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The MEE Principle in Data Classification:
A Perceptron-Based Analysis

Luı́s M. Silva
lmsilva@fe.up.pt
J. Marques de Sá
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Departamento de Informática, Universidade da Beira Interior and Instituto de
Telecomunicações, 6201-001 Covilhã, Portugal

This letter focuses on the issue of whether risk functionals derived from
information-theoretic principles, such as Shannon or Rényi’s entropies,
are able to cope with the data classification problem in both the sense
of attaining the risk functional minimum and implying the minimum
probability of error allowed by the family of functions implemented
by the classifier, here denoted by min Pe. The analysis of this so-called
minimization of error entropy (MEE) principle is carried out in a single
perceptron with continuous activation functions, yielding continuous er-
ror distributions. In spite of the fact that the analysis is restricted to
single perceptrons, it reveals a large spectrum of behaviors that MEE can
be expected to exhibit in both theory and practice. In what concerns the
theoretical MEE, our study clarifies the role of the parameters control-
ling the perceptron activation function (of the squashing type) in often
reaching the minimum probability of error. Our study also clarifies the
role of the kernel density estimator of the error density in achieving the
minimum probability of error in practice.

1 Introduction

Information-theoretic learning (ITL) is an area of research enjoying growing
interest and promising new and important breakthroughs in many appli-
cations. Its introduction can be traced back at least to Linsker (1988), who
introduced the maximization of mutual information between the input and
output of a neural network applied, for example, to feature extraction. But
the real blossoming of ITL dates back more recently when the minimiza-
tion of Rényi’s quadratic entropy of the difference between the system
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output and its desired target for solving regression problems was pro-
posed (Erdogmus & Prı́ncipe, 2000). This was followed by a large set of ITL
theoretical results and applications developed by Prı́ncipe and coworkers
in time-series prediction (Erdogmus & Prı́ncipe, 2002), feature extraction,
clustering (Gokcay & Prı́ncipe, 2002; Jenssen, Hild, Erdogmus, Prı́ncipe,
& Eltoft, 2003), and blind source separation (Hild, Erdogmus, & Prı́ncipe,
2001; Erdogmus, Hild, & Prı́ncipe, 2002). The rationale is as follows. Having
an adaptive system with output variable Y and target variable T, the min-
imization of the error entropy (MEE), that is, the entropy of E = T − Y,
implies a reduction of the expected information contained in the error
(“error” meaning here, as in adaptive systems terminology, the target-
output deviation), leading to the maximization of the mutual information
between the desired target and the system output (Erdogmus & Prı́ncipe,
2000, 2002). This means that the system is learning the target variable.
Entropy-based cost functions, since they depend on the full probability dis-
tribution of E, reflect the global behavior of the error distribution; therefore,
learning systems with entropic cost functions may often outperform those
using the classic and popular mean square error (MSE) cost, which reflects
only the second-order statistics of the error. An objection that could be raised
to using the MEE principle in the case of continuous error distributions is
the need to estimate the probability density function (pdf) of E, since it is
well known that accurate pdf estimation may be a tougher problem than
having to solve a related regression or classification problem. However, it
turns out that when the MEE principle using Rényi’s entropy is applied, pdf
estimation is short-circuited altogether (Prı́ncipe, Xu, & Fisher, 2000). Even
if one uses Shannon’s entropy, usually a simple and coarse pdf estimate is
all that is needed (Silva, Marques de Sá, & Alexandre, 2005).

The application of the MEE principle to solving data classification
problems has been carried out by our team and divulged in several pa-
pers (the principle is coined EEM in these references), using either MLPs
(Santos, Marques de Sá, Alexandre, & Sereno, 2004; Santos, Marques de Sá,
& Alexandre, 2005; Silva et al., 2005; Santos, 2007) or recurrent networks
(Alexandre & Marques de Sá, 2006). It has been applied with success in
classifiers using a kernel-based approach (Han, 2007). We have also applied
entropic cost functions with excellent results in a new data clustering algo-
rithm (Santos, Marques de Sá, & Alexandre, 2007). A careful comparison
study on the performance of classifiers applied to real-world data sets was
carried out showing the high competitiveness of the MEE method (Silva,
Embrechts, Santos, & Marques de Sá, 2008). Despite the evidence of good
performance provided by the experimental results presented in these ref-
erences, very little is known about the properties of MEE when applied to
data classification.

For that purpose, we consider a classification problem with a set of classes
T = {t} and a parametric machine (parameter set W = {w}) performing
a mapping Y = ϕw(X), where X and Y are the input and output spaces,
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respectively (we use capital letters denoting variables and their supports).
The machine is trained by some algorithm to minimize a risk functional
on the parameter set W of the function class � = {ϕw}, implemented by the
classifier, which is often written for continuous data distributions as

R� ≡ R�(w) =
∑

T

P(t)
∫

X
L(t, y) f (x | t) dx with y = ϕw(x), (1.1)

where T is the target space, f (x | t) ≡ fX(x | t) is the conditional den-
sity function of the inputs, and P(t) are the class priors. The target-
output distance, that is, the cost function L(·), can be chosen in various
ways. For instance, for MSE, L(t, y) = (t − y)2, and for cross-entropy (CE)
(Bishop, 1995) and two-class problems with Y ∈ [−1, 1] and T ∈ {−1, 1},
L(t, y) = ln(1 + ty). Minkowski and exponentially weighted distances have
also been proposed. The risk functional for MEE is written not as a dis-
tance functional but as a functional of the error pdf f (e) ≡ fE (t − ϕw(x))
(assuming it exists), namely, as

R� ≡ HS(E) = −
∫

E
f (e) ln f (e)de (1.2)

for the Shannon entropy of the error, HS, or as

R� ≡ HR2 (E) = − ln
∫

E
f 2(e)de (1.3)

for the quadratic Rényi entropy, HR2 .
The main problem in data classification, which we refer to as the classifier

problem, is whether it is possible to attain the minimum probability of error
afforded by the machine architecture, that is, by the family of functions �,
for some w∗—the so-called optimal solution. Let us denote by minW Pe�

the minimum probability of error, achievable in �.1 From now on, when-
ever we refer to the optimal solution, w∗, we always mean optimal in the
minW Pe� sense. The classifier problem corresponds to the following ques-
tion: Does minW R� imply minW Pe�? (Note that minW Pe� corresponds in
the distance functional to setting L(t, y) = {0, if t = y ; 1, otherwise}; how-
ever, we are interested only in risk functionals with continuous integrands,
for which efficient optimization algorithms exist.) For instance, if hypothet-
ically minW R� does not lead to minW Pe�, one has to conclude that a risk
functional is being used that fails to adequately take into account the whole
� set complexity. One should then turn to another risk functional. This es-
sential problem has been somewhat overlooked. Concerning MSE, the main

1For some architectures, minW Pe� may correspond to the optimal Bayes’ error. How-
ever, this issue will not occupy us here.
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and often mentioned results are that for gaussian distributions, MSE yields
the optimal regression solution and the outputs of a neural network (NN)
trained with MSE correspond to Bayesian posterior probabilities (Bishop
1995; Richard & Lippmann, 1991), which allow some confidence that MSE
will also perform well in classification problems. However, MSE may dra-
matically fail in classification problems where MEE performs in the optimal
way, as shown in appendix C. Since MEE is a more sophisticated approach
than the often used MSE or CE, because it takes into account the whole
distribution of the errors, and given the large amount of good experimental
results obtained with MEE, it seems worthwhile to investigate the classifier
problem with MEE. In this investigation, many interesting aspects and new
insights come to light. In previous work (Silva, Felgueiras, Alexandre, &
Marques de Sá, 2006), we showed that for univariate data and the Stoller
split setting (Stoller 1954), a popular setting in decision trees, the MEE prin-
ciple does not always lead to minW Pe� (or simply min Pe), and we were
able to rigorously state the very general conditions when it does. In this
work, we go a step further and investigate the behavior of perceptrons
trained with MEE using continuous activation functions (a.f.).

The organization of the letter is as follows. Section 2 introduces notation
and presents the error entropy expressions for continuous density distribu-
tions of the error. We also show in section 2 that for data classification, the
MEE principle is harder to apply than for regression. Section 3 starts by com-
paring MSE and CE in terms of f (e) functionals, elucidates how the practical
implementation of MEE (empirical MEE) differs from its theoretical formu-
lation, and analyzes how classifier problems are solved by perceptrons us-
ing theoretical and empirical MEE. In section 4 we analyze in detail the influ-
ence of the kernel density estimator in achieving an error entropy minimum.
Finally, in section 5, we discuss the results and draw the main conclusions.

2 MEE Is Harder for Classification Than for Regression

2.1 The Error Entropy for Data Classification. We consider two-class
problems where a given instance x = (x1, . . . , xd )T from X is to be classified
in one of two classes, C−1 or C1, the target set is T ∈ {−1, 1}, and a machine
(e.g., NN) implements a parameterized function family � = {ϕw}, w ∈ W
and issues a single output y ∈ [−1, 1]. Any other supports for T and Y
could be used. The ones indicated are used for ease of computation only.
The output random variable (r.v.) Y is assumed to be continuous with a
conditional pdf fY|t(y). With this setting, the density function of the error
r.v. E = T − Y can be derived as

fE (e) = P(1) fY|1(1 − e) + P(−1) fY|−1(−1 − e), (2.1)

where P(t) ≡ P(T = t) for t ∈ {−1, 1} are the priors, often denoted q , p,
respectively. These definitions imply necessarily that E ∈ [−2, 2] and that
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each fY|t(t − e) lies in separate intervals [t − 1, t + 1]. As a consequence of
equation 2.1, the (differential) Shannon’s entropy of the error HS(E) (or
simply HS) can be decomposed as

HS = pHS|1 + q HS|−1 + HS(T), (2.2)

where HS|t is the Shannon’s entropy of the error for class Ct and HS(T) =∑
t∈T P(t) ln P(t) is the Shannon’s entropy of the priors. Rényi’s entropy

also satisfies a similar additivity property in the exponential scale (see
appendix A for both derivations). The distributions and entropies are func-
tions of w, the machine parameter vector, although we omit this dependency
for the sake of simpler notation.

2.2 The Minimum of the Error Entropy. Looking at equation 2.2 and
since HS(T) is a constant, min HS implies min{pHS|1 + q HS|−1}. Thus, in
general, one can say nothing about the minimum (location and value) since
it will depend on the particular shapes of HS|t as functions of w, and the par-
ticular value of p. Nevertheless, the minimum entropy distribution (with a
value of −∞) is the Dirac distribution δX(x; a ) (centered at a). Thus, although
min{pHS|1 + q HS|−1} achieves its lowest value only when both fY|1(1 − e)
and fY|−1(−1 − e) are Dirac pdf’s, a very low value can be achieved if at
least one of fY|t is nearly Dirac.

2.3 The Minimum of the KL Divergence. An important result con-
cerning the (Shannon’s) entropy of the error minimum was presented by
Erdogmus and Prı́ncipe (2002). These authors demonstrated that the MEE
principle corresponds to the minimum of the Kullback-Leibler (KL) diver-
gence between the joint distributions fX,Y and fX,T . This probability density
matching result was demonstrated for the regression setting. However, for
the data classification setting, two difficulties arise. First, for the regression
setting, one may write fE (e) = fY|x(d − e | x) as in the cited paper, since
there is only one distribution of y values and d can be seen as the mean
of the y values. However, for the classification setting, one has to write
fE |t(e | t) = fE |t,x(d − e | t, x). That is, one has to study what happens to
each class-conditional distribution individually and therefore to individu-
ally study the KL divergence relative to each class-conditional distribution,
that is,

K Lt =
∫

X

∫

Y
fXY|t(x, y) ln

fXY|t(x, y)
dXY|t(x, y)

, (2.3)

where dXY|t(x, y) is the desired input-output probability density function.
Second, the KL divergence is undefined whenever dXY|t(x, y) has zeros in the
supports of X and Y. This problem, which may or may not be present in the
regression setting, is almost always present in the classification setting,
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since the desired input-output probability densities’ functions are continu-
ous functions with zeros in their supports (Dirac functions in the separable
case).

Even if we relax the conditions on the desired input-output probability
density, for instance, by choosing functions with no zeros on the Y sup-
port but sufficiently close to Dirac functions, we may not yet reach the
MEE condition for classification because of section 2.2. Attaining the KL
minimum for a class-conditional distribution says nothing about the other
class-conditional distribution and about HS.

3 MEE with Continuous Errors

3.1 MSE, CE, and MEE. Although the risk functionals are usually pre-
sented and studied as in equation 1.1, that is, relative to the X × T space,
we may as well analyze them in other spaces. In fact, in order to appreciate
how the various risk functionals cope with the classifier problem, it turns
out to be worth expressing them in terms of the error r.v. We now proceed
to do exactly this for the MSE, CE, and MEE functionals. In the following
derivations, we often use the well-known theorem of r.v. transformation
(see Rényi, 1970):

Theorem 1. Let f (x) be the pdf of the r.v. X. Assume ϕ(x) to be monotonic and
differentiable, and suppose ϕ′(x) �= 0 ∀x. If g(y) is the density of Y = ϕ(X), then

g(y) =
⎧
⎨

⎩

f (ϕ−1(y))
|ϕ′(ϕ−1(y))| , inf ϕ(x) < y < sup ϕ(x)

0, otherwise
, (3.1)

where x = ϕ−1(y) is the inverse function of y = ϕ(x).
We also assume monotonic increasing ϕ(x) functions (e.g., NN squashing

activation functions) with ϕ′(x) > 0. Simple mathematical manipulations
lead us to

R� =
∑

t∈{−1,1}
P(t)

∫ t+1

t−1
L(t, e) f (e | t) de. (3.2)

For MSE, L(t, e) = (t − y)2 = e2 depends only on e. Moreover, R� =
E T,E {e2} (where E{·} means expected value), which is empirically estimated
as

MSE = 1
n

∑

ti ∈{−1,1}

∑

i

(ti − yi )2. (3.3)

Let us now consider the other classic risk functional, the so-called cross-
entropy (Bishop, 1995), which in its popularized empirical form (based on
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Figure 1: LMSE and LCE (t = 1) as functions of e.

sample outputs yi and targets ti) is expressed for the same two-class setting
as

C E = −
∑

ti =−1

ln
(

1 − yi

2

)
−

∑

ti =1

ln
(

1 + yi

2

)
.

CE, in terms of the error r.v., is n times the empirical estimate of the following
risk functional:

R� =
∑

t∈{−1,1}
P(t)

∫ t+1

t−1
ln

(
1

2 − te

)
fE (e | t) de + ln 2. (3.4)

Thus, for cross-entropy L(t, e) = ln
( 1

2−te

)
. Figure 1 shows (for t = 1) the

distance functions L MSE (e) = e2 and LC E (e) = ln
( 1

2−te

)
. A machine mini-

mizing the MSE risk functional is minimizing the second-order moment
of the errors, favoring input-output mappings with low error spread and
deviation from zero. A machine minimizing the CE risk functional is min-
imizing an average logarithmic distance of the error from its worst value
(2 for t = 1 and −2 for t = −1), as shown in Figure 1. As a consequence of
this logarithmic behavior LC E (e) tends to focus mainly on large errors, as
opposed to L MSE (e).

We now rewrite expression 1.2 in a similar way as in expression 3.2:

HS =
∑

t∈{−1,1}
P(t)

∫ t+1

t−1
ln

(
1

f (e | t)

)
f (e | t) de + HS(T). (3.5)
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As for the Shannon entropy, a similar expression can be written for VR2 =
exp(−HR2 ). We observe in equation 3.5 that − ln f (e | t) plays the role of the
cost function. The difference relative to MSE and CE (and other conventional
risk functionals) is that when HS is applied to train a given machine, its
properties change from iteration to iteration. Therefore, instead of studying
its properties based on a functional description or graph as in Figure 1, we
are compelled to study it from the point of view of entropy properties.

3.2 Theoretical MEE and Empirical MEE. As with any other risk func-
tional, the practical application of the MEE approach relies on using ade-
quate estimates, in this case, of the error pdf. This can be achieved with
the kernel density estimator (kde) (Parzen, 1962), which, given a data set
x1, x2, . . . , xn, provides the following estimate of the pdf f (x),

f̂ (x) = 1
nh

n∑

i=1

K
(

x − xi

h

)
, (3.6)

where K is a kernel function and h is the kernel bandwidth. The kde estimate
can also be expressed in terms of a convolution:

f̂ (x) = fn(x) ∗ Kh(x), (3.7)

where fn(x) is the empirical pdf, Kh(x) = K (x/h), and ∗ is the convolution
operator. The standardized gaussian pdf G(x) enjoys desirable properties
as a kernel function; is popularly used and is the one we consider. The
estimated pdf, is always a smoothed version of the original pdf, and this
will show up (for appropriate choices of h) as a fundamental feature of the
practical MEE implementation.

With f̂ (x), one can then estimate the error entropies as follows:

HS = E{− ln f (e)} : ĤS = − 1
n

n∑

i=1

ln f (ei ) ≈ − 1
n

n∑

i=1

ln f̂ (ei ), (3.8)

HR2 =− ln E{ f (e)} : ĤR2 = − ln
1
n

n∑

i=1

f (ei ) ≈ − ln
1
n

n∑

i=1

f̂ (ei ). (3.9)

These are precisely the formulas used in the backpropagation error algo-
rithm in MLP training with MEE (Silva et al., 2005; Santos, 2007). These
formulas correspond to what we call empirical MEE.

In what follows we are also interested in analyzing the theoretical be-
havior of the MEE risk functionals. However, the theoretical MEE can be
analyzed mathematically only in simple situations of error pdf’s, such as
uniform and gaussian. For more realistic situations with known, albeit more
complex, distributions, one has to resort to numerical simulation, which can
be carried out as follows. Generate a large number of samples of each in-
put class-conditional pdf; compute the output pdf’s with the kde approach;
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finally compute HS using equation 2.2 (see also appendix A for HR2 ). “Large
number of samples” means that the value of n being used in equation 3.6
guarantees a very low integrated mean square error (say, IMSE < 0.01) of
f̂ (x) computed with the optimal h(n). For this purpose (choice of optimal
h(n)) one can use the formulas given in Thompson and Tapia (1978).

The main differences between empirical and theoretical MEE are as
follows:

� Whereas the theoretical MEE implies the separate estimate of f (e | t),
the empirical MEE relies on the estimate of the whole f (e).

� For this reason, the theoretical MEE cannot be applied in discrim-
inative training (at each training epoch the f (e | t) are not easily
computable); one may, however, compute the theoretical MEE in a
neighborhood of a weight vector, as we do in following sections.

� Whereas the kernel smoothing effect when using the optimal h(n) in
the computation of the theoretical MEE can be neglected, the smooth-
ing effect can be made arbitrarily large when applying empirical MEE.

3.3 The Quest for Minimum Entropy. Although pattern recogni-
tion is a quest for minimum entropy (Watanabe, 1981), the topic of
entropy-minimizing distributions has only occasionally been studied.
Whereas entropy-maximizing distributions obeying given constraints are
well known, minimum entropy distributions on the real line are often diffi-
cult to establish (Kapur, 1993). Nevertheless, it is known that the minimum
entropy (−∞) of unconstrained continuous distributions occurs for an in-
finite family of Dirac combs (including the single Dirac density). Entropy
magnitude is often associated with the magnitude of the distribution tails,
in the sense that larger tails imply higher entropy. However, this fails even in
simple cases of constrained densities: the unit variance gaussian, G(x; 0, 1)
has a smaller tail (in the sense that for positive x, ∃x0, ∀x > x0, f (x) > g(x))
than the unit variance bilateral exponential, e(x;√

2) = λ exp(−√
2|x|)/2;

however, the former has a larger entropy,
√

2πe = 2.84, than the latter,
1 + ln(

√
2) = 2.41. Notwithstanding these difficulties, one can still present

three properties of HS(E) that are useful in justifying experimental findings
or guiding the search of experimental settings (as in appendix C):

1. HS is invariant to translations and partitions of fE (e) components.
This property, a direct consequence of the well-known entropy invari-
ance to translations, and of a result on density partitions presented in
appendix A, is illustrated in Figure 2. This is a property that may lead
MEE to perform worse than MSE or CE in some cases where an equal
probability of error may correspond to distinct configurations.

2. In a large class of fE (e) families HS, increases with the variance. This
property (illustrated in Figure 2) is explained in appendix B, where the
meaning of “large class” is also clarified. This property is associated
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Figure 2: Error HS properties for p = q = 1/2. Top row (property 1): Entropy is
invariant to partitions and translations. Middle row (property 2): In the same
pdf family, an increase in variance implies an increase in entropy (see the text).
Bottom row (property 3): The standard deviation of the right component de-
creased by 0.5/

√
12 while the other increased by the same amount; however,

the decrease in entropy of the right component more than compensated for the
increase in entropy of the left component.

with the common idea that within the same density family, “longer
tails” (in the sense of larger variance) imply larger entropy. Although
there are exceptions to this rule, one can quite safely use it in the case
of fE (e) densities. As a consequence, one can say that MEE favors the
“order” of the errors.

3. Whenever fE (e) has two components of equal functional form and
equal priors, then for a large class of fE (e) families, HS will decrease
when the smaller (or equal) standard deviation component decreases
while the standard deviation of the other component increases by the
same amount (keeping the functional form unchanged). This property
(illustrated in Figure 2) is a consequence of the fact that entropy is an
up-saturating function of the standard deviation (as well as of the
variance) for a large class of fE (e) families (see appendix B); therefore,
although the larger variance component dilates, the corresponding
increase in entropy is outweighed by the decrease in entropy of the
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other component. As a consequence of this property, MEE is more tol-
erant than MSE or CE to tenuous tails or outlier errors, as exemplified
in appendix C.

The quadratic Rényi entropy also enjoys these three properties.
We may then expect different behaviors between empirical MEE and

theoretical MEE. In particular, the minimum value that can be attained by
the empirical entropies ĤS or ĤR2 occurs necessarily for δE (e; 0) (Erdogmus
& Prı́ncipe 2003; Silva 2008). This constrasts with theoretical entropies where
the minimum value is attained by any Dirac comb, as mentioned above. For
example, due to the smoothing effect around the origin introduced by the
kde, empirical MEE can distinguish between the two situations illustrated in
the top of Figure 2 (property 1), favoring the right one. Also, for property 3,
empirical MEE will favor smaller tails. An example of this type of situation
is illustrated in section 4. Both situations have an important impact on the
classifier’s performance.

3.4 The Split-Type Setting. We start by considering perceptrons
applied to two-class problems, with only one output given by y =
tanh(x − w0), therefore, with a single adjustable parameter. More precisely,
the perceptron is trained to find a split point between the classes. Despite
the simplicity of this setting, it allows us to establish the connection with
the discrete error setting (step function instead of tanh) already studied in
Silva et al. (2006) and to elucidate fundamental differences in the behavior
of HS and ĤS (or HR2 and ĤR2 ).

We first assume uniform class-conditional inputs ( allowing the analytical
derivation of the theoretical entropies):

fX|−1(x) = 1
b − a

I[a ,b](x) fX|1(x) = 1
d − c

I[c,d](x),

with a < c ≤ b < d, (3.10)

where I is the indicator function. The error class-conditional pdf’s can be
obtained using theorem 1, and both Shannon and Rényi entropies can be
then derived. For example, Rényi’s formula comes as

HR2 = − ln

⎡

⎣−q 2

4

[
2 + e(2 + e) ln

( |e|
2+e

) + 2e

(b − a )2(2 + e)e

]−1−tanh(a−w0)

−1−tanh(b−w0)

+

+ p2

4

[
2 + ln

( e
|e−2|

)
e(e − 2) − 2e

(d − c)2(e − 2)e

]1−tanh(c−w0)

1−tanh(d−w0)

⎤

⎦ . (3.11)
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Figure 3: In the left and middle figures ĤS is plotted as a function of w0 for
different values of h and different C1 supports [c, d]. The right-most figures
present the corresponding theoretical curves of Shannon (solid) and Rényi’s
(dashed) entropies.

It is then possible to show that neither theoretical entropies has a minimum
at the optimal split (for class conditionals with equal-length supports, they
have a maximum; Silva, 2008). This contrasts with the discrete error setting
where for uniform class conditionals, the optimal solution is always at an
entropy minimum (Silva et al., 2006).

Figure 3 compares the behaviors of both theoretical and empirical (2000
points per class) entropy curves as functions of the split parameter w0,
varying the class-conditional setting. In all cases we fix [a , b] = [0, 1] and
set p = q = 1/2.

In the top row of Figure 3, the class conditionals have equal-length sup-
ports, which means that the optimal solution is any point of the overlapped
region, [c, 1]. If h is too small, ĤS reveals a maximum at the optimal split,
just as HS; above a sufficiently large h, ĤS shows a minimum at the opti-
mal split (with higher h for increased overlap). Note that entropy identifies
the middle point of the overlapped region as its optimal location, corre-
sponding to the situation of equal class error probability. The bottom row
of Figure 3 illustrates the unequal class error probabilities case (due to the
increased C1 support), where the optimal split is w∗

0 = 1. Both the theoreti-
cal and empirical curves fail to find w∗

0 . However, the empirical minimum
occurs in a close neighborhood of w∗

0 .
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We also considered gaussian class-conditional inputs (providing abso-
lutely continuous pdf’s), reaching essentially the same conclusions.

3.5 The Perceptron Setting. We now assume a more realistic perceptron
with y = tanh(wTx + w0), that is, we now control the ϕ(x) function shape.

3.5.1 Gaussian Inputs. To derive the error pdf for gaussian input distri-
butions, we take into account that gaussianity is preserved under linear
transformations: if x = (x1, . . . , xd )T has multivariate gaussian distribution,
x ∼ Gd (μ,�), then

z = Wx + w0 ∼ Gm(Wμ + w0, W�WT).

Making use of theorem 1, we obtain the error distribution for each class as
follows:

fY|t(t − e) =
exp

( − 1
2

(arctanh(t−e)−(wTμt+w0))2

wT�tw

)
√

2πwT�tw e(2t − e)
I[t−1,t+1](e). (3.12)

Numerical integration can now be applied to determine HS (or HR2 ).
We first considered the univariate case and the perceptron defined by

y = tanh(w1x + w0), with the parameter w1 controling the shape of the ac-
tivation function (its steepness). The computed values of HS (or HR2 ) show
that for appropriate choices of w0 and w1, it is possible to turn the theo-
retical entropy maximum into a minimum and with a higher value of the
shaping parameter w1 as the classes get closer. Moreover, this minima are
optimal (correspond to min Pe). These results suggest the need of to use
function-shaping parameters (as is the case with multilayer perceptrons) in
order to reach the theoretical entropy minima.

For the bivariate case, we fix μ−1 = (0, 0), �t = I and study two differ-
ent settings: μ1 = (5, 0) (distant classes) and μ1 = (1, 0) (close classes) with
min Pe of 0.62% and 30.85%, respectively. The optimal solution is given by
w∗ = (w∗

1, 0, w∗
0) such that −w∗

0/w
∗
1 = 2.5 and −w∗

0/w
∗
1 = 0.5, respectively.

So in theory, an infinite number of optimal solutions exists.
Using the Nelder-Mead minimization algorithm (Lagarias, Reeds,

Wright, & Wright, 1998), we found for the distant classes case the solu-
tion (w1, w2, w0) = (4.75, 0.00,−11.87), corresponding to the vertical line
x1 = 2.50, the optimal solution. Figure 4a shows HS (represented by dot
size) for a grid surrounding the found solution: the central dot with min-
imum size. The same algorithm was not able to find the optimal solution
for the case of close classes. The reason is illustrated in Figures 4b and 4c
using a grid around a candidate solution. We encounter a minimum for the
w1 and w2 directions and a maximum in the w0 direction. This means that
for close classes when only rotations of the optimal line are allowed, the
best solution is in fact the vertical line; if shifts are allowed, the previous
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Figure 4: HS for bivariate gaussian class conditionals computed on a grid of
(w1, w2, w0) values around the central dot w̄. The sizes of the dots represent
values of HS. (a) Corresponds to the μ1 = (5, 0) case with w̄ = w∗. (b, c) (The
latter is a zoom of the vertical central layer). Corresponds to μ1 = (1, 0). In this
case, w̄ is a minimizer in the w1 and w2 directions but a maximizer in the w0

direction.

solution corresponds to an entropy maximum. One can understand this be-
havior in the following way. For shifts, the degree of disorder in the errors
is decreased if we assign all the errors to one class (related to property 1 in
section 3.3); by rotating the line, we increase the degree of disorder, which
means that entropy will be minimum when the line is vertical (related to
property 2 in section 3.3).

If empirical entropy is considered, both classifier problems can be solved
with the MEE approach. A training set with 500 points per class was gen-
erated, and a test set with 5000 points per class was created in order to ob-
tain an accurate estimate of min Pe . For the “distant classes” case we got a
final solution (after 40 epochs of training with h = 0.8) w = (0.87, 0.01,−2.1)
with a training error of 1% and a test error of 0.66%, very close to the min Pe
for this problem (see above). (Note that while with theoretical entropy, only
a single solution was found, an infinite number of optimal solutions with
the empirical entropy, corresponding to the appropriate −w0/w1 ratio, is
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Figure 5: The first two plots, from left to right, show the empirical entropy and
the weights of the perceptron across the epoch number for the close classes case.
The right-most plot shows the estimated error pdf at the last epoch.

found.) The same happens for the “close classes” case, using, as expected,
a larger value of h (h = 1). The final solution is now w = (0.54, 0.05,−0.23)
corresponding to a training error of 28.8% and a test error of 31.19%, also
close to the min Pe value. Figure 5 shows the convergence of a perceptron
for the “close classes” case.

This example illustrates that the empirical MEE is able to work more
easily in a wide range of configurations, provided the value of h is properly
chosen.

3.5.2 Theoretical and Empirical MEE in Other Data Sets. With the aim of
illustrating how theoretical and empirical MEE behave with more realis-
tic data sets, we now present two sets of experiments differing only in the
family of functions implemented by the perceptron. We restrict ourselves to
two-dimensional problems to allow graphical representations and have the
search algorithms running in reasonable time for these heavy computation
problems. With these concerns in mind, we consider classifier problems rep-
resented in the plane of the first two principal components (x1, x2) of original
real-world data sets. Since the true distributions are unknown, the true theo-
retical MEE solutions cannot in rigor be derived. However, we are still able
to study theoretical MEE solutions for very closely resembling problems
proceeding as follows. We first model the bivariate real-world data pdf’s by
appropriate distributions, achieving the same covariance metrics and with
the minimum L1 distance of the marginal pdf’s. Next, we apply to these
modeled pdf’s the procedure outlined in section 3.2. For a fair comparison,
the empirical MEE solutions for the same generated data sets were com-
puted. min Pe solutions (using the Nelder-Mead optimization algorithm)
were also computed.

The following data sets were considered:

WDBC: This data set corresponds here to the first two principal compo-
nents of the WDBC (Wisconsin Diagnostic Breast Cancer) data (Asun-
cion & Newman 2007), with 569 cases (212 from the malignant class and
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357 from the benign class). The generated data contained 2390 cases,
maintaining the original class proportions.

Wine: This data set corresponds here to the first two principal compo-
nents of the Wine data (Asuncion & Newman, 2007), characterizing
three different wine cultivars. There are 178 cases. The generated data
contain 5000 cases, maintaining the original class proportions.

Thyroid: This data set corresponds here to the first two principal compo-
nents of the New-Thyroid data (Asuncion & Newman, 2007), related
to the state of the thyroid gland (normal, 150 cases; hyperthyroidism,
35 cases; hypothyroidism, 30 cases). The generated data contain 2509
cases, maintaining the original class proportions.

PB12: This data set is a speaker-independent, four-class, vowel discrim-
ination problem (Jacobs, Jordan, Nowlan, & Hinton, 1991). The data
consist of the first and second formants of the vowels i, I, a, and A
from 75 speakers (men, women, and children). Vowels i and I form one
overlapping pair of classes, and vowels a and A form the other pair.
All the classes have 152 cases. The generated data contain 6000 cases,
maintaining the original class proportions.

Ionosphere: This data set corresponds to the first two principal com-
ponents of the IONOSPHERE data (Asuncion & Newman 2007), with
351 cases (225 from the “bad” class and 126 from the “good” class).
The generated data contain 5778 cases, maintaining the original class
proportions.

Set 1: Family of Lines. In this first set of experiments we consider four of
the data sets: WDBC, Wine, Thyroid, and PB12. The perceptron imple-
ments a separating line ϕw(x) = tanh(w1x1 + w2x2 + w0). Notice that Thy-
roid, Wine, and PB12 are multiclass problems. To overcome this difficulty,
we applied the algorithms in a sequential strategy to two-class subprob-
lems. For example, in Wine, we first discriminate the bottom class from the
upper ones and then discriminate between the upper classes.

Table 1 shows the training error obtained with the algorithms. In general,
both theoretical and empirical MEE obtain reasonable solutions, most of
them very close to the min Pe solution. However, we encounter a worse
performance of theoretical MEE in the PB12 and Thyroid problems. It is
worth noting that theoretical MEE was also more sensitive to the starting
point needed by the optimization algorithm, converging many times to
suboptimal or even poor solutions. Moreover, the final theoretical MEE
solutions have higher weights when compared to empirical MEE or min Pe .
The separating lines are shown in Figure 6. In most cases, the lines are
almost coincident (although with different weights, the ratios are close to
each other), except for the Thyroid and PB12 cases.

Set 2: Family of Circles. In this set of experiments, the percep-
tron implements a circle centered at (w1, w2) with radius w0, that is,



2714 L. Silva, J. Marques de Sá, and L. Alexandre

Table 1: Training Error (in Percentage) of Empirical MEE, Theoretical MEE, and
min Pe Algorithms on Four Data Sets.

Empirical MEE Theoretical MEE min Pe

WDBC 8.24 8.90 8.08
Thyroid 3.67 4.58 3.75
Wine 5.53 5.46 5.26
PB12 10.72 14.10 10.67

Figure 6: Separating lines obtained with empirical MEE (dashed), theoreti-
cal MEE (dotted), and min Pe (solid) for WDBC (top left), Wine (bottom left),
Thyroid (top right), and PB12 (bottom right) data sets.

ϕw(x) = tanh((x1 − w1)2 + (x2 − w2)2 − w2
0) aiming to discriminate one class

from the other ones. By using this richer class of functions, one is able to ob-
tain with a single perceptron a reasonable data classification that would nor-
mally require a nontrivial MLP, with the added benefit that the theoretical
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Table 2: Training Error (in Percentage) of Empirical MEE, Theoretical MEE, and
min Pe Algorithms on Three Data Sets.

Empirical MEE Theoretical MEE min Pe

Wine 4.15 5.12 4.02
Thyroid 4.94 21.52 3.59
Ionosphere 18.88 - 18.65

MEE solution search is again carried out in 3D space. We consider the Wine,
Thyroid, and Ionosphere problems.

Table 2 shows the training error for these data sets. While empirical MEE
solved all the problems (and almost optimally), theoretical MEE was not
able to obtain reasonable solutions for the Thyroid and Ionosphere prob-
lems. In this last case, characterized by a large class overlap, the theoretical
MEE solution corresponded to classify completely one of the classes at the
cost of the other. It is also interesting to note in Wine (see Figure 7a) that
theoretical MEE finds a circle that has a higher radius, but the center is
positioned such as to catch only one of the classes.

Discussion. Several interesting aspects were observed in the experiments.
First, empirical MEE always finds a good solution for the problem at hand,
while theoretical MEE may encounter difficulties, as illustrated with the
family of circles. We also verified with set 1 of the experiments that theoret-
ical MEE usually converges to a solution with high values for the weights.
In fact, if small weights (but with the appropriate ratio to ensure the op-
timal line) were used, theoretical MEE often diverged. This is explained
as follows: w1x1 + w2x2 + w0 is a projection of (x1, x2) onto unidimensional
space; when higher weights are used, points on opposite sides of the sep-
arating line are projected far away; this implies Dirac-like error pdf’s and
thus, by formula 2.2, an entropy minimum. For the family of circles in set 2,
similar behavior is not possible because “higher weights” cannot be found
maintaining the same center and radius of the circle. The only possibility
is to increase the radius of the circle (controlling the center), as illustrated
with the Wine data set.

We also notice that the simplicity of the classifiers (as those we have been
using) may have a negative impact on the theoretical MEE performance.
In fact, for quite general classification problems, their optimal solutions for
low-complexity-function classes � may produce multimodal error pdf’s,
implying a decreased ability of theoretical MEE to solve such problems
(e.g., many local suboptimal solutions may appear). When more complex
classifiers (e.g., MLPs) are used, the effect of multimodality is decreased,
which means that theoretical MEE may perform better and similar to em-
pirical MEE. However, for the same problem (and the ones used in the ex-
periments serve as examples), we may obtain a solution with a multimodal
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Figure 7: Separating circles obtained with empirical MEE (dashed), theoretical
MEE (dotted), and min Pe (solid) for the Wine (top left), Thyroid (top right),
and Ionosphere (bottom) data sets.

error pdf or an equivalent solution with higher weights with unimodal
error pdf (see the discussion above). The main problem for the theoretical
MEE is that reaching this latter solution may be difficult due to the de-
coupled role of the HS|t terms in formula 2.2, already commented on in
section 2.2: there are many ways to reach an entropy minimum, namely,
if all the errors can be assigned to one of the classes (property 1). In the
next section, we study the influence of the kernel smoothing in providing
the needed coupling of the fY|t pdf’s and explaining the good behavior of
empirical MEE.

4 Influence of the Smoothing Parameter
on the Empirical MEE

We mentioned in section 3.2 the essential differences between theoretical
and empirical MEE. We now discuss why the empirical MEE usually works
(we have not yet encountered a single problem, after processing many and
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Figure 8: The kde smoothing effect. The top figures show the class-conditional
pdf’s with the split location (solid vertical line). The middle and bottom fig-
ures show the theoretical (solid line) and kde (dashed line) error pdf’s for the
corresponding split for two different values of h.

diversified sets of problems, where it did not work; see Silva et al., 2005,
2008; Santos, 2007) that is, the estimated error entropy (be it Shannon or
Rényi) will reach a minimum. Moreover, the corresponding solutions often
outperform the solutions obtained by other sophisticated methods.

Consider the split-type setting for the gaussian case (see section 3.4).
Figure 8 illustrates the influence of kde in determining the error distribution.
It shows the theoretical and empirical error pdf’s for two split locations:
off-optimal (left figures) and optimal (right figures). Note the smoothing
imposed by the kde: an increased value of h implies an oversmoothed
estimate with greater impact near the origin. If we look to the bottom
figures, we can understand the theoretical entropy maximum previously
mentioned and the changes operated after the kde smoothing. In the left
figure, the true error pdf for class C−1 is nearly uniform, which implies a
high value for HS|−1. However, the error pdf for C1 is highly concentrated
at the origin, producing a quite low HS|1. Due to property 3 and formula
2.2, the overall value of HS will be lower than the one in the right figure,
where the overall true error pdf is more concentrated around zero. This is
why theoretical entropy in this case has a maximum at the optimal split.
When density estimation is used with sufficiently high values for h, these
behaviors are smoothed out (the error pdf is then seen as a “whole,” ignoring
relation 2.2); now the nonoptimal split estimated pdf has a long left tail,
whereas the optimal one is more concentrated around the origin, yielding
a minimum. This example, illustrating property 3 in section 3.3, shows
that for appropriate (high) values of h, the smoothing effect of the kde is
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responsible for producing a minimum of entropy. A similar behavior can
be found for the perceptron with one weight plus bias and gaussian inputs
(Silva, 2008), which means that the maximum-to-minimum flip observed is
quite general.

Let us study the theoretical behavior of kernel smoothing on two distinct
pdf’s assumed as error pdf’s. One of them, say f1(x), corresponds to an off-
optimal point pdf characterized by a large tail of errors for one class and a
fast-decaying function of the errors for the other class, modeled as

f1 = 1
2

u(−1, 0) + 1
2

e+(p), (4.1)

where e+(p) is the exponential pdf with parameter p, decaying for x ≥ 0.
The second one, f2(x), corresponds to a decision border set at the optimal
point, implying a decaying error pdf for both classes, modeled as

f2 = 1
2

e+(a ) + 1
2

e−(a ), (4.2)

where e−(a ) is the exponential pdf with parameter a, decaying for x ≤ 0.
Simple calculations of the Rényi entropy (for Shannon entropy, the problem
becomes quickly untractable) show that the respective entropies H1 and H2

are such that H1 < H2 (i.e., a maximum as in Figure 8) if p > 2(a − 1). We
now proceed to convolve these pdf’s with a gaussian kernel Kh with band-
width h. The resulting pdf’s, after some mathematical manipulation, are

(g ∗ f1)(x) = 1
2

[
�

(
x + 1

h

)
− �

( x
h

)]
+ p

2
e

p2h2
2 −px�

(
x − ph2

h

)

(4.3)

(g ∗ f2)(x) = a
2

e
a2h2

2

[
eax

[
1 − �

(
x + ah2

h

)]

+ e−ax
[

1 − �

(
x − ah2

h

)]]
, (4.4)

where � denotes here the probability cumulative function of the
standardized gaussian distribution. Using these formulas and setting
p = 2(a − 1) + 1 in order to have an entropy maximum for the original
f2 pdf, one may always find a sufficiently large h such that the produced
smearing out of the f1 tail will turn f2 entropy into a minimum. This is
exemplified in Figure 9 for a = 2.8. This behavior is quite general, in the
sense that even for arbitrarily large MLPs, one always gets the error pdf
behavior shown in Figure 9 or Figure 8. Also for the multiclass case, we
observe the same behavior of the error entropy for the distinct MLP’s
outputs, justifying the MEE efficacy in this scenario too (see Santos, 2007).
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Figure 9: Error pdf models (solid line) for the off optimal (top left) and optimal
decision border (top right). The convoluted pdf’s are plotted with a broken line
using h = 0.316 corresponding to the entropy maximum to minimum cross-
over point. The bottom figure plots the difference between the entropies of the
convoluted pdf’s f1 and f2 (as given in equations 4.3 and 4.4) as a function of h.
Note the zero crossing at h = 0.316.

Finally, we show that the change of error entropy behavior as a function
of h can also be understood directly from its estimated formulas. Con-
sider, for simplicity, Rényi’s expression. The minimization of equation 3.9
is equivalent to the maximization of

V̂R2 = exp(−ĤR2 ) = 1
n2h

n∑

i=1

n∑

j=1

G
(

ei − e j

h

)
, (4.5)

where G is the gaussian kernel. Let Gi j = G( ei −e j

h ), c = 1
n2h , and ct = 1

n2
t h

for
t ∈ {−1, 1}, where nt is the number of samples from class Ct . Then, as G is
symmetrical about the origin, we may write

V̂R2 =
(n−1

n

)2
c−1

∑

i∈C−1

∑

j∈C−1

Gi j +
(n1

n

)2
c1

∑

i∈C1

∑

j∈C1

Gi j + 2c
∑

i∈C1

∑

j∈C−1

Gi j

= q̂ 2V̂R2|−1 + p̂2V̂R2|1 + 2c
∑

i∈C1

∑

j∈C−1

Gi j . (4.6)

Entropy is therefore decomposed as a weighted sum of positive quantities
exclusively related to each class (just as in the theoretic derivation; see ap-
pendix A), plus a term that exclusively relates the cross-errors. Let V̂R∗

2
be

the estimator 4.6 without the cross-errors term. In Figure 10 we compare
the behavior of VR2 , V̂R2 , and V̂R∗

2
as a function of the split parameter w0 for

the same problem as in Figure 8. First, we notice that instead of a maximum
of VR2 , we encounter a minimum (in the same sense that in section 3.4, we
encountered a maximum of entropy instead of a minimum). In Figure 10a,
we see that if h → 0, both V̂R2 and V̂R∗

2
will converge as expected to VR2 . If h is
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Figure 10: (Left) VR2 (solid), V̂R2 (dashed), and VR∗
2

(dotted) plotted for a split-
type problem as a function of the split w0 with small values of h on the left and
higher values of h on the right.

increased, both V̂R2 and V̂R∗
2

will exhibit a maximum at the optimal solution
(w0 = 1.5), but with an important difference: while the maximum of V̂R∗

2
is

not global (for any h), the maximum of V̂R2 turns out to be global for a suffi-
ciently large h. Thus, to maximize V̂R2 , it is important not only to maximize
q̂ 2V̂R2|−1 + p̂2V̂R2|1 as for the theoretical counterpart (but this can be achieved
with very different pdf configurations with consequences to the classifier’s
performance; see property 7) but also to maximize 2c

∑
i∈C1

∑
j∈C−1

Gi j (not
available in the theoretical framework), which is achieved if the errors are
concentrated around the origin. This cross-error term is due to the kde esti-
mator. Also, the value of h needed to produce the flip is necessarily related
to the amount of overlap between the classes, in the sense that a higher h is
needed for higher overlap.

5 Conclusion

All risk functionals (r.f.) used in nonparametric data classification are es-
sentially concentration measures of the error r.v. This topic, somewhat ne-
glected in the literature, was discussed in detail for the MSE, CE, and
entropy of error; the corresponding r.f. expressed as functionals of the er-
ror r.v. were presented and their properties analyzed. We have particularly
discussed and illustrated with examples which properties may work ad-
vantageously in the application of the MEE approach. One illustration was
a class of classifying problems where MSE and CE totally fail, whereas MEE
solves the classifier problem by capitalizing on the up-saturating nature of
the H(·) curve, rendering entropy “immune” to long tenuous tails. We an-
alyzed the simple perceptron at work with the MEE approach in both its
theoretical and practical (empirical) implementations. The comparison of
theoretical and empirical implementations of r.f. may help to detect and
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elucidate relevant practical aspects of why r.f. work in practice when they
do. This aspect has also been somewhat neglected. For instance, although
a lot is known about theoretical MSE, the same cannot be said about CE.
In what concerns theoretical MEE, we have shown the essential role of the
squashing activation functions and shaping parameters in driving the en-
tropy of error toward a minimum whenever the degree of overlap of the
classes is moderate (say, means apart by more than one standard deviation).
Moreover, based on theoretical derivations for simple two-class problems,
we were able to prove the ability of the theoretical MEE to often reach or
come close to the minimum probability of error. We also discussed that
the multimodality of the error pdf (due to the simplicity of the classifiers
analyzed) may deteriorate the theoretical MEE performance. On the other
hand, empirical MEE is immune to multimodality provided an adequate
kernel smoothing is employed. In fact, we were able to elucidate why it
works in a much larger class of problems, failing only when the classes
are so overlapped that the optimum probability of error is close to 0.5 (for
two-class data sets with equal priors). We showed the transition from an
entropy maximum to an entropy minimum with the increase of the ker-
nel bandwidth and analyzed a hypothetical error pdf model proving the
maximum-to-minimum transition. This was also evidenced by direct ma-
nipulation of entropy formulas. The presence of a cross-error term revealed
itself as an important influencer of the maximum-to-minimum transition.

Section 3.2 presented the theoretical and empirical MEE at work in two-
dimensional real-world data sets, with varied distributions and number of
classes. The results confirm the preceding findings: the good behavior of
the empirical MEE, providing good solutions close to min Pe solutions, as
well as of the theoretical MEE solutions when these can be found.

The letter has thus provided theoretical and experimental evidence jus-
tifying and clarifying the use of the empirical MEE principle in data classi-
fication with perceptron-based machines. Still, the difficulty of evaluating
and analyzing the MEE criterion for more general classifier problems paves
the way for continuing and future work. Among the interesting aspects to
study are the relation between the entropy estimator and some robust risk
measure as discussed in Liu, Pokharel, and Prı́ncipe (2007); the behavior
of the MEE criterion when using different costs for the false negative and
false positive errors; the implementation to decision trees (which is already
being pursued) and support vector machines; and implementation of the
training of recurrent networks as a way to increase their classification and
forecasting capabilities.

Appendix A: Entropy and Variance of Partitioned pdf’s

Consider a pdf f (x) defined by a weighted sum of functions with disjoint
supports,

f (x) =
∑

i

ai fi (x),
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such that

1. Each fi (x) is a pdf with support Di.
2. Di ∩ Dj = ∅, ∀i �= j .
3. f has support D = ∪i Di .
4.

∑
i ai = 1.

We call such an f (x) a partitioned pdf. In this case, the Shannon entropy
assumes a particular form given by

HS( f ) =
∑

i

ai HS( fi ) −
∑

i

ai ln(ai ),

that is, the entropy of f is a weighted sum of the entropies of each component
plus the entropy of the weighting factors. One can also derive a similar
formula for the variance, Vf, of a partitioned pdf f as

Vf =
∑

i

ai Vfi +
∑

i

ai (μi − μ)2,

where μ (μi ) is the expected value associated with f (fi). Rényi’s quadratic
entropy of a partitioned pdf comes as

HR2 ( f ) = − ln

[
∑

i

a2
i

∫

Di

f 2
i

]
,

that is, HR2 ( f ) is not decomposable as Shannon’s counterpart. Nevertheless,
as the minimization of HR2 is equivalent to the maximization of VR2 =
exp(−HR2 ), we may write

VR2 =
∑

i

a2
i

∫

Di

f 2
i

which is now a weighted sum of positive quantities, each exclusively related
to one support.

Appendix B: Entropy Dependence on the Standard Deviation

Definition. A real function f (x) with support R
+ is an up-saturating function

(down-saturating) if it is strictly concave (convex) and increasing (decreasing).

Proposition 1. If f (x) is a saturating function and g(x) ≥ 0 is an up-saturating
function, with the domain of g contained in the support of f, then f (g(x)) is a
saturating function. (Therefore, a saturating function of σ 2 is a saturating function
of σ .)
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Remark.
√

x and ln(x) are up-saturating functions. The digamma, ψ(x) =
d
(x)

dx , and trigamma function, ψ1(x) = dψ(x)
dx , are up and down-saturating

functions, respectively.

Proposition 2. An up-saturating (down-saturating) function, f (x), has a strictly
decreasing (increasing) derivative.

We analyze the up-saturating case. Since f (x) is concave, we have, for
h > 0, (1 − h) f (x) + h f (x + h) < f ((1 − h)x + h(x + h)) = f (x + h2); there-
fore, f (x+h)− f (x)

h <
f (x+h2)− f (x)

h2 and since f (x) is a strictly increasing function,
the strictly decreasing derivative follows.

Proposition 3. For a large class of continuous distributions (with “large” detailed
in the following), the Shannon entropy is an up-saturating function of the standard
deviation (σ ).

We first consider the densities of the Pearson system of distributions
(Johnson and Kotz, 1970):

f (x) = C(a + bx + cx2)−1/(2c) exp

⎛

⎜⎝
(b − 2cm) tan−1

(
b+2cx√
4ac−b2

)

c
√

4ac − b2

⎞

⎟⎠ .

(B.1)

Provided m is not a root of the denominator, f is finite and f ′ is 0 when
x = m. The slope f ′ is also 0 at f = 0. The conditions

∫
f = 1 and f ≥ 0

imply that f and f ′ must tend to 0 as x tends to infinity, restricting the range
of x values if necessary. The parameters a, b, and c control the shape of f. Let
a1 and a2 be the solutions of the denominator. The possible types of curves
with explicit entropy formula are:

(a) b = c = 0, a > 0. This corresponds to the normal distribution with
mean −m and standard deviation σ = √

a . The entropy H(σ ) =
ln(σ

√
2πe) is an up-saturating function of σ .

(b) b2 − 4ac < 0 (real roots), a1 < 0 < a2. This corresponds to
the generalized beta family of distributions (Pearson types
I and II), usually written as f (x) = xα−1(1−x)β−1

B(α,β) , α, β > 0,

with σ 2 = αβ

(α+β)2(α+β+1) and H(α, β) = ln(B(α, β)) − (α − 1)ψ(β) +
(α + β − 2)ψ(α + β). Beta densities can be symmetric, asymmetric,
convex, or concave. Under certain conditions on (α, β), the entropy
is not an up-saturating function. Numerical computation shows that
it is enough that one of the parameters is smaller than one-half of
the other for the result to hold.
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Figure 11: H(σ ) for the pdf, equation 3.12, with a = 0.5 and b ∈ [0.015, 0.5].

(c) c = 0 with b �= 0. This corresponds to the Pearson type III family, the
gamma family f (x) = xk−1e−x/θ /(θ k
(k)) for x > 0 and k (shape), θ

(scale) > 0, often used as pdf model since it is easily adjusted to many
types of distributions. The entropy of this family is an up-saturating
function of σ.

(d) c = 4ab. This corresponds to the Pearson type V family, the inverse
gamma family, f (x) = βα 1

xα+1 exp(−β/x)/
(α) , where α is the shape
parameter and β the scale parameter. In order for f (x) to have a vari-
ance, α must be larger than 2. Although no theoretical justification
is available, the entropy is an up-saturating function of σ .

(e) b = 0 with a , c > 0. This corresponds to the Pearson type VII family,
f (x) = K (a + cx2)−1/(2c) . There is no explicit formula for the entropy.
However, an important subfamily is the Student’s-t family with k
degrees of freedom, f (x) = K (a + x2/k)−(k+1)/2, where K is the nor-
malizing factor. For k > 2, entropy is an up-saturating function of σ .

Other distribution families with up-saturating densities (easily checked)
are uniform, triangular, Rayleigh, Laplace, lognorm, and Weibull.

Of particular interest is the pdf, equation 3.12, corresponding to the
MLP error with gaussian inputs. The gaussianity of the inputs is not a
stringent condition if the input distributions can be assumed to be inde-
pendent. No entropy formula is available for this pdf, which we rewrite as
f (x) = K exp(−(arctanh(x) − a )2/b)/((1 − x)(1 + x)), with a governing the
mean and b the variance. By numerical computation one can check that the
entropy is indeed an up-saturating function of σ (see Figure 11).
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Appendix C: An Example Where MSE and CE Fail

We present an example of a data classification problem where MEE provides
the correct solution and MSE and CE do not. Let us consider two-class
classification problems in bivariate space R

2, target space T = {−1, 1}. We
denote the input vectors by [x1 x2]T and consider the following marginal
and independent pdf’s:

f1(x1) = 1
2

[U(a , 1) + U(b, a )], f−1(x1) = f1(−x1);

ft(x2)=U
(
− c

2
,

c
2

)
,

(C.1)

where U(a, b) is the uniform distribution in [a , b] and a , c > 0.
Assuming P(1) = P(−1) = 1/2, the classification problem consists of se-

lecting the straight line passing through the origin (x2 = tan(α)x1), yielding
min Pe . Theoretical MEE (H) and MSE (V) values are easily computed for
two configurations:

� Configuration 1 (the min Pe solution) with α = −π/2, w = [0 1]T :

H = 1
2

ln(1 − a ) + 1
2

ln(a − b) − ln
1
4

(C.2)

V = (1 − a )2

6
+ (a − b)2

24
+ (2 − a − b)2

8
(C.3)

� Configuration 2 with α = 0, w = [1 0]T:

H = ln c − ln
1
2

(C.4)

V = c2

12
+ 1 (C.5)

In this problem, MEE always picks the correct solution (α = −π/2), but
for some values of the parameters, MSE and CE do not. For instance, if
a = 0.95, b = 1.7, and c = 0.9, we obtain the H, V curves in Figure 12a with
min Pe = 0.321 and MSE selecting α = 0.377 with Pe = 0.355. CE will also
make the wrong decision for longer tails of configuration 1. For instance,
with a = 0.95, b = 2.4, and c = 0.9, the cross-entropy obtained is shown in
Figure 12b, selecting α = 0.346 with Pe = 0.411, whereas min Pe = 0.362.
Even if instead of the theoretical MEE, MSE, and CE, we use empirical
estimates (we performed experiments with 500 points per class), the same
conclusions are obtained.
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Figure 12: (Left) The H (solid line), V (broken line) curves for a = 0.95, b = 1.7,
and c = 0.9. (Right) The CE curve for a = 0.95, b = 2.4, and c = 0.9. The curves
were obtained by numerical simulation with 8000 points.
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