
Bounds for the Average Generalization Error of the
Mixture of Experts Neural Network

Luís A. Alexandre1 ?, Aurélio Campilho2, and Mohamed Kamel3

1 Networks and Multimedia Group, IT, Covilhã, Portugal
2 INEB - Instituto de Engenharia Biomédica, Portugal

3 Dept. Systems Design Engineering, Univ. Waterloo, Canada

Abstract. In this paper we derive an upper bound for the average-case gener-
alization error of the mixture of experts modular neural network, based on an
average-case generalization error bound for an isolated neural network. By doing
this we also generalize a previous bound for this architecture that was restricted
to special problems.
We also present a correction factor for the original average generalization error,
that was empirically obtained, that yields more accurate error bounds for the 6
data sets used in the experiments. These experiments illustrate the validity of the
derived error bound for the mixture of experts modular neural network and show
how it can be used in practice.

Keywords: modular neural networks, mixture of experts, generalization error bounds

1 Introduction

This paper addresses generalization error bounds for supervised learning. In [1], an
average-case generalization error bound was introduced that is not as pessimistic as the
error bounds derived using Vapnik-Chervonenkis theory [2] since the later are based on
a worst case analysis. In this paper we derive an upper bound for the average-case gen-
eralization error of the mixture of experts (ME) [3] modular neural network (MNN),
based on the average-case generalization error bound introduced in [1] for a single
multi-layer perceptron (MLP). By doing this we also generalize a previous bound for
this architecture [4] that was restricted to special problems (problems that could be com-
pletely separated into two subproblems without overlapping classes, by a hyperplane in
the input space) and was derived assuming that the gate does not introduce errors and
does not use adjustable parameters.

The bound proposed here assumes that the generalization error of the experts is
higher than their training set error. In fact, this assumption was already made in the
derivation of the bound for the isolated MLP in [1]. It also assumes independency be-
tween the errors of the gate and of the experts.

? We acknowledge the support of project number POSI/35590/SRI/2000 approved by the Por-
tuguese ‘Fundação para a Ciência e Tecnologia’(FCT) and POSI and partially financed by
FEDER. Corresponding author: Luís Alexandre, E-mail:lfbaa@di.ubi.pt



We tested the error bound on 6 publically available data sets corresponding to real
classification problems, with distinct characteristics (number of features, number of
patterns and number of classes). These experiments showed that the derived bound was
not useful because it was quite loose. This was due to the original expression for the
average generalization error (AvGE) in [1] and not to the derivation of the bound for
this particular architecture. Thus, we found empirically a modified expression for the
AvGE of the isolated MLP, that when used to derive the AvGE of the ME architecture,
produces much tighter bounds.

The paper is organized as follows: the next section describes the ME MNN, section
3 introduces the average error bound for a single NN. In section 4, the AvGE error bound
for the ME is derived. Three experiments are presented in section 5, with a discussion
of their results. The final section presents the conclusions.

2 The Mixture of experts MNN

The idea behind the MNN is the divide-and-conquer paradigm: the problem should be
divided into smaller subproblems that are solved by experts and their partial solutions
should be integrated to produce a final solution.

To use an MNN, three stages have to be considered: first, the task decomposition
where the problem is divided into smaller problems, each one to be given to one of
the modules or expert networks. Then each individual expert is trained until it learns
to solve its particular subproblem. Finally, a decision integration strategy is used to
combine the decisions of the experts to produce a final network output.

The decision integration can be obtained through different approaches: using a gat-
ing network [5], making the modules vote [6] or through hierarchical integration (which
can also use voting and/or gating networks) [7, 8].

In this paper we consider the use of a gating network. The gate is trained to learn
which region of the input space should be classified by which expert.

During the test phase, when the gate receives an input pattern it decides which is
the expert that should classify the pattern and selects one of the experts to produce the
final classification. This type of MNN is called a Mixture of Experts.

3 Average error bound

3.1 Problem definition

The bounds discussed in this paper apply to the generalization error of a learning ma-
chine, and in particular, to an MLP and its generalization, an MNN.

We now discuss the general learning problem and define explicitly the generaliza-
tion error and the empirical error (the one measured in the section 4).

Consider a learning problem in which a learning machine is given a set of data
{x1, . . . , xm} and it is expected that, by adjusting a set of parameters,w, it can learn to
associate the respective targets{y1, . . . , ym} to each input.

Typically, for a classification problem, which is the type of problem we are address-
ing in this paper,xi ∈ X andX ⊆ Rn andyi ∈ Y andY = {1, 2, . . . , L}, whereL is
the number of classes in the problem.



LetZ = X×Y . Eachzi = (xi, yi) is called a training sample. The joint distribution
P (x, y) is represented byP (z).

For a particular choice of the parametersw, the learning machine produces a hy-
pothesis. Each hypothesis is represented byf(x, w). When the predictionf(xi, w) is
different from the respective targetyi, a loss occurs. This loss is measured by the loss
functionl(y, f(x,w)).

The expected value of the loss is called generalization error and is given by

R(w) =
∫

Z

l(y, f(x,w))dP (z) (1)

For the majority of real problems,R(w) is not zero. Usually it is not possible to find
R(w) since the distributionP (z) is not known. Instead, the empirical error is found,

Em(w) =
1
m

m∑
i=1

l(yi, f(xi, w)) (2)

This is an estimate ofR(w).
Usually the data set is divided into two disjoint sets, one is used for training, or the

adjustment of the weightsw, and is called the training set. The other is used to estimate
R(w) and is called a test set. The empirical error measured in the training set is usually
called the training set error.

In this paper we are concerned with an average error bound forR(w). We call it the
Average Generalization Error (AvGE).

3.2 AvGE for the MLP

The AvGE for an MLP was introduced in [1]. It has the form of

AvGEMLP ≤ α +
1
2

√
d

m
(3)

whereα is the training set error,d represents the number of weights andm is the number
of training samples. Note that it is an upper bound for the generalization error based on
the training set error and a penalty for the number of weights that is reduced by the
number of training samples.

3.3 AvGE for the ME MNN

To produce an AvGE for the ME MNN we first introduce the complement of the AvGE,
the AvGC, which we define as

AvGC = 1−AvGE (4)

It is the ‘Average Generalization Correctness’.



Using this definition it is possible to write, assuming independency between the
errors made by the gate and by the experts,

AvGCME = AvGCg

N∑
i=1

P (modi)AvGCi (5)

whereAvGCg is theAvGC of the gate,P (modi) is the probability that the module
i is chosen by the gate andAvGCi is theAvGC of modulei.

The assumption of the independency of the errors will not be true only in points on
the frontiers between distinct regions of expertize of different experts.

To obtain the AvGE for the ME, we replace in expression (5) the relation in expres-
sion (4) for the gate and the individual modules, we get

AvGEME = 1−AvGCME = 1−

[
(1−AvGEg)

N∑
i=1

P (modi)(1−AvGEi)

]
(6)

After some simple manipulation, we get

AvGEME = β + AvGEg(1− β) (7)

with

β =
N∑

i=1

P (modi)AvGEi (8)

To obtain the upper bound for theAvGEME we have to find a lower bound forβ.
A trivial lower bound is zero, but we can assume that the generalization error will be
higher than the training set error, and thusβ has the following upper and lower bounds

N∑
i=1

P (modi)αi ≤ β ≤
N∑

i=1

P (modi)

(
αi +

1
2

√
di

mi

)
(9)

The upper bound is obtained directly from expression (8) by simply replacingAvGEi

by expression (3), with each variable using a subscripti that corresponds to the expert
i.

Now it is possible to write the final expression for theAvGEME

AvGEME ≤
N∑

i=1

P (modi)

(
αi +

1
2

√
di

mi

)
+

(
αg +

1
2

√
dg

mg

)(
1−

N∑
i=1

P (modi)αi

)
(10)

We will now use this bound to predict the generalization error of the ME MNN. Note
that the parametersdi, dg, mi andmg are set a priori. TheP (modi) can be estimated
from the proportion of points in the training set that belong to the region assigned for
experti. Theαi (the training set errors) are estimated and the number of modules used,
N , is defined by the task decomposition algorithm or set a priori.



4 Experiments

4.1 Introduction

In these experiments we intend to show how the expression (10) can be used to bound
the generalization error.

We use six data sets that illustrate different conditions: the number of classes ranges
from 2 to 10; the number of data points ranges from 106 to 2126; the number of features
ranges from 2 to 60.

Table 1 contains information about these data sets. They are all publically available,
and the table shows references to their sources. It also shows the name, number of data
points, number of features and the number of classes.

Table 1.The data sets used in the experiments.

Data set Name N. pointsN. featuresN. classesSource

1 Breast cancer 106 9 6 [9]
2 Cleveland 296 13 5 [10]
3 CTG 2126 22 10 [9]
4 Diabetes 768 8 2 [10]
5 Speech recognition 608 2 4 [5]
6 Sonar 208 60 2 [10]

4.2 Classification

As we made the experiments, we noticed that the original error bound in expression (3)
was quite loose. This behavior was also observed by Gu and Takahashi in [11] when
they applied another average error bound to MLPs.

We empirically found that if instead of usingd = (number of weights) we used
d = (number of weights)/18, the error bound becomes much tighter. A justification
for this replacement is that in fact, althoughd was considered the number of weights
for an MLP in [1], it is more recently considered to be an upper bound on the number
of adjustable weights of the MLP (Lemma 1 in [11]). Hence, it can be replaced by a
smaller value. Of course, a theoretical guideline for the value ofd to use is desirable.

In what follows we present measures of the two versions of the error bound for the
ME: AvGEME andAvGEME2. They both correspond to expression (10), but the for-
mer usesd = (number of weights) and the later usesd = (number of weights)/18.

The experiments were made with the holdout method: half the data set was used for
training and the other half for testing. Then the data sets were used with inverted roles
(the original training set became the test set and the original test set became the training
set) and the error and error bounds were averaged between the two repetitions.

The task decomposition was made with the fuzzy c-means algorithm [12]. The ex-
perts and the gate were one hidden-layer multi-layer perceptrons (MLPs) trained with
resilient backpropagation [13], for 100 epochs. The number of hidden layer neurons



used for each expert and for the gate are listed in tables 2 and 3. These numbers were
obtained empirically and gave acceptable classification errors for all data sets. We were
not concerned in finding the optimal value of the number of neurons, we intended only
to illustrate the behavior of the error bound derived in section 3.2.

Table 2 shows the values obtained in the experiments using two experts in the mix-
ture of experts. The second column (topology) gives the number of hidden layer neurons
used with each expert and gate, respectively. For instance, 18,18,2 means that both the
first expert and the second had 18 neurons in the hidden layer and that the gate used 2
neurons in the hidden-layer.

Table 2.The topology of the experts and gate along with the error and error bounds with standard
deviations when using two experts.

Data setTopologyAvGEME (std)AvGEME2(std) Error (std)

1 10,10,4 163.0 (2.3) 40.6 (3.6) 39.6 (10.7)
2 5,5,2 89.6 (4.7) 29.6 (5.9) 47.6 (0.5)
3 21,21,4 76.1 (0.2) 21.4 (0.1) 19.3 (1.1)
4 1,1,6 50.2 (0.2) 30.2 (0.2) 27.9(0.4)
5 2,2,2 29.2 (0.6) 11.3 (0.7) 9.6 (1.9)
6 2,2,6 174.0 (0) 41.0 (0) 20.2 (1.6)

Table 3 shows the values obtained in the experiments using three experts in the
mixture of experts.

Table 3.The topology of the experts and gate along with the error and error bounds with standard
deviations when using three experts.

Data setTopology AvGEME (std)AvGEME2 (std) Error (std)

1 10,10,10,4 186.3 (3.4) 48.2 (1.2) 32.1 (8.0)
2 5,5,5,2 108.9 (2.3) 33.2 (0.2) 45.3 (3.8)
3 21,21,21,4 88.1 (0.9) 24.1 (1.1) 20.0 (1.0)
4 1,1,1,6 51.1 (0.6) 25.2 (0.7) 23.1 (2.8)
5 2,2,2,2 32.9 (0.2) 11.9 (0.2) 7.9 (0.9)
6 2,2,2,6 191.1 (1.0) 45.0 (0.2) 17.3 (6.8)

4.3 Discussion

The errors The true errors are smaller when the experiment is done with three experts
than when it is done with only two. This is not surprising since in the first case the
number of weights used in the MNN is larger and it can adjust itself better to the data.
There is one exception, that is data set 3. This indicates that for this particular problem
a division in three sub-problems does not improve its learnability when compared to a
division in only two subproblems.



The bounds In all cases, theAvGEME2 is tighter thanAvGEME , indicating thatd
should not be set to the number of weights but to a smaller value. This is due to the fact
that theAvGEME2 gives a smaller penalty for the increase in the number of adjustable
parameters in the model (the network weights) thanAvGEME .

In all cases, both theAvGEME and theAvGEME2 increase their values when
going from an MNN with two experts to one with three experts. This is due to an
increase in the total number of weights for the MNNs with 3 experts when compared to
the MNN used for the same problem but with only 2 experts.

The boundAvGEME is always larger than the measured error. But for the bound
AvGEME2 this does not happen with data set 2. Both with the 2 expert MNN and with
the 3 expert MNN, the boundAvGEME2 is considerably smaller than the measured
error. The bounds have an important component that is the measured training error. We
checked the training and test set errors for an isolated MLP for this data set and there
is a big difference between their values. Training set error is about 15% while the test
set error is over 40%. We think this explains the poor performance of the bound for this
particular case. The reason for the difference between the training and test errors might
be due to a training overfitting.

The predictions of theAvGEME2 bound are very close to the measured errors.
The exceptions are data set 3, which was already mentioned, and data set 6. This data
set represents a problem in a high dimensional space (60-dimensional). This makes
the number of weights of an MLP vary a great deal with the introduction of a single
neuron in the hidden layer (each new hidden layer neuron adds 61+(number of classes)
weights to the MLP). So it is easy to go from one situation where the number of weights
is insufficient to learn the problem to one where the network overfits the problem. We
argue that the difference between the bound and the errors measured for this data set is
due to the possibly larger than necessary number of weights used in the network.

5 Conclusions

In this paper we developed an average error bound for the mixture of experts MNN. It
is an extension of the bound presented in [1] for an isolated NN. It also generalizes the
bound in [4] since there are no restrictions on the data sets or on the type of gate used.
This way it can be applied to any classification problem.

We also propose an empirical correction factor to the original expression in [1] that
produces much tighter bounds. A theoretical justification for the particular value of this
adjustment is still lacking.

These bounds can be used to estimate the generalization error of the ME MNN, as
illustrated in the experiments section and they behave well for most of the tests made.

References

1. Gu, H., Takahashi, H.: Towards more practical average bounds on supervised learning. IEEE
Trans. Neural Networks7 (1996) 953–968

2. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (1999)



3. Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edition. Prentice Hall
(1999)

4. Alexandre, L., Campilho, A., Kamel, M.: Average error bound for the mixture of experts
MNN architecture. In: Proceedings of the 12th Portuguese Conference on Pattern Recogni-
tion, Aveiro, Portugal (2002)

5. Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts. Neural
Computation (1991) 79–87

6. Auda, G., Kamel, M.: Modular neural network classifiers: A comparative study. J. Intel.
Robotic Systems (1998) 117–129

7. Jordan, M., Jacobs, R.: Hierarchical mixture of experts and the EM algorithm. Neural
Computation (1994) 181–214

8. Jacobs, R., Peng, F., Tanner, M.: A bayesian approach to model selection in hierarchical
mixtures-of-experts architectures. Neural Networks10 (1997) 231–241

9. Marques de Sá, J.: Pattern Recognition: Concepts, Methods and Applications. Springer
(2001)

10. Blake, C., Keogh, E., Merz, C.: UCI repository of machine learning databases (1998)
http://www.ics.uci.edu/˜mlearn/MLRepository.html.

11. Gu, H., Takahashi, H.: Estimating learning curves of concept learning. Neural Networks10
(1997) 1089–1102

12. Bishop, C.: Neural Networks for Pattern Recognition. Oxford University Press (1995)
13. Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The

RPROP algorithm. In: IEEE International Conference on Neural Networks, San Francisco
(1993) 586–591


