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Abstract

Neural Architecture Search (NAS) methods have been successfully applied to image
tasks with excellent results. However, NAS methods are often complex and tend to
converge to local minima as soon as generated architectures seem to yield good
results. In this paper, we propose G-EA, a novel approach for guided evolutionary
NAS. The rationale behind G-EA, is to explore the search space by generating and
evaluating several architectures in each generation at initialization stage using a
zero-proxy estimator, where only the highest-scoring network is trained and kept
for the next generation. This evaluation at initialization stage allows continuous
extraction of knowledge from the search space without increasing computation, thus
allowing the search to be efficiently guided. Moreover, G-EA forces exploitation
of the most performant networks by descendant generation while at the same time
forcing exploration by parent mutation and by favouring younger architectures to
the detriment of older ones. Experimental results demonstrate the effectiveness
of the proposed method, showing that G-EA achieves state-of-the-art results in
NAS-Bench-201 search space in CIFAR-10, CIFAR-100 and ImageNet16-120,
with mean accuracies of 93.98%, 72.12% and 45.94% respectively.

1 Introduction

Convolutional Neural Networks (CNNs) have been extensively applied with success to a panoply of
tasks, from image classification [5, 13], to semantic segmentation [12], text analysis [4], amongst
many others [16]. Their inherent capability of feature extraction allows CNNs to be easily applied
and transferred to different problems. Over the years, several brilliantly and carefully designed
architectures have incrementally out-performed the state-of-the-art by proposing novel components
and mechanisms, such as skip and residual connections, faster and less size intensive operations and
attention mechanisms [17, 28, 14, 15, 3, 29, 9]. However, designing tailor-made highly performant
CNNs for a given task is extremely difficult, as the required design choices intrinsic to the archi-
tectures, layer combination and training requires extensive architecture engineering. Thus, there is
a growing interest in Neural Architecture Search (NAS) to automate architecture engineering and
design.

NAS has successfully been successfully applied in the task of designing different types of neural
network’s architectures [32], specially for image and text problems [11, 32]. These methods are
commonly composed of three components, being the first the search space, which specifies the
possible operations to be sampled and their connections, ultimately defining the type of architectures
that the search method can generate. The second component is the search method, which represents the
approach used to explore the search space and generate architectures. The most common approaches
are reinforcement learning, evolutionary strategies and gradient-based methods, which commonly

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.



work by updating a controller to sample more efficient architectures based on the performance
of the generated models. Finally, the performance estimation strategy defines how the generated
architectures are evaluated. Thus, the goal of a NAS method is to, based on the search method,
efficiently search a large set of possible networks to find an optimal architecture for a given problem.
Despite the excellent results obtain by prominent NAS methods, the computational cost of most
approaches is high, which in some cases can be in the order of months of GPU computation
[38, 19, 39]. To mitigate this, interesting approaches focus on a cell-based design, where NAS methods
design small cells that are replicated through an outer-skeleton, thus alleviating the complexity of the
search space [26, 38, 39, 2]. More, several performance estimation strategies have been proposed to
reduce the time constraint of NAS methods, by mainly conducting low-fidelity estimates, learning
curve extrapolations, statistical approaches [31, 11] or by proposing one-shot methods, where the
weights of the generated models are inherited [20, 23, 33]. Searching through extensive search spaces
is highly complex, even when there is some prior knowledge about the space. It has been shown
that some of the most prominent NAS methods fail to generalise to new datasets due to converging
extremely fast to local minima [8, 34]. The most reliable approach to obtain information about the
search space while searching is to fully train generated architectures and optimise the search based
on the most performant ones. However, this is costly, and results are highly dependant on the training
schemes and initialisation setups. Therefore, zero-proxy estimators present an attractive solution,
where statistics are drawn from the generated architectures to score them at initialisation stage, thus
requiring no training [21, 22]. These methods are time efficient and capable of performing good
correlations between the score and respective accuracies when the architectures are trained.

This paper proposes G-EA, an evolutionary NAS method that leverages zero-proxy estimation to
guide the search. By using an evolutionary strategy, where operations can be mutated and younger
architectures are prefered, G-EA forces an exploitation of the most performant networks, and an
exploration of the search space by conducting mutations. More, we solve the problem of conducting
full evaluation of the generated networks to obtain knowledge about the search space, by generating
several architectures in each generation, where all are evaluated at initialisation stage using a zero-
proxy estimator and only the highest scoring network is trained and kept for the next generation. By
doing so, G-EA is capable of continuously extracting knowledge about the search space without
compromising the search, resulting in state-of-the-art results in NAS-Bench-201 search space in
CIFAR-10, CIFAR-100 and ImageNet16-120.

Our contributions can be summarized as:

• We propose a novel guided NAS method based on evolutionary strategies and zero-proxy
estimation to generate image classifier architectures - Convolutional Neural Networks.

• We empirically show that guided mechanisms can be used to improve the generated mod-
els performance without compromising time efficiency. Also, we detail the algorithm,
emphasizing the accessible transferability of the guiding mechanism.

• We achieve state-of-the-art results in the NAS-Bench-201 search space, in all datasets:
CIFAR-10, CIFAR-100 and ImageNet16-120.

2 Related Work

NAS was initially proposed as a Reinforcement Learning (RL) problem, where a controller is trained
based on the generated architecture’s performances to sample more efficient ones [38]. Follow-up
approaches focused on improving the overall performance, and the computation required to frame
NAS as a RL problem by proposing the use of different learning strategies, distributed computing,
and novel incremental sampling strategies [37, 11, 32]. ENAS [23], showed that RL could be used to
perform NAS in a reasonable time-frame by training a controller to discover architectures through
optimal subgraph search within a large computational graph, requiring only a few computational
days. DARTS, proposed the use of gradient-based approaches to generate architectures by performing
a continuous relaxation of the parameters using a bi-level gradient optimization, resulting in the
generation of competitive networks in a few GPU days [20]. These methods served as basis for
follow-up weight-sharing NAS methods and one-shot models [2, 7, 18, 6, 36, 33]. Evolutionary
strategies are also a common approach for NAS, which takes inspiration from biologic systems in
order to generate architectures through a set of mutation operations. NEAT was the first evolutionary
method to evolve simple neural networks [27], which served as base and inspiration for methods
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Algorithm 1 Guided Evolution

population← empty queue . Population.
history ← ∅ . Models history.
while |population| < C do . Initialize population.

model.arch← RANDOMARCHITECTURE()
model.accuracy ← ZEROPROXY(model.arch)
add model to right of population . Add model to the end, forcing age

drop the C − (C − P ) worst individuals from population
for model ∈ population do

model.accuracy ← TRAINANDEVAL(model.arch)
add model to history

while |history| < C do . Evolve for C cycles.
sample← ∅ . Parent candidates.
while |sample| < S do

candidate← random model from population . Sampling with replacement.
add candidate to sample

parent← highest-accuracy model in sample
generation← empty list . Population.
while |generation| < P do

child.arch← MUTATE(parent.arch)
child.accuracy ← ZEROPROXY(model.arch)
add child to generation

top_child← highest-performant model in generation
top_child.accuracy ← TRAINANDEVAL(model.arch)
add top_child to right of population
add top_child to history
remove dead from left of population . Oldest model.
discard dead

return highest-accuracy model in history . Most performant model.

that evolve deeper architectures where parent architectures have their parameters mutated to force
evolution towards better performances [25, 10]. REA, is one of the most prominent approaches, in
which the evolutionary strategy evolves architectures through operation and hidden states mutations,
and also employs a tournament selection that favours younger architectures [24].

Guiding mechanisms have been proposed to improve NAS. PNAS introduced a consortium learning
to the search, where the design of architectures is gradual, based on the evaluation of increasingly
larger networks [19]. This approach allowed the method to be progressively guided through the
search space, avoiding the need to train bad networks due to the estimation of the performance by
a predictor network. However, this method still required immense computation. NPENAS guides
an evolutionary search by proposing two predictors: a graph-based uncertainty estimation network
and a performance predictor. NPENAS achieves a mean accuracy on NAS-Bench-201 CIFAR-10
of 91.07% [30]. In [1], the authors evaluate the similarity of the internal activations of generated
architectures against a known one, e.g., ResNet, via representational similarity analysis to obtain
knowledge regarding the search. [35] proposes the use of landmark architecture’s evaluation to
regularize the ranking of child networks in super-net settings, thus guiding the search towards a better
ranking correlation between stand-alone networks and the super-net ranking.

In this work, we propose a guided evolutionary method that is inspired by the findings that show that
evolving architectures is an efficient approach for NAS, and that zero-proxy estimators provide a
reasonably good and extremely fast scoring of untrained networks [24, 21, 31, 32]. By coupling a
zero-proxy estimator as a guiding mechanism to the search method, we force further exploitation
of settings that are favourable to the architectures being generated, and, at the same time, also
allows the exploration of the search space efficiently, by evaluating thousands of networks, providing
information to guide the search.
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3 Proposed Method

The goal of NAS algorithms is to find an optimal architecture a∗ from the space of architectures A,
a∗ ∈ A, that maximizes an objective function O. In this paper, we propose G-EA, which frames
NAS as an optimization problem where an evolutionary strategy evolves architectures a ∈ A based
on mutations and guided evolution.

In the following sections, we detail G-EA and the zero-proxy estimator leveraged to create the guiding
mechanism.

3.1 Search Method

G-EA is summarised in Algorithm 1. In detail, G-EA starts by randomly generating C architectures
from the search space of possible architectures, A. The architectures that belong to the search
space have equal probabilities of being randomly sampled. Sampled architectures are then evaluated
using a zero-proxy estimator that scores the architectures at initialisation stage, without requiring
any training (the zero-proxy estimation mechanism is detailed in section 3.2). Then, from the C
scored networks, only the top P scoring architectures are added to the population and trained to
extract their fitness, f , which is the validation accuracy. By scoring C networks at initialisation stage,
G-EA acquires knowledge regarding the search space, which is then exploited by selecting the top
performant architectures, thus guiding the upcoming search by weeding out bad architectures.

Once the initial population is defined, the evolution takes place for C cycles. At each iteration,
the first step is to randomly and uniformly sample S architectures from the population. Then, the
architecture with the highest fitness score, f , is selected to be the parent of the next generation (cycle).
To generate new architectures, G-EA performs a mutation over the parent architecture. The mutation
works by randomly changing one operation of the architecture by another from the pool of operations.
An example of a mutation using the NAS-Bench-201 search space is visually represented in Fig. 1.
P new architectures are generated at each cycle by performing operation mutations over the selected
parent, which are then scored using the zero-proxy estimator. The highest-scoring network is kept and
added to the population after evaluating its fitness. By evaluating P architectures, the search method
can find which are the best directions to evolve the parent in the space. This allows the method to be
guided through a complex space without jeopardizing the time required to perform the evolution or
the search method’s complexity. When the new architecture is added to the population, the oldest
architecture is removed and discarded, thus forcing exploration of the search space by favouring
younger architectures that represent new settings evolved by prior acquired knowledge.
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Figure 1: Representation of mutating an operation
using NAS-Bench-201 search space.

Inherently, higher P values represent a higher
degree of exploration of the search space, while
higher S values represent higher exploitation by
increasing the probability of the best architec-
tures in the population being selected as parents
for the next generation.

3.2 Zero-proxy Estimator

To score networks at initialisation stage to aid
in the guiding mechanism of the evolution, we
use a zero-proxy estimator based on Jacobian
covariance. This allows us to quickly evalu-
ate if a network is good without requiring any
training, thus allowing the selection of a gen-
erated network to be added to the population
with more confidence that the search is being
correctly guided to good spaces. To do this, we
can define a linear mapping, wi = f(xi), which
maps the input xi ∈ RD, through the network,
f(xi), where xi represents an image that be-
longs to a batch X, and D is the input dimension [21]. Then, the Jacobian of the linear map can be
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computed using:

Ji =
∂f(xi)

∂xi
(1)

This allows us to evaluate a network behaviour for different images by calculating the Jacobian wi

for different data points, f(xi), of a single batch X, i ∈ 1, · · · , N :

J =
(

∂f(x1)
∂x1

∂f(x2)
∂x2

· · · ∂f(xN )
∂xN

)>
(2)

J then contains information about the network output with respect to the input for several images.
We can split this into classes and evaluate how an architecture models complex functions at the
initialisation stage and its effect on images that belong to the same class. To do that, we split J
into several sets, where each set, Mk, contains all Ji that belong to the same class k. Then, we can
calculate a per-class correlation matrix, ΣMk

, using the obtained sets, Mk, where k = 1, ...K.

Individual correlation matrices provide information about how a single architecture treats images
for each class. However, different correlation matrices might yield different sizes, as the number of
images per class differ. To be able to compare different correlation matrices, they are individually
evaluated:

Ek =


∑N

i=1

∑N
j=1 log(|(ΣMk)i,j |+ t), if K ≤ τ

∑N
i=1

∑N
j=1 log(|(ΣMc)i,j |+t)

||ΣMk||
, otherwise

(3)

where t is a small-constant with the value of 1× 10−5, and K is the number of classes in batch X,
and ||.|| represents the size of the set X.

Finally, an architecture is scored based on the individual evaluations of the correlation matrices by:

z =


∑K

w=1 |ew|, if K ≤ τ

∑K
i=1

∑K
j=i+1 |ei−ej |
||e|| , otherwise

(4)

where e is a vector that contains all the correlation matrices’ scores. The final score is dependant
on the number of classes present in X, as data sets with a higher number of classes commonly have
more noise, which is mitigated by conducting a normalized pair-wise difference. In our experiments,
we empirically defined τ = 100, based on the search space and data sets used.

We can then use z to rank generated architectures, providing an efficient mechanism of differentiating
between bad and good architectures.

4 Experiments

4.1 Search Space

To evaluate the proposed method, we used the NAS-Bench-201 tabular benchmark [8]. NAS-Bench-
201 fixes the search space as a cell-based design with 5 operations: zeroize, skip connection, 1× 1
convolution, 3× 3 convolution, and 3× 3 average pooling layer. The cell design comprises six edges
and four nodes, where an edge represents a possible operation through two nodes. By fixing the
cell size and the operation pool, there are 56 = 15625 possible cells in this search space. To form
entire networks, the cells are replicated in an outer-defined skeleton. More, NAS-Bench-201 provides
information regarding the training and performance of all possible networks in the search space in
three datasets: CIFAR-10, CIFAR-100 and ImageNet16-120, thus allowing a quick prototyping and a
controlled setting that allows different NAS methods to be fairly compared, as they are forced to use
the search space, training procedures and hyper-parameters.
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Figure 2: Mean accuracy over 10 runs of the proposed method, G-EA, and direct comparison with
R-EA for different cycles (C) across CIFAR-10, CIFAR-100 and ImageNet16-120 data sets.

4.2 Results and Discussion

First, we evaluate the importance of the number of generations/cycles, C. This parameter inherently
defines the time required for the search procedure. HigherC values will take longer to finish. More, C
defines the number of architectures that are evaluated - CP architectures (P per cycle) are generated
and evaluated using the zero-proxy estimation method to provide information about the search space,
from which, C architectures (1 per cycle) are selected and trained. The results from this experiment
can be seen in Fig 2, where a direct comparison with R-EA is also provided. The results are expressed
as the mean accuracy over 10 runs, obtained by the best architecture found by each method both in
the validation and test sets. In this experiment, the P/S used to allow a fair comparison was set to
P/S = 5/2, following the common settings used and extensively evaluated by prior works [8, 24].
For our proposed method, G-EA, P value means that at any given time of the search, the population
is equal to 5 architectures, and that from the pool of parents, S, 2 architectures are sampled with
replacement in order to elect the parent of the generated architectures at a given cycle. Denote that
the sampled parent generates P architectures through mutation per cycle, which are evaluated using
the zero-proxy estimator, wherein the top scoring architecture is selected to integrate the population.
By selecting S > 1 architectures to have the opportunity of being a parent, we are leveraging the
intrinsic exploitation characteristics of the evolutionary strategy, while by generating P architectures,
we are forcing an exploitation that guides the search more effectively.

From Fig. 2, it is possible to see that across all datasets, G-EA consistently outperforms R-EA, and is
capable of converging to better results even with a low C. These results demonstrate that by providing
a guided mechanism, the search method convergences more quickly to regions of the search space that
contain better architectures, peaking at C = 150 in these settings. Based on these results, in Table 1
we further compare G-EA using P/S/C = 5/2/150 against other state-of-the-art methods on the
NAS-Bench-201 search space, using as evaluation metrics the mean accuracy, standard deviation
and search time, in seconds, across the 3 data sets. G-EA consistently outperforms both weight
sharing and non-weight sharing NAS methods, achieving state-of-the-art results in all three data
sets. Moreover, G-EA is extremely efficient in terms of search time, requiring only 0.2 GPU days to
complete the search. Even though G-EA evaluates CP architectures with the zero-proxy estimator
and further evaluates C architectures by training them, it requires a similar search time as REA under
the same settings, and considerably less than most weight sharing methods. Lower standard deviation
also indicates that G-EA is precise and capable of generating high performant architectures. This is
specially valid in ImageNet16-120, a data set with low resolution images and high levels of noise, in
which G-EA considerably outperforms existing NAS methods.

The obtained results show that evolutionary strategies coupled with a mechanism to quickly evaluate
architectures to guide the search can achieve state-of-the-art results while still having competitive
search times. Despite the complexity of search spaces and severe difficulty in obtaining their
global information, the achieved results shed insights that guiding mechanisms powered by scoring
architectures at initialisation stages give us the advantage of acquiring preliminary information
regarding which direction should the search evolve to. Therefore, G-EA is capable of avoiding local
minima and quickly converge to better results while still being capable of improving the time required
by the search method.
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Table 1: Comparison of manually designed networks and several search methods evaluated using
the NAS-Bench-201 benchmark. Performance is shown in terms of accuracy with mean±std, on
CIFAR-10, CIFAR-100 and ImageNet-16-120. Search times are the mean time required to search for
cells in CIFAR-10. Search time includes the time taken to train networks as part of the process where
applicable. Table adapted from [8, 21, 22].

Method Search
Time (s)

CIFAR-10 CIFAR-100 ImageNet-16-120

validation test validation test validation test

Manually designed
ResNet - 90.83 93.97 70.42 70.86 44.53 43.63

Weight sharing
RSPS 7587 84.16±1.69 87.66±1.69 59.00±4.60 58.33±4.34 31.56±3.28 31.14±3.88
DARTS-V1 10890 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
DARTS-V2 29902 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00
GDAS 28926 90.00±0.21 93.51±0.13 71.14±0.27 70.61±0.26 41.70±1.26 41.84±0.90
SETN 31010 82.25±5.17 86.19±4.63 56.86±7.59 56.87±7.77 32.54±3.63 31.90±4.07
ENAS 13315 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00

Non-weight sharing
RS 12000 90.93±0.36 93.70±0.36 70.93±1.09 71.04±1.07 44.45±1.10 44.57±1.25
REINFORCE 12000 91.09±0.37 93.85±0.37 71.61±1.12 71.71±1.09 45.05±1.02 45.24±1.18
BOHB 12000 90.82±0.53 93.61±0.52 70.74±1.29 70.85±1.28 44.26±1.36 44.42±1.49
REA† 18577 91.23±0.29 93.93±0.31 71.94±1.24 71.96±1.19 44.89±1.00 45.58±1.01
G-EA (ours)† 18567 91.28±0.12 93.98±0.18 72.40±0.41 72.12±0.35 45.28±0.68 45.94±0.71
† Results of 10 runs using the same settings: P/S/C = 5/2/150, using a single 1080Ti GPU.

5 Conclusions

This paper proposes G-EA, a guided evolution strategy for neural architecture search by leveraging
zero-proxy estimation of untrained architectures. G-EA forces exploitation of the most performant
networks by descendant generation and an exploration of the search space by conducting mutations.
G-EA guides the evolution by exploring the search space by generating several architectures in each
generation and having them evaluated at initialisation stage using a zero-proxy estimator, where
only the highest-scoring network is trained and kept for the next generation. By generating several
architectures from an existing architecture from the population at each generation, G-EA is capable
of continuously extracting knowledge about the search space without compromising the search,
resulting in state-of-the-art results in NAS-Bench-201 search space in CIFAR-10, CIFAR-100 and
ImageNet16-120, with mean accuracies of 93.98%, 72.12% and 45.94% respectively.

The simplicity of our approach allows it to easily be extended, where the search method is further
improved by incorporating new regularisation and mutation mechanisms. Also, the components that
compose the guiding mechanism can easily be transferred to other evolutionary algorithms, allowing
existing NAS evolutionary methods to be further improved.
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