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Abstract

This paper presents a comparative study of the performance of arithmetic and geometric means as rules to combine
multiple classifiers. For problems with two classes, we prove that these combination rules are equivalent when using two
classifiers and the sum of the estimates of the a posteriori probabilities is equal to one. We also prove that the case of a
two class problem and a combination of two classifiers is the only one where such equivalence occurs. We present
experiments illustrating the equivalence of the rules under the above mentioned assumptions. © 2001 Elsevier Science

B.V. All rights reserved.
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1. Introduction

It is well known that in many situations com-
bining the output of several classifiers leads to an
improved classification result (Hansen and Sal-
amon, 1990; Rogova, 1994; Tax et al., 1997; Opitz
and Maclin, 1999). This happens because each
classifier makes errors on a different region of the
input space. In other words, the subset of the input
space that each classifier will attribute a correct
label will differ from one classifier to another. This
implies that by using information from more than
one classifier it is probable that a better overall
accuracy can be obtained for a given problem.
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When combining the outputs of different clas-
sifiers two cases emerge: all classifiers use the same
features or they work in different feature spaces
(Kittler et al., 1998). The results in this paper are
valid in both cases.

There has been some interest on the compara-
tive performance of the sum and product rules (or
the arithmetic and geometric means) (Kittler et al.,
1996; Tax et al., 1997; Kittler et al., 1998). The
arithmetic mean is one of the most frequently used
combination rules since it is easy to implement and
normally produces good results.

In (Kittler et al., 1998), the authors show that
for combination rules based on the sum, such as
the arithmetic mean, and for the case of classifiers
working in different feature spaces, the arithmetic
mean is less sensitive to errors than geometric
mean.

Tax et al. (1997) found experimentally that the
combining rules based on the product give better
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results when all classifiers produce small errors.
If at least one of the classifiers makes large er-
rors then the arithmetic mean rule gives better
results.

We show that when working in a classification
problem with two classes, and using two classifiers
that give estimates of the a posteriori probabilities
that sum to one, such as k nearest-neighbour (k-
NN) classifiers, the combination rules arithmetic
mean (or the sum) and the geometric mean (or the
product) are equivalent. That is, they have exactly
the same error rates. We also show that this is the
only case when these rules are equivalent when
using this type of classifiers.

In Section 2 we define the problem and intro-
duce the notation. In Section 3 we study the per-
formance of the two combination rules under the
above mentioned assumptions. In Section 4 we
investigate the consequences of violating these
assumptions. In Section 5 several experiments are
presented that illustrate the different aspects of the
problem under consideration. Section 6 presents a
discussion of the results and in the last section
conclusions are posted.

2. Basic Concepts

This section introduces the formalism, presents
the problem definition and describes the combi-
nation process.

2.1. Problem definition

A pattern is, in general, a p-dimensional, real
valued, vector x. It is associated with a class label
which can be represented by y € {cy,...,c.}. We
call a set of patterns with their classes a test set:
TS ={(x;,y), i=1,...,T}.

The goal of classification is, given a TS, to
correctly attribute a class label to a pattern not in
the TS. This action is made by a classifier.

Consider that the problem has L classes. Con-
sider also a classifier that can approximate the a
posteriori probability functions p(c;|x), which
gives the probability of the pattern x belonging to
a given class c;, given that x was observed. It is

then natural to classify the pattern by choosing the
class with the largest a posteriori probability:

x ¢, if pleglx) = maxp(c;lx) (1)
J

2.2. Single classifier

Consider a single classifier whose outputs are
expected to approximate a posteriori probabilities
plci|x), where ¢; stands for class i and x is the input
to the classifier.

The approximation to the a posteriori proba-
bility p(c;|x) provided by a single classifier j, is

f1(x) = plelx) + el (x),

where €/ (x) represents the error that the classifier j
introduces, when approximating the a posteriori
probability p(c;|x).

2.3. Combining different classifiers

As mentioned before, strong evidence exists
that better classification can be obtained if instead
of using the predictions of a single classifier, the
information from several classifiers is used. This
information is then combined to produce a final
decision.

Consider N classifiers that produce approxi-
mations to the a posteriori probabilities. For a
given input pattern x, each classifier j will produce
L approximations to the a posteriori probabilities,
flx), i=1,...,L.

The combining of information from the differ-
ent classifiers is done by building new predictions
for the a posteriori probabilities from the indi-
vidual classifiers’ predictions. The combined pre-
diction for class ¢; is then

[ () = Glwy), )

where u; = (f!(x),...,fV(x)), ‘comb’ represents
a given combination rule and G() is some func-
tion.

This process is illustrated in Fig. 1, where the
final class label j is such that

[0 > from it i je{l,... L}

and the K; are the classifiers.
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Fig. 1. The combination process.

2.4. Averaging combination rules

We are interested in comparing the perfor-
mance of combining using the following possibil-
ities for the function G(u;): an arithmetic mean,
giving the following form for fom®

S () = Zuf (3)

and a geometric mean

1/N
fgm ll, < H u, ) ) (4)

where u;(j) denotes the jth component of vector u;.

3. Performance of the combination rules

We start by proving that under some conditions
the previous combination rules are equivalent and
then show that those are the only conditions for
the equivalence.

3.1. Equivalence of sum and product withL = N = 2

Since L = 2, there are two vectors of a posteri-
ori probabilities: #; and u,. And given that N = 2,
these vectors have two coordinates: u;(j),
i=1,2; j=1,2. We are considering classifiers
whose estimates of the a posteriori probabilities
sum to one, that is

lll(i) +ll2(l) = 1,

There are two cases when the sum and the
product disagree in their predicted class.

i=1,2. (5)

Case 1:
ul(l)u1(2) > llz(l)llg(Z) /\lll(l) +u1(2)
<w(1) +uy(2) (6)

Given (5) we can rewrite the first part of expression
(6) as

(I —w(1))(1 —u2(2)) > ur(1)ur(2)
or
w(1) + m(2) < 1. (7)

The second part of expression (6) can also be
rewritten using (5)

l—w(1)+1—wm(2) <u(l) + uy(2)
or
u(1) +uy(2) > 1. (8)

It is impossible that a point u, satisfies both (7)
and (8) simultaneously.

The second case when the sum and the product
disagree in their predicted class is

Case 2:

lll(l)lll (2) < uz(l)uz(Z) A lll(l) + uy (2)
> uy(1) + m3(2) ©)

As in Case 1, a point now would have to satisfy
conditions (7) and (8), which is impossible. This
proves that it is not possible to find two points that
obey (5) and make the sum and product disagree,
for a two class problem.

This makes the arithmetic and the geometric
mean equivalent when combining two classifiers
that obey (5) in any two class problem.

3.2. General case

In this section we prove that this equivalence of
the combination rules does not generalise for other
values of (L, N) other than (2,2).

In general, Eq. (5) becomes

L
w(j)=1, j=1,...,N. (10)
i=1

We start by noting that for the case
(L =2, N = 3) the following two points make the
product and the sum rule disagree
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{1(0;0.8;0.8), u(1;0.2;0.2)}. (11)

(The arithmetic mean of w; is greater than the
arithmetic mean for u, making class 1 the chosen
for the arithmetic mean combining rule. The geo-
metric mean of #; is smaller than for u, making
class 2 the chosen one for the geometric mean.)
For the case (L = 3, N = 2) the following three
points make the combination rules disagree.

{u;(0.1;0.65), u>(0.4;0.3), u5(0.5;0.05)}.  (12)

We now describe a way to create from these
points other points that make those rules disagree
for values of (L, N) other than (2, 2).

To create a new set of points that make the
combination rules disagree for (L, N) from a set of
points that make the combination rules disagree
for (L — 1, N) it is enough to consider a new point
u; with all coordinates equal to zero. Example:
from the points in (11), create a new set of points
that make the product and the sum rule disagree
for (L =3, N = 3). The new set of points is then

{u;(0;0.8;0.8), uy(1;0.2;0.2), u3(0;0;0)}.  (13)

This process guarantees that the new points obey
to (10) and they do not change the initial decisions
of the classifiers since what happens is that the new
point will have the smallest sum and the smallest
product (both zero) and since the decision is made
using the maximum it will not interfere with the
initial conflicting decision.

To create a new set of points that make the
combination rules disagree for (L, N) from a set of
points that make the combination rules disagree
for (L, N — 1) it is enough to add to each point a
new coordinate with value equal to 1/L.

Example: from the points in (11), create a new
set of points that make the product and the sum
rule disagree for (L =2, N =4). The new set of
points is then

{u;(0;0.8;0.8;0.5), u5(1;0.2;0.2;0.5)}. (14)

This process guarantees that the new points
obey to (10) and they do not change the initial
decisions of the classifiers since what happens is
that both points will have their sum increased with
the same amount (1/L) and their product multi-

plied by the same amount (also 1/L), thus not
changing the initial conflicting decision.

By using these two procedures and the sets of
points in (11) and (12), one can find points that
make the combination rules disagree for all values
of (L, N) other than (2, 2). (Note that the cases
with N = 1 are not combinations of classifiers and
the cases with L = 1 are not classification problems
since all points belong to one single class.)

This way we have shown that the only case
when the arithmetic and the geometric means give
the same result, when used for combining the
outputs of classifiers that give estimates for the a
posteriori probabilities that sum to one, is when
L=N=2.

4. Estimates of the a posteriori probabilities

Depending on the type of classifier used to
produce the estimation we face two scenarios: ei-
ther the outputs of the classifier sum to one thus
obeying Eq. (10) (scenario A) or the outputs do
not sum to one (scenario B).

4.1. Scenario A

Examples of cases that fall into scenario A are
those produced by a £-NN classifier. It is possible
to produce estimates of the a posteriori probabil-
ities by dividing the number of the k-NNs be-
longing to a given class, by k, as in

_ nci(x)

filx) =—— (15)

with n¢; being the number of the £-NNs of x be-
longing to class ¢; (Bishop, 1995). This way,

> i) = >0

i=1

which makes £-NN classifiers’ predictions of the a
posteriori probabilities fall into scenario A.

4.2. Scenario B

Cases that fall into scenario B are those pro-
duced, for instance, by a neural network. In this



L.A. Alexandre et al. | Pattern Recognition Letters 22 (2001) 1283—1289 1287

case there are no guarantees that the outputs of
each NN will sum to one.

Another interesting characteristic of these clas-
sifiers is the fact that the error may push the esti-
mate of the a posteriori probabilities out of the
[0, 1] interval. This can have a major effect espe-
cially on the geometric mean, since the product of
an odd number of negative estimates produces a
negative estimate which will not be chosen even
against the worst positive estimation. This may
have a severe impact on the accuracy of the geo-
metric mean combination estimates.

We will conduct experiments illustrating these
two scenarios and complete the discussion after-
wards.

5. Experiments

In this section we present several experiments
that confirm the previous results.

5.1. Data sets

We used three data sets from the UCI reposi-
tory (Blake et al., 1998). Details are presented in
Table 1. The first column lists the reference we use
for a given data set, the second lists their names,
the third the number of patterns, the fourth the
number of features and the last the number of
classes in the problem.

5.2. Scenario A

In these experiments, k-NN classifiers using eu-
clidean distance are used to produce estimates of
the a posteriori probabilities using Eq. (15). These
estimates are combined using arithmetic and geo-

Table 2

Classification errors (in percentage)
Classifiers DS1 DS2 DS3
INN 32.03 13.43 17.31
3NN 30.60 15.14 18.27
SNN 28.52 15.43 17.31
TNN 27.21 16.29 23.08
AM2 32.03 13.43 17.31
GM2 32.03 13.43 17.31
AM3 32.03 13.43 17.31
GM3 32.03 13.43 17.31
AM4 30.08 14.00 19.23
GM4 32.03 13.43 17.31

metric means. Experiments were made with two,
three and four A-NN classifiers. Table 2 presents
the errors for each data set, and for the combina-
tions: ‘“AM{” means ‘arithmetic mean combination
of the first i classifiers’ and ‘GMJ’ means ‘geometric
mean combination of the first i classifiers’.

5.3. Scenario B

We made experiments combining two, three
and four feed-forward neural networks only dif-
fering in their topology and in the weight initiali-
sation (which is done randomly). The classifiers
should approximate a posteriori probabilities, and
these neural networks do so (Richard and Lipp-
mann, 1991). The classifiers are multi-layer per-
ceptrons (MLPs), trained for 300 epochs using
resilient backpropagation (Demuth and Beale,
1998). Their topology is presented in Table 3,
where the first number indicates the number of
neurons on the input layer, the second represents
the number of neurons in the hidden layer and the
last represents the number of neurons on the
output layer. Tables 4-6 present the average errors
for each data set along with the respective S.D.

Table 1

Data sets Table 3
Reference  Name # # # Topology of the MLPs

Points Features Classes Classifiers DSI1 DS2 DS3
DS1 Diabetes 768 8 2 MLP1 [462] [1052] [5402]
DS2 Tono- 351 34 2 MLP2 [662] [15102] [5502]
sphere MLP3 [862] [20102] [5602]

DS3 Sonar 208 60 2 MLP4 [882] [25102] [10402]




1288 L.A. Alexandre et al. | Pattern Recognition Letters 22 (2001) 1283—1289

Table 4

Average classification errors and S.D. (in percentage) for N = 2
Classifiers DS1 DS2 DS3
MLPI 31.43 (4.63) 11.43 (3.10) 33.22 (5.06)
MLP2 27.80 (4.10) 11.46 (3.02) 30.43 (3.99)
AM 27.98 (3.54) 10.86 (2.77) 29.86 (3.98)
GM 27.86 (3.55) 10.80 (2.73) 30.53 (4.66)

Table 5

Average classification errors and S.D. (in percentage) for N = 3
Classifiers DS1 DS2 DS3
MLP1 32.51 (4.42) 12.40 (3.31) 32.98 (5.86)
MLP2 29.35 (4.21) 11.37 (2.29) 31.97 (4.57)
MLP3 28.98 (5.09) 11.77 (3.55) 32.84 (5.44)
AM 28.10 (4.38) 9.94 (2.31) 28.75 (4.78)
GM 29.41 (4.30) 10.60 (2.23) 30.19 (4.93)

Table 6

Average classification errors and S.D. (in percentage) for N = 4
Classifiers DS1 DS2 DS3
MLP1 30.18 (5.99) 10.86 (2.78) 34.62 (4.48)
MLP2 30.18 (4.51) 11.09 (2.50) 33.08 (5.92)
MLP3 28.71 (3.51) 12.06 (3.72) 34.66 (5.56)
MLP4 29.40 (4.25) 11.60 (2.33) 34.38 (3.09)
AM 27.04 (3.57) 9.74 (2.60) 30.63 (3.31)
GM 28.46 (4.42) 10.34 (2.23) 31.01 (4.81)

The columns show the average error in per-
centage for the isolated classifiers and for the
combinations, for each data set. The experiments
were repeated 20 times.

There was not a special care in tuning the in-
dividual classifiers, since the important issue is
comparative performance.

6. Discussion

As expected, in scenario A, the combination of
two classifiers provide equal results for all data sets,
since they are all two class problems. Notice that in
the case N = 3, the combination rules also perform
equally well. But as seen in Section 3.2 this is not
always true. In the combination of four classifiers
the geometric mean gives better results than the
arithmetic mean for data sets DS2 and DS3.

In scenario B, we see that the combination rules
do not have the same performance, not even for
the case of N = 2. This is due to the fact that these
classifiers do not obey expression (10) as men-
tioned before.

The arithmetic mean outperforms the geo-
metric mean. The performance gain relative to
the geometric mean is in agreement with results
from Kittler et al. (1998), where it was noted that
the product rule is more sensitive to error than
the sum rule. Note that an eventual negative
output for an estimate of the a posteriori prob-
abilities can be easily compensated in the arith-
metic mean by the other positive values, since we
are talking about a sum. In the geometric mean,
an odd number of negative estimates makes the
result negative. The bad performance of the
geometric mean is connected with the fact that a
possible negative value for the a posteriori
probabilities estimates by only one classifier can
make the result for a given class smaller (nega-
tive) than all the other possible not so good
classes but that had no negative output for any
of their a posteriori probabilities estimates.
Another justification for the bad performance of
the geometric mean is that a given Cclassifier
can make the combination result zero or very
small by giving a zero or very small estimate for
the a posteriori probabilities even if all other
classifiers give high values for the a posteriori
probabilities.

7. Conclusions

In this paper we study the relative performance
of two types of averaging combination rules:
arithmetic and geometric means. We show that,
for a problem with two classes, and when using
two classifiers that give a posteriori probabilities
values that sum to one, such as k-NN classifiers,
these rules have exactly the same performance.
That is, in these cases more than two classifiers
should be combined in order to have different
performances from these combination rules. We
also show that this is the only case when this
equivalence holds. When more than two classifiers
are combined the geometric mean showed better



L.A. Alexandre et al. | Pattern Recognition Letters 22 (2001) 1283-1289 1289

performance than the arithmetic mean in our
experiments.

We also study the behaviour of these rules when
using classifiers that do not give estimates of the a
posteriori probabilities that sum to one, such as
MLPs. We conclude experimentally, that in this
case the arithmetic mean outperforms the geo-
metric mean.

Note that the studied combination rules all give
the same importance to all the classifiers. This leaves
open the combinations using weighted average. See
on this subject the following references: Hashem
(1997), Alexandre et al. (2000) and Ueda (2000).
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