3760 1.3859 1.4113 1.4220 1.3804
Std. – 0.0067 0.0066 0.0076 0.0053 0.0180
rank 6 1 3 4 5 2

Headbands Mean 1.8027 1.3879 1.3971 1.4201 1.4269 1.3901
Std. – 0.0047 0.0058 0.0042 0.0037 0.0141
rank 6 1 3 4 5 2

Landscape Mean 1.8456 1.4272 1.4386 1.4731 1.4940 1.4303
Std. – 0.0066 0.0081 0.0087 0.0058 0.0203
rank 6 1 3 4 5 2

Average rank 6 1.54 2.92 4.00 5.00 1.54

Overall rank 6 1.5 3 4 5 1.5
best average rank and, subsequently, overall rank, while EnMOES
provides the highest average and overall ranks.

Due to the non-deterministic behaviour of metaheuristic al-
orithms, non-parametric statistical is obligatory. In this case, the
lternative hypothesis H1 denotes a statistically significant differ-
nce between the algorithms, while the null hypothesis H0 states

that there is no statistical difference between the two algorithms.
The null hypothesis is the initial statistical assertion, and the
alternative hypothesis would be accepted if the null hypothesis
were to be shown to be false. To this end, we carried out Wilcoxon
signed rank test [54] at 5% significance level based on the mean
objective function value to compare the results statistically. We
selected the Wilcoxon signed rank test since it does not assume
normal distributions and therefore, it is safer than the t-test.
Also, the outliers (exceptionally good/bad performances of a few
problems) have less impact on the Wilcoxon test in comparison to
the t-test [54]. Because of these reasons, in [54], Wilcoxon signed
rank test is introduced as a proper alternative to assess the MA
algorithms statistically.

Table 5 shows that EnMOGA and EnMOPS perform statistically
superior to other algorithms since both win in 4 cases. Also,
EnMOPS and EnMOGA are statistically the same. The overall
following best working algorithm is EnMOPSO (3 wins, 2 losses).
15
Among the scalarisation algorithms, EnMOES performs worst (1
win, 4 losses). Again, the baseline algorithm (0 win, 5 losses) fails
against all proposed scalarisation methods.

Comparing between EnMOPS and others, we can realise that
the number of iterations for EnMOPS is higher than others since
the stopping criterion is the number of objective function values
and EnMOPS lacks a population. In other words, there is a lower
number of iterations and a larger population size for population-
based algorithms. Therefore, we can say that in this problem,
more evolution of a candidate solution is more effective than
distributing the computations through the evolution of several
candidate solutions. Also, by comparison between EnMOES (as
one of the worst algorithms) and EnMOPS algorithms (as one of
the best-performing algorithms), we can observe two leading dif-
ferences: 1) EnMOPS is a single-solution-based algorithm, while
EnMOES is a population-based algorithm and 2) EnMOPS is based
on step size, meaning that the step value is decreasing over time,
whereas EnMOPS only employs a normal distribution for the
updating process. As a result, another reason for the remarkable
efficiency of EnMOPS might be due to the decreasing step size.

We also investigated the convergence curves for all algo-
rithms. Fig. 9 shows plots of objective function values against the
number of function evaluations on all images and for a single
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Table 5
Results of Wilcoxon signed rank test based on the mean objective function value. ‡, †, and ≈
indicate that the algorithm in the corresponding row is statistically better than, worse than,
or similar to the algorithm in the corresponding column. The last column summarises the
algorithms’ total wins (w), ties (t), and losses (l).

Baseline EnMOGA EnMOPSO EnMODE EnMOES EnMOPS w/t/l

Baseline † † † † † 0/0/5
EnMOGA ‡ ‡ ‡ ‡ ≈ 4/1/0
EnMOPSO ‡ † ‡ ‡ † 3/0/2
EnMODE ‡ † † ‡ - 2/0/3
EnMOES ‡ † † † † 1/0/4
EnMOPS ‡ ≈ ‡ ‡ ‡ 4/1/0
random run. It is worthwhile to mention that four scalarisation al-
gorithms, EnMOGA, EnMODE, EnMOPSO, EnMOES are population-
based algorithms, while EnMOPS is a single-solution algorithm. In
other words, EnMOPS starts with only one solution, unlike other
algorithms that start with a population of solutions. Also, the x-
axis curve in the convergence curves is based on the number
of function evaluations (and not the number of iterations). As a
result, the start point of EnMOPS is different from others in the
convergence curves. It can be seen that EnMOPS and EnMOGA
have faster convergence compared to other algorithms, while
EnMOES suffers from low-speed convergence.

7.2. Results of pareto-based approaches

The evaluation method of the Pareto-based approaches dif-
fers from the scalarisation approaches because the Pareto-based
approaches result in several solutions while the scalarisation
methods produce only one solution. There are several measures
to validate the results of Pareto-based approaches, such as Gen-
erational Distance (GD) [55] and Inverted Generational Distance
(IGD) [56], while here, we cannot use these because they require
the true Pareto front, which is not available in this problem.
Therefore, we used an alternative measure, called hyper-volume
(HV) [57], which does not require a true Pareto-front to vali-
date the results. The HV measure is regarded as a fair measure
among other criteria [58] so that HV can take into consider-
ation both closeness to the optimal solution and being well-
distributed along the whole Pareto front. HV measure determines
the area/volume that, in relation to a reference point, is domi-
nated by the given set of solutions. A higher value of HV measure
in a minimisation problem shows a better quality of the solution.

This paper integrated the proposed strategy into two Pareto-
based algorithms, including NSGA-II and NSGA-III. The results
based on the HV measure are given in Table 6. The table shows
that EnNSGAII outperforms EnNSGAIII in 10 out of 13 cases, while
it fails in 3 cases. From the last row of the table, we can observe
that the average rank of EnNSGAII is lower than EnNSGAIII. In
other words, EnNSGAII overcomes EnNSGAIII.

To perform a deeper analysis, we also conducted a Wilcoxon
signed rank test on the results. The achieved p-value is 0.0574,
hich means that there is a statistical difference between the
wo algorithms only at a 10% significance level. This was expected
ecause in most cases, reference points showed better perfor-
ance against crowding distance when the number of objectives

s greater than 2 [23].
Finally, to have a more comprehensive view of the generated

areto fronts, we plot the Pareto front for the algorithms in
ig. 11. It can be seen that EnNSGAII provides more points in the
areto front compared to EnNSGAIII.
Since there are two conflicting objective functions, we cannot

lot convergence curves in terms of objective functions. There-
ore, in the next experiment, we indicated the convergence curves
n terms of the HV measure rather than objective functions.
ig. 10 shows the convergence curves for our two proposed
16
Table 6
A comparison between EnNSGAII and EnNSGAIII in terms of the HV measure.
Images EnNSGAII EnNSGAIII

Airplane Mean 7.0803 7.0920
Std. 0.1805 0.2133
rank 2 1

Barbara Mean 7.1164 7.0369
Std. 0.1717 0.2482
rank 1 2

Lena Mean 7.1206 7.1436
Std. 0.2085 0.1077
rank 2 1

Mandrill Mean 7.0618 7.0585
Std. 0.0483 0.0646
rank 1 2

Peppers Mean 7.2614 6.6218
Std. 0.0634 0.5518
rank 1 2

Sailboat Mean 7.0653 7.0424
Std. 0.1971 0.0986
rank 1 2

Snowman Mean 7.1900 7.0897
Std. 0.0599 0.0727
rank 1 2

Tiffany Mean 6.9587 7.1036
Std. 0.4292 0.1055
rank 2 1

Beach Mean 7.078745 6.960397
Std. 0.03692 0.1994
rank 1 2

Cathedrals beach Mean 7.1510 7.1149
Std. 0.1207 0.0571
rank 1 2

Dessert Mean 7.1242 7.0103
Std. 0.2396 0.3402
rank 1 2

Heatbands Mean 7.2309 7.1754
Std. 0.0521 0.1084
rank 1 2

Landscape Mean 7.1799 7.1417
Std. 0.0765 0.0837
rank 1 2

Average rank 1.23 1.77

Overall rank 1 2

algorithms. It is clear that, in most cases, EnNSGAII provides a
faster convergence rate.

7.3. Comparison between scalarisation and Pareto-based methods

Generally speaking, a comparison between scalarisation and
Pareto-based methods is not possible since scalarisation methods
only generate one solution based on a given set of weights, while
Pareto-based methods generate a set of solutions. To tackle this
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roblem, we select one solution from a Pareto-based method
s

Fselected =
NPF
min(w1f i(x)+ w2f i(x)+ · · · + wM f i (x)) (29)

i=1 1 2 M

17
here NPF is the number of solutions in the generated Pareto
ront, w1, . . . , wM are the corresponding weights in the scalar-
sation method, and f i1, . . . , f

i
M are the objective function values

for the ith solution in the Pareto front.
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Fig. 10. Convergence curves for the Pareto-based approaches in terms of the HV measure.
Table 7 shows the results. It can be seen that EnNSGAII cannot
ork better than two others when we select only one solution,
s expected since the Pareto-based approaches focus on a set
f solutions and not only one solution. Despite the performance
f the scalarisation method compared to the Pareto-based algo-
ithm, we cannot say that the Pareto-based algorithm did not
ork well because the output of the Pareto-based algorithm is
set of solutions with different weights, while the scalarisation
18
method does not have such an ability. Also, from this experiment,
it is worthwhile to mention that if we know the weights of each
objective, scalarisation methods are preferable.

7.4. Sensitivity analysis

The sensitivity analysis of the suggested algorithm’s control
parameters is examined below. To serve as representatives, we
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Fig. 11. A comparison of the Pareto front of the proposed methods for each image.
chose two images, namely Airplane and Barbara. We selected En-
MOGA as a scalarisation method, and EnNSGAII as a Pareto-based
method, which show better performance, for our experiments.

7.4.1. Sensitivity to population size
Population size is one of the most critical parameters in

metaheuristic algorithms. Metaheuristic algorithms with a large
population size usually provide better results than small popula-
tion size since a large population size supports higher diversity
19
for the population, leading to higher exploration ability due to
the recombination of its diverse members [59,60]. Nevertheless,
sometimes it is more effective to use a small population size.
The term micro-algorithm, µ-algorithm, refers to a metaheuristic
algorithm with a small population size [60].

This section aims to investigate the effect of population size on
performance. To this end, the population size is set to 5, 10, 20,
30, 50, 100, and 200, while the number of function evaluations
is fixed for all algorithms. In other words, for smaller population
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Fig. 12. The objective function values obtained with different population sizes.
n
η

Table 7
A comparison between the scalarisation and Pareto-based methods. The values
signify the objective function value defined for scalarisation method and PFselected
for EnNSGAII. The best result for a given image is boldfaced.
Images EnMOGA EnMOPS EnNSGAII

Airplane 1.4227 1.4185 1.4705
Barbara 1.3571 1.3731 1.4048
Lena 1.4312 1.4337 1.4720
Mandrill 1.6098 1.5703 1.6695
Peppers 1.5168 1.5004 1.5462
Sailboat 1.5670 1.5379 1.6076
Snowman 1.4041 1.4120 1.5212
Tiffany 1.5109 1.4867 1.4207
Beach 1.4847 1.4723 1.3987
Cathedrals beach 1.3648 1.3647 1.4155
Dessert 1.3760 1.3804 1.4459
Headbands 1.3879 1.3901 1.5244
Landscape 1.4272 1.4303 1.4648

size, the number of iterations is higher than for larger population
size. Fig. 12(a) shows the objective function value achieved by
different population sizes and for the EnMOGA algorithm. Both
20
images show an upward trend; in other words, a larger popula-
tion size leads to a higher objective function value. It means that
lower population size is preferable.

The same experiment is performed by EnNSGAII, and the re-
sults are given in Fig. 12(b). For the Airplane image, by increasing
the population size from 5 to 20, the HV value is also increased,
while there is a downward trend by increasing the population
size from 20 to 200. For the Barbara image, the conditions are a
bit different, and the trend is downward for all population sizes.

In short, it can be said that smaller population sizes can lead to
better results for the scalarisation approach, whereas the Pareto-
based approach works better with larger population sizes (see
Fig. 12).

7.4.2. Sensitivity to prob and η in the crossover operator
Our crossover operator depends on two parameters, called

prob and η. To study the sensitivity of prob and η, 18 combi-
ations of prob and η are assessed (prob = 0.5, 0.7, 0.9 and
= 2, 5, 10, 20, 30, 40). All other parameters are fixed. Figs. 13

indicates the objective function value with different prob and
η combinations for the Airplane and Barbara images. For the
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Fig. 13. The objective function values of different prob and η values in the crossover operator of EnMOGA.
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irplane image, we can see that the objective function value for
rob = 0.5 is higher than the other two for all η values. There is
fluctuation in comparison between prob = 0.7 and prob = 0.9;
eaning that for η = 2, 5, 20, prob = 0.7 outperforms prob =
.9, while for other η values, prob = 0.9 provides better results
han prob = 0.7.

This experiment is also conducted for the EnNSGAII algorithm.
he results are given in Fig. 14. From Fig. 14(a), it is clear that
rob = 0.9 provides better results with more stability in all cases.
y increasing the η values for prob = 0.5 and 0.7, the HV values
lso are improved. The similar results can be seen in Fig. 14(b)
or the Barbara image. In most cases, the prob = 0.9 outperforms
ther prob values, followed by prob = 0.7.

.4.3. Sensitivity to prob and η in the mutation operator
There are also two parameters, prob and η, in the mutation

perator. We investigated the effect of 18 combinations (prob =
.1, 0.3, 0.5 and η = 2, 5, 10, 20, 30, 40). The results of EnMOGA
re given in Fig. 15. For the Airplane image and prob = 0.5, η

alues have a downward trend; in other words, by increasing the
values, performance is also improved. For η = 0.3, there is a

luctuation, while for η = 0.1, the results are more stable. From
ig. 15(b), we can observe that the EnMOGA is sensitive to these
arameters. In particular, η = 20 and prob = 0.3 provided the
21
est results, whereas the worst results are achieved by η = 40
nd prob = 0.5.
Similar results for EnNSGAII in Fig. 16 indicate that, again,

hese parameters can affect the performance. Fig. 16(a) investi-
ates that η = 20 can provide the highest HV values for most
ases. Also, there is an upward trend from eta = 2 to eta = 20,
hile a downward trend can be seen from eta = 20 to eta = 40.
he similar trends can also be observed in Fig. 16(b) for Barbara
mage.

. Conclusions

This paper proposes an energy-aware multi-objective strategy
o find the best values of quantisation tables in JPEG image
ompression. To this end, first, we investigated whether there
s a high correlation between two main properties of images,
mage quality and file size, and energy consumption. As a result,
hese two can be considered a proxy for energy consumption.
hen, we defined two conflicting objective functions, including
mage quality and file size, while a vector-based representa-
ion was used as the candidate solution. In the next step, we
mbedded the proposed strategy into seven metaheuristic algo-
ithms. Five of them are among scalarisation methods, includ-
ng energy-aware multi-objective genetic algorithm (EnMOGA),
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Fig. 14. The HV values of different prob and η values in the crossover operator of EnNSGAII.
nergy-aware multi-objective particle swarm optimisation
EnMOPSO), energy-aware multi-objective differential evolution
EnMODE), energy-aware multi-objective evolutionary strategy
EnMOES), and energy-aware multi-objective pattern search (En-
OPS), while two others are selected among Pareto-based ap-
roaches, including energy-aware non-dominated sorting genetic
lgorithm (EnNSGA-II) and energy-aware reference-based NSGA-
I (EnNSGA-III). Our extensive results indicated that all algorithms
ould outperform the baseline. In particular, EnMOGA, EnMOPS,
nd EnNSGA-II offered better results.
Despite the effectiveness of the proposed strategy, this work

as two main limitations. First, our proposed approach takes
he importance of each objective function into consideration as
he preference, while it ignores the user’s opinion regarding the
utput image properties. For example, the goal might be to have
small size image, while this method may provide a larger

ize image. Another limitation is in the selection of priorities,
iven that sometimes even a developer does not have enough
nowledge to choose a priority.
This work can be extended in the future with the following

ints.
22
• This paper employed some well-established metaheuris-
tic algorithms for the embedding process, while it can be
improved by embedding the strategy into more recent algo-
rithms such as L-SHADE [61].
• This paper ignored decomposition-based approaches (DBA)

for finding the conflicting objectives, while the literature
shows that DBAs have an excellent capability for multiob-
jective optimisation. Therefore, DBAs can be used for this
problem in the future.
• The goal of this paper was to find the optimal points for

quantisation tables. It will likely to provide better results by
adding other parameters to the current representation, such
as the quality factor.
• This paper employed the default parameter of algorithms

for the first stage of the embedding process, and we have
not focused on the parameter settings for all algorithms. The
optimal parameters also can be archived by a self-adaptation
approach.
• This paper only employed two objective functions, while

this research can be extended to the many-objective opti-
misation problem in the quantisation table generation.
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Fig. 15. The objective function values of prob and η in the mutation operator of EnMOGA.

Fig. 16. The HV values of prob and η in the mutation operator of EnNSGAII.

23
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• This paper does not into consideration the user’s opinion
regarding the output image properties. The authors intend
to propose a user-specified JPEG image compression in the
future.
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