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Resumo

O prinćıpio da minimização da entropia do erro - MEE - foi recentemente

proposto como um novo paradigma de aprendizagem, no qual uma medida da

entropia do erro é usada como funcional de risco. O prinćıpio pode ser usado,

por exemplo, para o treino de redes neuronais. O MEE foi inicialmente aplicado

a problemas de regressão e em anos mais recentes, no seio do nosso grupo, ao

treino de classificadores baseados em redes neuronais. Em ambas as abordagens,

a definição de entropia utilizada foi a proposta por Rényi.

Neste trabalho progrediu-se em dois sentidos:

Primeiro, num âmbito mais prático, considerou-se a entropia de Shannon como

funcional de risco no prinćıpio MEE, para o treino de classificadores baseados em

redes neuronais. Deduzimos um estimador para este caso e provámos algumas

das suas propriedades. Baseados na experiência adquirida com as medidas

entrópicas, propusémos também duas novas funções de custo para o treino de

redes neuronais: a) a maximização da densidade na origem (Z-EDM); b) a sua

versão generalizada sob a forma de uma função exponencial (EExp) dependente

de um único parâmetro, podendo este ser ajustado por forma a emular uma

famı́lia infinita de funcionais de risco. Vários procedimentos experimentais

foram realizados por forma a se avaliar os métodos propostos, tendo estes obtido

uma melhor performance na maior parte dos casos.

Em segundo e por último, efectuámos um estudo cuidado do prinćıpio da mi-
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nimização da entropia do erro em classificação de dados, analisando os casos

de máquinas tipo partição única e perceptrão. Esta análise permitiu uma

melhor compreensão dos comportamentos e evidenciar as diferenças entre o

MEE teórico e o MEE prático. Um grande conjunto de resultados novos e

talvez surpreendentes são apresentados, tanto para o caso do MEE com erros

discretos como para o caso do MEE com erros cont́ınuos.
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Abstract

The principle of minimum error-entropy - MEE - has been recently proposed

as a new learning paradigm, where a measure of error entropy is used as risk

functional. This principle can be used, for example, for neural network training.

MEE was first applied in regression-type tasks and in more recent years, within

our team, to the training of neural network classifiers. In both these approaches,

Rényi’s definition of entropy was used.

In this work we have progressed in two ways:

First, in a more practical approach, we considered the use of Shannon’s entropy

as the risk functional in the framework of MEE, for the training of neural

network classifiers. We derived an estimator for this case and proved some of

its properties. Also, and guided by the experience gained from entropic criteria,

we derived and proposed two new cost functions for neural network training:

a) the zero-error density maximization (Z-EDM); b) its generalized version in

the form of an exponential function (EExp) with a single parameter, which can

be tuned to emulating an infinite family of risk functionals. Several practical

experiments were conducted providing the necessary assessment of the proposed

methods, which often outperform the conventional ones.

Second and finally, we performed a careful study of the minimum error-entropy

principle for data classification, by analyzing the case of univariate single splits

and perceptron-based machines. This analysis provided the needed insight to
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understanding the behavior and the differences between the theoretical and

practical MEE in data classification. A large set of new interesting and probably

surprising results, both for the case of MEE with discrete errors and MEE with

continuous errors, were established.
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Résumé

Le principe de la minimisation de l’entropie de l’erreur - MEE - a été récemment

proposé comme un nouveau paradigme d’apprentissage au sein duquel la mesure

de l’entropie de l’erreur est utilisée comme fonctionnel de risque. Ce principe

peut être utilisé, par exemple, pour l’apprentissage de réseaux de neurones. Ini-

tialement, MEE a été apliquée à des problèmes de regression et, plus récemment,

au sein de notre groupe de recherche, elle a été apliquée à l’apprentissage de

classificateurs basés sur des réseaux de neurones. Dans les deux approches, la

définition d’entropie utilisée a été celle proposée par Rényi.

Dans ce travail, nous avons progressé dans deux sens:

D’abord, d’un point de vue plus pratique, nous avons envisagé l’entropie de

Shannon comme un fontionnel de risque dans le principe MEE pour l’apprentissage

de classificateurs basés sur des réseaux de neurones. Nous avons déduit un esti-

mateur pour ce cas particulier et nous avons soumis quelques de ses propriétés à

des tests. En nous basant sur l’expérience acquise avec les mesures entropiques,

nous proposons aussi deux nouvelles fonctions de coût pour l’apprentissage de

réseaux de neurones: a) la maximisation de la densité dans l’origine (Z-EDM); b)

sa version généralisée sous forme d’une fonction exponentielle (EExp) dépendante

d’un seul paramètre, qui peut être adapté de façon à émuler une famille in-

finite de fonctionnelles de risque. Nous avons utilisé plusieures procédures

expérimentales pour faire une évaluation des méthodes proposées. Les résultats
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démontrent que ces méthodes ont, généralement, une meilleure performance.

Puis, nous avons fait une étude soigneuse du principe de la minimisation de

l’entropie de l’erreur dans la classification des données, en analysant les ma-

chines à division simple et les machines basées en perceptrons. Cette analyse

a permis une meilleure compréhension des comportements et a mis en évidence

les différences entre MEE théorique et MEE pratique. Un grand ensemble de

résultats nouveaux et peut-être surprennants est présenté, non seulemente pour

MEE avec des erreurs discrètes, mais aussi pour MEE avec des erreurs continus.
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D A Result on the Hölder Exponent 167

E Data Sets 169

E.1 Artificial Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 169

E.2 Real-world Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . 171

Bibliography 185

xii



List of Tables

2.1 Efficiency values (as defined in [105]) of several kernels. . . . . . 27

3.1 Mean test error (%) and standard deviations (in brackets) in five
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Chapter 1

Introduction

Pattern recognition is a daily task performed by every human being. We are

constantly being requested to recognize the face of our relatives, to recognize our

car among dozens in a parking lot, to recognize the song whistled by someone

in the bus. Obviously, this is only possible because we learned how to do it.

However, there are several more complex recognition tasks in the real world that

we would like (and need) to perform with precision and as fast as possible. A

good example are mail services where the need to automate the correspondence

distribution has led to the construction of machines capable of recognizing text.

These and other necessities gave rise to a new computer science discipline,

machine learning, concerned with the design and development of algorithms

and strategies to allow computer-like machines to learn and take decisions. In

pattern recognition, learning is often driven by a desired response, also called

target, (as if we were watching (studying/learning) some set of objects and

someone was telling us what they are), which describes a set of classes or groups.

This supervised learning paradigm can be understood under the general principle

of statistical inference [109]:
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2 CHAPTER 1. INTRODUCTION

Functional
dependency 

Learning
Machine

Real
World

x

t

y

e

L(e)

Figure 1.1: The pattern recognition problem from the machine learning point

of view.

Given a collection of empirical data originating from some functional

dependency, infer this dependency.

The functional dependency for pattern recognition relates the characteristics

measured from the objects and the desired response. This is illustrated in

Figure 1.1. From a real world problem we measure a set of appropriate charac-

teristics (variables or features) x. For example, in the problem of recognizing our

car in a parking lot, we could measure the color, the brand, some characteristics

of the shape (if it is a van or a hatchback) and so on. An appropriate functional

dependency or relationship between those variables (usually a statistical one)

will influence the desired response t (is it mine or not?). The goal of the learning

machine is to appropriately model the functional relationship and to substitute

us in the recognition process. Several types of learning machines have been

proposed. From the most simple, like Rosenblatt’s perceptron [87] or Widrow’s

ADALINE [113] to the more complex multilayer perceptrons or support vector

machines [109]. A learning machine is basically a parameterized model that

receives the information x and produces an output y. This is compared to the
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desired target t, usually as e = t − y, and a cost function L(e) controls the

adaptation (performed by some algorithm) of the parameters such that y will

be closer to t. This means that the machine, here designated as a classifier, is

learning the relationship. Therefore, one can consider three main aspects that

influence the learning process: the machine’s capability (related to the model

complexity), the algorithm’s capability and the cost function. This work is

concerned with the latter, that is, we assume a given complexity of the model,

fix some training algorithm and study the performance of (or propose) different

cost functions. Since the early times that the mean square error (MSE), a second

order statistic, is the popular choice. Several reasons can be given to explain this

choice, including the belief that most real-life random processes can be modeled

by the Gaussian distribution (which is solely described by its first and second

order moments) or the fact that when using linear machines, the exact solutions

can be obtained and several theoretical results derived. Due to its simplicity and

tractability, MSE has thus been chosen as the default optimality criterion, even

for nonlinear machines. However, more complex problems appeared in areas like

signal processing that could not be solved by mere use of second order statistics.

Moreover, when dealing with classification, the Gaussianity assumption is not

valid. This has influenced the development of other optimality criteria like the

cross-entropy (CE) cost function [106]. In this sense, researchers made an effort

to derive more appropriate measures capable of extracting more information

from the data and capable of constraining high-order moments. An important

step in this way was given in 1948 by Claude Shannon, when the concept of

information entropy in communication systems was introduced. This brought a

new area of research, information theory, which was enriched by contributions of

many researchers, where probably one of the most important was Alfred Rényi.

The scientific community rapidly understood that the applicability of infor-

mation theory was not restricted to communication systems. Entropy and

related concepts of mutual information and Kulback-Leibler divergence have
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been used in learning systems (supervised or unsupervised) in several ways. The

principle of minimum cross-entropy enunciated by Kulback [62] was introduced

as a powerful tool to build complete probability distributions when only partial

knowledge is available. The maximization of mutual information between the

input and the output of a neural network (the Infomax principle) was introduced

by Linsker [69] as an unsupervised method that can be applied, for example,

to feature extraction. Applications to blind source separation or independent

component analysis have also been proposed with the principles of maximum

entropy and minimum mutual information [9, 67, 116, 117]. Recently, Pŕıncipe

and co-workers proposed new approaches on the application of entropic criteria

to learning systems, introducing the terminology information theoretic learning

(ITL) [82]. The first works started with Fisher [30, 31] and Xu [83, 114, 115].

Whereas Fisher studied subspace projections and nonlinear principal component

analysis (and not directly the adaptation problem), Xu provided the first appli-

cations to learning systems and the derivation of the nonparametric estimator

of Rényi’s quadratic entropy. These works were fundamental for the later work

of Erdogmus [19, 21, 24], from which one of the main contributions was the

principle of minimum error entropy (MEE) for learning systems. The principle

is as follows: one should minimize the entropy of the difference (error) between

the output and the target of a learning system, E = T − Y . The minimization

of error entropy1 implies a reduction on the expected information contained in

the error, which leads to the maximization of the mutual information between

the desired target and the system output [21]. This means that the classifier is

learning the target variable.

Entropy-based cost functions, as functions of the probability density functions,

reflect in some sense the global behavior of the error distribution; therefore,

learning systems with entropic cost functions are expected to outperform those

1Notice that the distribution with minimum entropy (continuous random variable) is the

δ-Dirac.
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Figure 1.2: (a) Variance as a function of α. (b) Rényi’s entropy as a function of

α.

that use the popular MSE rule, which only reflects the second order statistics of

the error. In fact, concerning MSE, the main and often mentioned results are

that for Gaussian distributions MSE yields the optimal regression solution and

that the outputs of a neural network trained with MSE correspond to Bayesian

posterior probabilities [11, 86], which allow some confidence that MSE will also

perform well in classification problems. However, MSE may fail for some families

of error pdf’s where MEE performs in the optimal way. As an example of how

that might happen, suppose that E has a continuous distribution defined by a

sum of triangular distributions

f(e) =
1

4
[Tr(e, 0, α) + Tr(e,−α, 0) + Tr(e, 0, 1/α) + Tr(e,−1/α, 0)] ,

where, for α > 0,

Tr(x, a, b) =











4(x−a)
(b−a)2

a ≤ x ≤ (b + a)/2

4(b−x)
(b−a)2

(b + a)/2 < x ≤ b

. (1.1)

Figure 1.2 shows the variance and Rényi’s quadratic entropy of E plotted as

functions of α. We observe that the variance has a minimum at α = 1 while

entropy attains its minimum value for α → 0 or α → +∞, that is when
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the family converges to a δ-Dirac function at zero, the optimal error solution.

Another type of problem where the practical application of MSE may completely

fail is when the error data is characterized by a fat-tail distribution, such as

sometimes encountered in financial time series. Take the Cauchy distribution.

Empirical variances computed in a Cauchy time series vary erratically, since the

Cauchy distribution has no variance; however, it does have a finite Shannon

entropy; so the application of MEE to such time series is not a problem.

The outperformance of MEE over MSE has been shown in the cited works, a

good example of which is the prediction of the Mackey-Glass temporal series

described in [24]. An objection that could be raised to using the MEE principle

is the need to estimate the probability density function (pdf) of E, in the case

of continuous error distributions. Now, it is a well-known fact that accurate

pdf estimation may be a tougher problem than having to solve a related re-

gression or classification problem. However, it turns out that when applying

the MEE principle using Rényi’s quadratic entropy, pdf estimation is short-

circuited altogether [82]. Even if one uses Shannon’s entropy usually a simple

and coarse pdf estimate is all that is needed [104]. The application of MEE

to classification tasks was developed at our team by Jorge Santos [90]. The

training of MLP classifiers with Rényi’s quadratic entropy as well as several

optimization improvements were divulged in several papers [91, 93, 94, 96].

Entropic quantities were also adopted to define a new dissimilarity matrix and a

new clustering algorithm, LEGClust [95], that was applied to task decomposition

in modular neural network classifiers [92]. The application to recurrent networks

was also provided in [4] as well as with classifiers using a kernel-based approach

[42]. All these approaches provided good results, showing that entropic measures

are good alternatives to MSE.

The previous works motivated several issues, including the question of whether

Shannon’s entropy could also be used for the training of MLP classifiers. Also,
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and despite the practical evidence on the performance of the aforementioned

methods, it was important to understand what is really happening and whether

or not MEE solutions are able to provide optimal solutions in the minimum

probability of error sense. These were major concerns focused by our work,

whose main contributions presented in this thesis can be enumerated as follows:

1. The use of an estimator of Shannon’s entropy of the errors as the risk

functional for training MLP classifiers [104]. An analytical study of the

estimator is presented.

2. The proposal of the Z-EDM (zero-error density maximization) cost function,

which results from ideas of entropy minimization [99, 101].

3. The generalization of Z-EDM, providing a new parameterized exponential

cost function capable of emulating a wide range of behaviors, including the

one obtained with MSE, CE and Z-EDM [100].

4. An analytical study of the single perceptron with threshold activation func-

tion in light of the MEE principle. Several interesting (and probably

unexpected) results are found [102].

5. The extension of the previous study to the case of continuous errors, that

is, perceptron-like machines with continuous activation functions [103].

Along the development of our work several new theoretical results were found

and are described, namely the demonstration of about ten new Theorems and

Lemmas.

The present thesis is organized as follows:

In Chapter 2 we review the main concepts used in this work. Most of the topics,

like the pdf estimation problem and artificial neural networks, are well known

and established theories and may be skipped. Nevertheless, they are used to
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introduce the main notation used throughout the text. In the first section,

about statistical decision theory, we demonstrate a first Theorem, while the

section about entropy introduces the minimium error-entropy principle.

Chapter 3 contains the discussion and application of error-pdf-based cost func-

tions using MLP’s: Shannon’s entropy, the zero-error density maximization and

the generalized exponential function. Some new results regarding Shannon’s

entropy are also demonstrated. Comparative studies of the proposed methods

are presented.

In Chapter 4, the MEE principle is studied from the theoretical point of view

of data classification when the available machines are threshold-type. This

amounts to the study of the case of discrete errors. We present and demonstrate

several new results.

In Chapter 5, we extend the previous analysis to the more realistic setting of

learning machines with continuous activation functions, providing a necessary

and insightful analysis of the case of continuous errors.

The final discussions and conclusions are presented in Chapter 6, ending with

the outline of future work.

Finally, this Thesis ends with a few appendices covering some topics taken off

from the main track of the text for the sake of reading simplicity. The data sets

used in this work are described in the last appendix.



Chapter 2

Basic Concepts

This chapter is devoted to introducing basic concepts and notation needed

throughout the following chapters. We start with the fundamental notions

of statistical decision theory and progress to presenting an important theorem

concerning optimal single classification splits and the notion of classifier problem.

Both the theorem and the notion were introduced by us elsewhere [102, 103].

The problem of learning from data is also introduced and linked to the previous

theory. We also discuss probability density estimation, artificial neural networks

and introduce entropy and its related concepts.

9
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2.1 Statistical Decision Theory vs. Learning from

Data

2.1.1 Optimal Decision Rules: Minimum Error Probability and

Minimum Risk

Statistical (or Bayesian) decision theory is a formal way of describing a clas-

sification problem using its probabilistic nature and is used to derive optimal

decision rules. Consider, for simplicity, a two-class problem, that is, the problem

of assigning a given pattern described by a feature vector x to one of two

classes, C1 or C2. There is an a priori probability of x being from C1, denoted

P (C1), as well as an a priori probability of being from C2, denoted P (C2), such

that P (C1) + P (C2) = 1. For example, if we would like to classify a given

car from an hotel parking lot as being expensive (e.g. above 20,000 euros)

or cheap, we expect, without prior looking, that it is more probable to find

an expensive one in a five star hotel! So, a priori probabilities can be seen

as “predisposition” probabilities. In this sense, we could easily establish a

simple, although inefficient, classification/decision rule: “assign x to: C1 if

P (C1) > P (C2); C2 otherwise”. This is in fact an inefficient rule because it

does not depend on the particular value of x. Moreover, any other x would

always be classified in the same class. A smarter idea is to observe x and

then make a decision based on its probabilistic properties. Thus, what we are

looking for is a posteriori probabilities P (C1|x) or P (C2|x), the probabilities that

a given/observed x belongs to class C1 or C2, respectively. Using Bayes formula

one can write

P (Ci|x) =
P (Ci)p(x|Ci)

p(x)
, i = 1, 2 (2.1)

where p(x|Ci) is the class-conditional probability density function (pdf) for class

Ci and p(x) is the overall or mixture density function of x which acts simply
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as a scaling factor to ensure that posterior probabilities sum up to 1. Looking

at (2.1) one can interpret the posterior probabilities as a modification of the

prior probabilities resulting from the observation of x, as if extra knowledge was

added. Hence, the rule can be updated to: “assign x to: C1 if P (C1|x) > P (C2|x);

C2 otherwise”. But is this an optimal rule? The answer is positive. It is possible

to demonstrate that using this rule we are taking decisions that minimize the

average probability of error [18, 34]. In fact, for each x being classified with the

above rule, the probability of error is given by

P (error|x) = min{P (C1|x), P (C2|x)} (2.2)

and the average probability of error is

P (error) =

∫

P (error|x)p(x)dx, (2.3)

which is minimized if P (error|x) is chosen as in (2.2). The above rule is usually

known as the Bayes decision rule or Bayes test for minimum probability of

error1. This is illustrated in Figure 2.1 for the single x-feature case. The

shadowed area in Figure 2.1a represents the probability of error Pe divided into

the probabilities of error for each class, Pe1 and Pe2. Notice that moving the

decision border from the abcissa corresponding to the intersection implies an

increase of Pe. Thus to obtain a min Pe rule one should assign x to Ci whenever

P (Ci)p(x|Ci) is maximum.

This simple but elegant theory can be extended and generalized in several ways,

encompassing the multi-class problem as well as the fact that some classification

errors may be more costly than others (for example, in cancer diagnosis, there

is a higher cost in assigning “non-cancer” to a “cancer” case, than the reversal).

In the first case, the extension is straightforward. For a C-class classification

problem the rule becomes

Assign x to Ck if P (Ck|x) = max
i=1,...,C

P (Ci|x). (2.4)

1From now on we denote minimum probability of error as min Pe.



12 CHAPTER 2. BASIC CONCEPTS

P(C
1
)p(x|C

1
)

P(C
2
)p(x|C

2
)

Pe
2

Pe
1

R
2

R
1

(a)

P(C
1
)p(x|C

1
)

P(C
2
)p(x|C

2
)

R
1

R
1

R
2

(b)

Figure 2.1: Examples of two-class problems. At the left, a single split is sufficient

to solve the problem. The shadowed areas represent the error probabilities for

each class. At the right, the problem needs two splits to be optimally solved.

A classifier based on the above rule is usually known as a maximum a posteriori

(MAP) classifier. In the second case, to each decision we associate a cost or

loss. If λij represents the loss of deciding Ci when it should be Cj , the average

loss (also known as risk) of deciding Ci in the presence of x is given by

R(Ci|x) =
C
∑

j=1

λijP (Cj |x). (2.5)

The associated decision rule becomes

Assign x to Ck if R(Ck|x) = min
i=1,...,C

R(Ci|x), (2.6)

where mini=1,...,C R(Ci|x) is designated as Bayes risk. This rule is proven to

achieve the best performance possible [18]. Note that the minPe decision rule

is retrieved if we set λij = 1−δij (where δij is Kronecker’s delta). In subsequent

chapters we will devote our attention to the min Pe rule. In particular, we study

whether a given learning machine is capable of performing in such a way that

min Pe is attainable. A classifier or a classification problem can be formulated

in a different but equivalent way by using discriminant functions. These are

functions gi(x), i = 1, . . . , C, such that the decision rule is defined as follows:
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“assign x to Ci if gi(x) > gj(x), ∀j 6= i”. Geometrically, discriminant functions

define in the feature space a set of C decision regions R1, . . . ,RC associated

with each class. These regions are separated by decision boundaries defined by

gi(x) = gj(x).

In Figure 2.1a the x-space is divided into two decision regions R1 and R2 such

that we assign Ci whenever x ∈ Ri, i = 1, 2. Moreover, each region is not

necessarily contiguous as Figure 2.1b illustrates. Of course, a single split is not

sufficient in this case to achieve minPe. Nevertheless, the optimal single split is

always in an intersection of the posterior probabilities, as shown in the following

theorem:

Theorem 1. (Lúıs Silva et al. [102]) Consider a two-class problem in a uni-

variate x-space and the classifying function family represented by a single split.

If the class-conditional density functions are continuous, then the min Pe split

either occurs at an intersection of P (C1)p(x|C1) with P (C2)p(x|C2) or at +∞ or

−∞.

Proof. For notation simplicity, let us consider q = P (C1), p = P (C2) and

fi = p(x|Ci), i = 1, 2. First, assume that there is no intersection of qf1 with

pf2 (Figure 2.2a). Then, min Pe = min(p, q) ≤ 1/2 occurs at +∞ or −∞.

For intersecting posterior densities, one has to distinguish two cases. First

assume that, for δ > 0

pf2(x) < qf1(x) x ∈ [x0 − δ, x0] and pf2(x) > qf1(x) x ∈ [x0, x0 + δ],

(2.7)

where x0 is an intersection point (Figure 2.2b). The probabilities of error at x0

and x0 − δ are

Pe(x0) = p

[∫ x0−δ

−∞
f2(t)dt +

∫ x0

x0−δ
f2(t)dt

]

+ q

∫ +∞

x0

f1(t)dt, (2.8)

Pe(x0 − δ) = p

∫ x0−δ

−∞
f2(t)dt + q

[
∫ x0

x0−δ
f1(t)dt +

∫ +∞

x0

f1(t)dt

]

. (2.9)
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Figure 2.2: Possible no-intersection or intersection situations in a two-class

problem with continuous class-conditional density functions. The light shadowed

areas in (b) and (c) represent Pe(x0) where x0 is the abcissa of the intersection

point. The dark shadowed area in (b) represents the amount of error probability

added to Pe(x0) when the splitting point is deviated to x0 − δ. The dashed

area in (c) is the amount of error probability subtracted from Pe(x0) when the

splitting point is deviated to x0 − δ.

Hence,

Pe(x0) − Pe(x0 − δ) = p

∫ x0

x0−δ
f2(t)dt − q

∫ x0

x0−δ
f1(t)dt < 0, (2.10)

by condition (2.7). Using similar arguments, Pe(x0) − Pe(x0 + δ) < 0. Thus x0

is a minimum of Pe(x). Now, suppose that (see Figure 2.2c)

pf2(x) > qf1(x) x ∈ [x0 − δ, x0] and pf2(x) < qf1(x) x ∈ [x0, x0 + δ].

(2.11)

Then x0 is a maximum of Pe(x). This can be proven as above or just by noticing

that this situation is precisely the same as above but with a relabeling of the

classes. For relabeled classes, the probability of error Pe(r)(x) is given by

Pe(r)(x) = p(1−F
(r)
1 (x)) + qF

(r)
2 (x) = 1− [q(1 − F1(x)) + pF2(x)] = 1− Pe(x)

(2.12)
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Thus, Pe(r)(x) is just a reflection of Pe(x) around 1/2, which means that Pe(x)

maxima are Pe(r)(x) minima and vice-versa. The optimal split is chosen as the

minimum up to a relabel.

Discriminant functions for minPe can be written in several ways. One that is

particularly useful is2

gi(x) = ln p(x|Ci) + ln P (Ci). (2.13)

A particular case arises when the class distributions are (assumed) Gaussian.

In this case, the class-conditional pdf’s are written as

p(x|Ci) =
1

(2π)d/2|Σ|1/2
exp

(

−1

2
(x − µi)

TΣ−1
i (x − µi)

)

, (2.14)

where µi and Σi are the mean vector and covariance matrix for class Ci, respec-

tively. The discriminant functions then become

gi(x) = −1

2
(x − µi)

TΣ−1
i (x − µi) −

d

2
ln 2π − 1

2
ln |Σi| + ln P (Ci). (2.15)

If the classes in comparison have the same covariance, say Σi = Σj = Σ for

some i and j then the quadratic terms present in (2.15) can be neglected and

the corresponding discriminants can be written as linear functions of x (dropping

other unnecessary terms not dependent on i)

gi(x) = wT

i x + wi, (2.16)

with wi = Σ−1
µi and wi = −1

2µ
T

i Σ−1
µi + ln P (Ci). Clearly, the decision

boundary obtained with gi(x) = gj(x) is a hyperplane. On the other hand,

if the covariance matrices are different for each class then (2.13) can be written

(again dropping unnecessary terms) as

gi(x) = xTWix + wT

i x + wi, (2.17)

2Note that the decisions are not affected by applying a monotonically increasing function

to all the discriminants.
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Figure 2.3: A three-class problem with bivariate Gaussian distributions. The

class-conditionals pdf’s (with equal priors) are represented at the left, while the

corresponding decision boundaries are represented at the right. Three decision

regions are defined.

for appropriate Wi, wi and wi [18], which is a quadratic function of x. In this

case, the decision boundaries are hyperquadrics. Figure 2.3 shows a three-class

Gaussian problem having linear and quadratic decision boundaries between the

classes.

2.1.2 The Classifier Problem

The theory discussed above can only be used if one knows the distribution of the

classes. In this case, the optimal decision rule for each problem could be readily

determined. In practice, however, it is not typical to know those distributions

and all that is provided is a set of patterns sampled from the situation at hand

that we hope to be representative of the underlying distributions. Thus, the

problem has to be taken from a different point of view. The solution is to

use a mathematical device such as a neural network, with the capability of

implementing a sufficiently rich family of decision functions, Φ, for the problem

at hand, with the hope that it will be able to reach the minPeΦ for that set by
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using an appropriate algorithm capable of extracting the important information

from the available data. Recall Figure 1.1 where we illustrate the pattern

recognition problem. The statistical nature of the relation between the features

and the target variable T (which describes the set of classes Ω = {C}), can be

represented, assuming it exists, by a joint distribution F (x, t). We now have

a learning machine, designated as a classifier, depending on some parameters

(parameter set W = {w}) which performs a mapping Y = ϕw(X) where X

and Y are the input and output spaces, respectively. The objective is to train

the machine such as to model F (x, t). So, as stated by Vapnik [109], “the

learning process is a process of choosing an appropriate function from a given

set of functions”. Following this author, the classifier can choose one of two

ways. Either by “imitating the supervisor’s operator” that is, by choosing the

function that gives the best predictions for the environment provided by the data

at hand or by “identifying the supervisor’s operator” which is more general and

usually more difficult. We follow the former approach. The process of choosing

an adequate function by the learning machine is performed by some algorithm in

order to minimize a risk functional on the parameter set W of the function family

Φ = {ϕw} implemented by the classifier, which is often written for continuous

data distributions as

min
W

RΦ = min
W

∑

Ω

P (C)

∫

X,T
E(t, y)dF (x, t|C) with y = ϕw(x), (2.18)

where F (x, t|C) ≡ FX,T (x, t|C) is a joint cumulative distribution and the P (C)

are prior probabilities. Hence, we choose a function from Φ that minimizes

the expected loss (or cost) for the particular function E(·) used3. This target-

output distance, designated cost function4, can be chosen in various ways. For

instance, for MSE, E = (t − y)2 and for cross-entropy and two-class problems

with Y ∈ [0, 1] and T ∈ {0, 1}, E = t ln y + (1 − t) ln(1 − y). Minkowski and

3Rigorously we should write E(w).
4Also designated as loss or error function.
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exponentially weighted distances have also been proposed.

The risk functional for MEE is written not as a distance functional but in-

stead as a functional of the error E = T − Y pdf f(e) ≡ fE(e) (assuming it

exists), namely as -
∫

E ln f(e)dF (e) for Shannon’s entropy of the error, or as

1
1−α ln

∫

E f(e)α−1dF (e) for Rényi’s entropy. Thus, the MEE functional reflects

the whole error pdf, whereas the popular MSE functional only reflects the error

variance.

The main problem in data classification called from now on the classifier prob-

lem is the possibility of attaining the minimum probability of error afforded

by the machine architecture, that is, by the family of functions Φ, for some

w∗, the so-called optimal solution. Let us denote the minimum probability

of error, achievable in Φ by minW PeΦ
5. From now on whenever we talk of

optimal solution, w∗, we always mean optimal in the minW PeΦ sense. The

classifier problem corresponds to the following question: does minW RΦ imply

minW PeΦ? (Note that minW PeΦ corresponds in the distance functional to

setting E(t, y) = {0, if t = y ; 1, otherwise}; however we are only interested in

risk functionals with continuous integrands, for which efficient optimization

algorithms exist.) For instance, if hypothetically minW RΦ does not lead to

minW PeΦ, one has to conclude that a risk functional is being used which fails

to adequately take into account the whole Φ set complexity. One should then

turn to another risk functional. It is obvious that (2.18) cannot be minimized

by itself because the distributions are unknown. Instead, one minimizes an em-

pirical version, the empirical risk functional (Vapnik [109] provides an extensive

discussion on the conditions for consistency of the empirical risk minimization

principle). Given some training data in the form (x1, t1), . . . , (xN , tN ) one must

5For some architectures minW PeΦ may correspond to the optimal Bayes error. However,

this issue will not occupy us here.
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minimize

R̂Φ =
1

N

N
∑

i=1

E(ti, yi). (2.19)

As an example, if one uses the MSE cost function, the empirical risk functional

becomes

R̂Φ =
1

N

N
∑

i=1

(ti − yi)
2. (2.20)

In the following chapters we propose some new cost functions and study with

detail entropy-based costs in the framework of the classifier problem.

2.2 The PDF Estimation Problem

The pattern recognition problem can be readily solved if the class-conditional

pdf’s are known. Even if not completely known, as for example by assuming

Gaussian classes but with unknown parameters, a simple estimation of the pa-

rameters can solve our problem. In general, these approaches are not possible (in

the former case) or are quite restrictive (in the latter case). Another alternative

could be to replace the true class-conditionals by accurate estimates. In fact,

as noticed by Devroye et al. [16], if one computes estimates p̂(x|Ci) and P̂ (Ci)

and use the “estimated” rule “assign x to: C1 if P̂ (C1)p̂(x|C1) > P̂ (C2)p̂(x|C2);

C2 otherwise” the error probability is no more than

2
∑

i=1

∫

|P (Ci)p(x|Ci) − P̂ (Ci)p̂(x|Ci)|dx (2.21)

from the optimal (the minPe), which is obtained with the non-estimated rule

(the minPe rule (2.4)). So, if good estimates are provided, the estimated rule

can be made almost optimal. However, density estimation suffers from the well

known curse of dimensionality [10], which in this case amounts to the need of

a huge amount of data to construct high-dimensional accurate estimates6 (and

6Example: sampling density is proportional to N1/p, where p is the dimension of the input

space and N is the sample size [43].
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as we know, most real problems are high-dimensional).

Our interest in density estimation does not come from the need to directly

estimate the class-conditionals but from the use in MEE of a risk functional

dependent on the density f(e) of the error E = T − Y . It is obvious that f(e)

is not known in general and has to be estimated from the available data. Thus,

the problem can be stated as follows:

From a set {xi}i=1,...,N of i.i.d samples of a random variable X with unknown

density f(x), compute an estimate f̂(x) with asymptotic convergence

properties.

We can consider two main approaches to solve this problem: parametric density

estimation and non-parametric density estimation. For the former, a model

is assumed for f(x) and the data is simply used to estimate the parameters

intrinsic to f(x). As an example, we could assume a Gaussian model and obtain

the maximum likelihood estimates for µ and σ2 from the data,

µ̂ =
1

N

N
∑

i=1

xi, σ̂2 =
1

N

N
∑

i=1

(xi − µ̂)2 (2.22)

and the density estimator would be written as

f̂(x) =
1√
2πσ̂

exp

(

−1

2

(

x − µ̂

σ̂

)2
)

. (2.23)

Note however that parametric density estimation is very restrictive, because it

assumes a predefined model for the data distribution without knowing whether

or not the assumption holds true. Also, in our previous example we are as-

suming a symmetric distribution which is surely not the general case. Thus,

nonparametric density estimation is usually preferred because it does not assume

any particular model and all the information is extracted from the data (as

stated by Silverman [105], the data will be allowed to speak for themselves).

Moreover, with a model assumption we would loose the main advantage of the



2.2. THE PDF ESTIMATION PROBLEM 21

MEE approach, because we would not be allowed to constrain all the moments

of the error distribution.

2.2.1 Histogram-based Estimators

The histogram is known as the oldest method for density estimation. Its first use

is dated from 1661 [108]. We first notice that a histogram estimates a truncated

version of a pdf f(x) on an interval [a, b] (usually a = mini xi and b = maxi xi).

The interval [a, b] is partitioned into m bins defined by the intervals Tj = [tj , tj+1[

for j = 0, . . . ,m − 1, such that t0 = a and tm = b. The bins have width

l(Tj) = tj+1 − tj and need not be equally spaced. For each bin we count the

number of samples that fall on it by qj =
∑N

i=1 ITj (xi) (IA(x) is the indicator

function). The histogram is built by assigning to each bin a height proportional

to the probability; normalizing by the bin width to have a total area of 1 we get

the histogram-based density estimate

f̂H(x) =



























qj/N
l(Tj)

x ∈ Tj ;

qm−1/N
l(Tm−1) x = b;

0 x /∈ [a, b]

. (2.24)

This estimator has several interesting properties. First, it is a maximum likeli-

hood estimator within all estimators that assign values to the Tj intervals. Also,

for f bounded and continuously differentiable up to order three (except at the

endpoints of [a, b]), if we consider l(Tj) = 2hN (equal bin width), N → ∞ and

hN → 0 such that NhN → ∞, for x ∈ [a, b], then f̂H(x) is a consistent estimator

for f(x), that is 7

MSE
(

f̂H(x)
)

= E

{

(

f̂H(x) − f(x)
)2
}

→ 0. (2.25)

7Condition NhN → ∞ is used to guarantee that N converges more rapidly to ∞ than hN

to 0. These two parameters must be related in such a way that, when N grows, it must grow

faster than the decreasing of hN .
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This result, stated and proved in [108], leads to other results mainly in terms of

rate of convergence of the histogram estimator. More precisely, if we choose

hN =

(

f(x′)
4(f ′(x′))2

)1/3

N−1/3, (2.26)

where x′ is the midpoint of the interval containing x, we obtain convergence

throughout the k-th interval of order N−2/3.

An extension of the previous method was proposed by Rosenblatt [88]. In this

approach, the interval is shifted and centered at the point of interest, that is,

f̂R(x) =
# of sample points in ]x − hN , x + hN ]

2NhN
. (2.27)

This is also a consistent estimator but with a higher rate of convergence. In

fact, by choosing

hN =

(

9f(x)

2(f ′′(x))2

)1/5

N−1/5, (2.28)

one achieves a rate of N−4/5, higher than the N−2/3 for the fixed histogram

estimator. This shifted histogram estimator (also called naive estimator in

[105]) can also be written as a sum of weight functions centered at the point of

interest

f̂R(x) =
1

NhN

N
∑

i=1

z

(

x − xi

hN

)

, (2.29)

where z is defined as

z(u) =











1/2, |u| < 1

0, otherwise

. (2.30)

A major drawback of histogram-like estimators is the discontinuity characteristic

of the estimated function which can raise several problems mainly if the estima-

tion procedure is to be taken as an intermediate step of another procedure or if

derivatives are to be computed. In this sense, the more general kernel density

estimators developed in the late 1950’s is the sensible choice. These are the

topic of the next section.
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2.2.2 Kernel Density Estimators

In 1957, Parzen [80] proposed a generalization of the shifted histogram density

estimate (2.29) by using a kernel function K with the following properties

1. supR |K| < ∞ (boundedness)

2.
∫

R
|K| < ∞ (K ∈ L1)

3. limx→∞ |xK(x)| = 0 (K decreases faster than 1/x)

4. K(x) ≥ 0 and
∫

R
K = 1.

Note that the above conditions make usual probability density functions good

choices for kernel functions. The estimate of f(x) can be obtained by the

convolution between the kernel and the (derivative of) empirical distribution

FN

f̂(x) =

∫

1

hN
K

(

x − y

hN

)

dFN (y) =
1

NhN

N
∑

i=1

K

(

x − xi

hN

)

. (2.31)

This estimator can be proved to be unbiased and consistent if hN → 0 and

NhN → ∞ as N → ∞ [80, 108], the same conditions as for the histogram-based

estimators. Basically this means that we can recover f(x) if we decrease hN in

the presence of an increasing number of samples; however, the rate of increase

in N must be greater than the rate of decrease in hN .

It is interesting to note that if the kernel function is an even function8 the mean

and variance of f̂(x) will (almost) recover the sample estimates of mean and

variance

µ̂ =

∫

xf̂(x)dx =
1

N

N
∑

i=1

xi = x̄, (2.32)

σ̂2 =

∫

(x − µ̂)2f̂(x)dx = s2 + h2
N

∫

x2K(x)dx. (2.33)

8Parzen designated even kernels as weighting functions.
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Figure 2.4: From left to right we compare f̂H(x), f̂R(x) and f̂(x) respectively.

The dashed line is the true density (Gaussian). In the top figures, N = 20

(random points), m = 5 and hN = 0.3, while at the bottom figures N = 2000,

m = 30 and hN = 0.3.

Figure 2.4 shows a comparison between the three methods presented. It is

obvious that the kernel density estimate is the best choice: it is smoother and

provides a better estimate even for a low number of available data.

In what concerns the rate of convergence of these kernel-based estimators, we

get an order of N−2r/(2r+1), where r is the so-called characteristic exponent of

the Fourier transform k(u) of the kernel K(x), that is, the positive number such

that

kr = lim
u→0

1 − k(u)

|u|r (2.34)
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is nonzero and finite. kr is designated by characteristic coefficient. Choosing

a pdf for K requires that r ≤ 2. In particular, for any symmetric density

K such that x2K(x) ∈ L1, the characteristic exponent is r = 2 [108]. The

Gaussian pdf is an example. Thus, the best one can achieve in terms of rate

of convergence is N−4/5 which is also achieved by the shifted histogram-based

estimator. However, we stress that one of the advantages of a kernel estimator

is its differentiability essential in optimization strategies. We may also obtain

an optimal global value for hN by minimizing the integrated mean square error

(IMSE), min
∫

(f − f̂)2, leading to

h∗
N = N− 1

2r+1 α(K)β(f), (2.35)

with

α(K) =

[

∫

K2(x) dx

2r
(∫

xrK(x)dx/r!
)2

]1/(2r+1)

and

β(f) =

[∫

|f (r)(x)|2 dx

]−1/(2r+1)

.

Unfortunately, as f(x) is usually unknown, h∗
N can be difficult to obtain due to

β(f). Nevertheless, if f is a Gaussian density one can determine (for r = 2 as

discussed above)

∫

|f ′′(x)|2dx ≈ 0.212σ−5 ⇒ β(f) ≈ 1.3637 ⇒ h∗
N ≈ 1.06σn−1/5. (2.36)

Note that the choice of hN , called kernel bandwidth or smoothing parameter in

the literature, is crucial for density estimation. From (2.33) we see that hN

controls the smoothness of the estimate in the following way: taking a large hN

results in an oversmoothed estimate that may mask particular characteristics

of interest; for a small hN , and if the available data does not increase, the

estimate becomes more local (due to the small window of the kernel) and every

spurious behavior can be detected (like an overfit to the data) obtaining a high

variability estimate. It also depends on the particular shape of f , skewness,

kurtosis, modality, etc. This is why the choice of a good hN has drawn so much
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attention in the literature. Silverman [105] proposed hN = 0.79RN−1/5 for

skewed distributions, where R is the interquartile range. He also proposes what

he claims as a more general-purpose estimate for hN able to cope with several

shape properties of f , by modifying appropriately9 formula (2.36)

hN = 0.9 A N−1/5, A = min(σ,R/1.34). (2.37)

These and other estimators are also extensively discussed in [111]. The authors

“classify” bandwidth selectors (methods to estimate hN from the data) as quick

and simple and hi-tech. Quick and simple selectors are essentially based on

simple formulas dependent on the distribution’s scale (estimated from the data)

as is the case of the above Silverman’s proposals and the ones in [54]. On the

other hand, hi-tech bandwidth selectors are computationally more demanding

procedures that, although more theoretically driven and expected to perform

better, may not be appropriate if density estimation is an intermediate step of a

bigger procedure. Of course, we could try a simple trial-and-error procedure and

visually guess an optimal bandwidth, but for high dimensional distributions this

is not a good approach. In conclusion, the bandwidth selection has no unique

answer and is not a solved problem. We will discuss it further in a following

chapter.

The Gaussian kernel is the usually preferred but we could question if this is the

best choice. In fact, IMSE is minimized for h∗
N above if the Epanechnikov kernel

is used

KE(x) =











3
4
√

5

(

1 − 1
5x2
)

, |x| ≤ 5

0, otherwise

. (2.38)

So, in theory, this is the best kernel function to use. In this sense, Silverman

defines an efficiency measure relative to this kernel (see [105] for details). Table

2.1 shows the efficiency of some kernels.

9By using heuristics to account for skewness and multimodality.
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Table 2.1: Efficiency values (as defined in [105]) of several kernels.

Kernel K(x) Efficiency

Epanechnikov formula 2.38 1

Biweight 15

16
(1 − x2)2, |x| < 1 ≈ 0.9939

Gaussian 1
√

2π
exp−x2/2 ≈ 0.9512

Rectangular 1/2, |x| < 1 ≈ 0.9295

Although the Epanechnikov kernel is seen as the best choice, it has a major

drawback: it is not differentiable. This brings about further problems when

using backpropagation for neural network training. The algorithm uses the

derivatives of the cost function to update the parameters of the machine and

thus the need for a differentiable kernel. Moreover, and as we will see in section

2.4.3.2, the choice of a Gaussian kernel allows important simplifications when

manipulating Rényi’s quadratic entropy.

To end this section we just refer that density estimation may also be defined and

studied within the framework presented by Vapnik [109] on the minimization of

a risk functional.

2.3 Artificial Neural Networks

We devote our attention to a special type of learning machine based on simple

processing units: the artificial neural network (ANN). We start by presenting

the most simple type of ANN, the perceptron, that will be studied in chapters

4 and 5 in the MEE framework and follow to its generalization, the multilayer

perceptron, used in chapter 3.
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2.3.1 The Perceptron

The perceptron is the most simple type of ANN and is based on a single unit

or neuron. The working operation of the perceptron is based on the model

proposed by McCulloch and Pitts [76]: it takes a vector of real-valued inputs,

produces a linear combination and performs a binary decision. More precisely,

given the inputs x1, . . . , xd the output y(x1, . . . , xd) becomes

y(x1, . . . , xd) =











1,
∑d

i=1 wixi + w0 > 0

−1,
∑d

i=1 wixi + w0 ≤ 0

, (2.39)

where each wi ∈ R, i = 1, 2 . . . , d, determines the contribution of input xi to the

output of the perceptron and w0 ∈ R is designated as bias. These parameters

are called weights. If we take x0 = 1 and define the extended input vector

x̃ = [x1, . . . , xd, 1]
T and the weight vector w = [w1, . . . , wd, w0]

T the perceptron

output can be written as

y(x1, . . . , xd) = ϕ(wTx̃), (2.40)

where ϕ is the sign function

ϕ(s) =











1, s > 0

−1, s ≤ 0

. (2.41)

Note that we could also use equivalently the Heaviside function with codomain

in [0, 1]. These functions, designated as activation functions, have however

the disadvantage of not being continuous, bringing difficulties when computing

derivatives. It is preferable, namely in more complex problems, to use a contin-

uous monotonically increasing function to make a continuous and differentiable

transition between the saturated parts (where ϕ(s) = 1 or ϕ(s) = −1), allowing

a vast panoply of optimization algorithms for continuous objective functions to

be used. Hence, its popular use. The following are the most used in neural
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Figure 2.5: Graphical representation of a single perceptron.

networks and are respectively the sigmoid and hyperbolic tangent activation

functions

ϕ(s) =
1

1 + e−αs
α > 0, (2.42)

ϕ(s) = β tanh(αs) α, β > 0, (2.43)

with codomain [0, 1] and [−β, β], respectively. The parameters α and β con-

trol the steepness and amplitude of the activation function. Usual values are

α = β = 1. The perceptron can be represented as an oriented graph, as illus-

trated in Figure 2.5.

Representational ability of perceptrons

Let us consider, for simplicity, a two-class problem. One can attach a decision

to the output of the perceptron in (2.39): “assign x to: C1 if y(wTx̃) = −1; C2

otherwise”. In this sense, the perceptron defines a discriminant hyperplane

on the space defined by the variables x1, . . . , xd. Moreover, the x-space is

divided into two decision regions corresponding to each side of the hyperplane:

R1 = {x ∈ R
d : wTx̃ > 0} and R2 = {x ∈ R

d : wTx̃ ≤ 0}. Of course, a zero

misclassification error is only achieved with linearly separable sets of examples,

i.e, those where the two classes are completely separated by a hyperplane. For

example, the perceptron can represent many boolean functions like AND or
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OR as well as their negations. However, boolean functions like XOR cannot

be represented by a perceptron because they do not correspond to a set of

linearly separable examples. Minsky and Papert [77] famous work brought

about this and several other limitations of perceptrons. Nevertheless, the ability

to represent the simpler boolean functions is important because every boolean

function can be represented by some network of perceptrons only two levels deep

(multilayer perceptron with a single hidden layer) [78]. Note that an equiva-

lent decision rule can be attached if the activations are continuous squashing

functions. In this case, there is a need to set a threshold that depends on the

particular function. For example, using the hyperbolic tangent for α = β = 1

we set a threshold at zero10: “assign x to: C1 if y(wTx̃) ≤ 0; C2 otherwise”.

Perceptron learning

The idea behind the perceptron learning is to find an optimal weight vector w

that causes the network to output the correct class for each training example. A

simple algorithm used to adjust the perceptron weights is the perceptron training

rule [87] that revises the weight wi according to

wi = wi + ∆wi, (2.44)

∆wi = η(t − y)xi.

where t is the target of the actual training example, y is the output of the

perceptron as defined in (2.39) and η is a positive constant called learning rate.

The latter controls the rate of change of the weights at each step. Note that

the weight adjustments are only made when t 6= y and in this case we have

an adjustment proportional to the corresponding input. The famous perceptron

convergence theorem shows that this training rule is capable of finding a solution

in a finite number of iterations, provided the training examples are linearly

separated [11, 18, 45, 87]. Unfortunately this training rule is not assured

to converge in the case where the two classes are not linearly separable. To

10For the sigmoid function it would be set at 0.5.



2.3. ARTIFICIAL NEURAL NETWORKS 31

overcome this problem, another training rule called delta rule is used to achieve

the best fit approximation to the input-output mapping of the training examples.

So, although no hyperplane exists that completely separates the two classes

(with 100% correct classification), the delta rule converges to a hyperplane that

minimizes some measure E(w) (like the ones discussed before). The derivation

of the delta rule is quite simple and basically uses gradient descent to find the

optimal set of weights. The need for derivatives requires the use of continuous

activation functions. Starting with an initial arbitrary weight vector, the delta

rule uses the gradient descent search to adjust the weights in the direction

that produces the largest steepest descent along the error surface (towards the

minimum), or in other words, in the opposite direction of the gradient vector.

w = w + ∆w, (2.45)

∆w = −η∇E(w).

This procedure is proven to converge at least to a local minimum of the error

surface, whether the training examples are linearly separable or not, provided

that η is small. The learning rate η controls the amount of change in each weight.

If η is too large, the algorithm may overpass the minimum and convergence may

not be achieved; if η is too small, convergence may be too slow.

2.3.2 Feed-forward Multilayer Perceptrons

Feed-forward multilayer perceptrons (MLP) are natural extensions of the single

perceptron to network architectures with more than one layer of units or neu-

rons. These networks consist of an input layer constituted by a set of sensory

units or source nodes (input variables), one or more hidden layers (with one or

more neurons) and an output layer with one or more neurons. The network

is used in a simple manner: each pattern is propagated in a forward direction

on a layer-by-layer basis. Figure 2.6 shows the architectural graph of a MLP
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Figure 2.6: Graph representation of a feed-forward MLP with d inputs, n hidden

neurons in a single hidden layer and C outputs.

with one hidden layer and an output layer. It presents the model of a fully

connected network where each neuron is connected to all the neurons in the

previous layer (or input nodes in case of the first hidden layer). The left to

right arrow direction shows the way every pattern is propagated through to

obtain the network’s output. For classification problems we consider nonlinear

activation functions, which means that, mathematically speaking, an MLP is a

parameterized composition of nonlinear functions. For example, the k-th MLP

output of Figure 2.6 can be written as

yk = ϕ





N
∑

j=1

w
(2)
jk ϕ

(

d
∑

i=1

w
(1)
ij xi + w

(1)
0j

)

+ w
(2)
0k



 . (2.46)

The parameters may be iteratively determined using the well known back-

propagation learning algorithm (BP) [89, 112], which is just a generalization

of the delta rule discussed before. Several other optimization procedures exist,

like conjugate gradient and Levenberg-Marquardt among others, but we will not

consider them here (for an extensive discussion of other procedures see [11, 45]).

BP consists in two passes through the network. The first, in a forward direction,

propagates a pattern from the input to the output layer, producing the response
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of the network. In practice, each neuron in the network behaves like the single

perceptron with a smooth nonlinear activation function applied to the linear

combination. The difference between the actual output of the network and

the desired one, produces an error signal that is propagated backward through

the network; the network weights are adjusted in accordance with an error-

correction rule (based on the error signal obtained), in a way that the output

becomes closer to the desired response. This is the second pass. Each hidden

neuron or output neuron is designed to perform two computations

1. Apply the nonlinear activation function to the linear combination obtained

from the inputs to that neuron and weights connected to it. This is the

forward pass.

2. Compute an estimate of the gradient vector (in terms of local gradients of

the error surface with respect to the weights connected to the inputs of that

neuron) used to make weight adjustment. This is needed for the backward

pass.

Basically, the computation of the weight updates is performed using the chain

rule of differentiation (recall that an MLP is just a parameterized composition

of functions)
∂E

∂w
(l)
ij

=
∂E
∂ej

∂ej

∂yj

∂yj

∂w
(l)
ij

. (2.47)

In the above expression, ∂E/∂ej depends on the particular cost function used,

∂ej/∂yj = −1 and ∂yj/∂w
(l)
ij depends on the location of the weight (if it belongs

to the output or an hidden layer). A complete description of the BP algorithm

can be found in [11, 45, 78].

Representational ability of MLP’s

The representational ability of an MLP depends mainly on the type of inputs

and activation functions used. For binary data and step activation functions for
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all units, a two-layer network is capable of representing any boolean function

[78]. However if the input data is continuous-valued one can have convex decision

regions for a two-layer MLP or even arbitrary regions (non-convex and disjoint)

if a three-layer MLP is used [11, 70]. In all cases, the decision boundaries are

piecewise linear. The representational ability of MLP’s is increased if sigmoid-

like activation functions are used. Several well known results concerning three

and two layer MLP’s appeared in the literature. Lapedes and Farber [65] proved

that any smooth mapping could be approximated with arbitrary accuracy with

a three-layer network. However, the most important result states that a two-

layer MLP can approximate arbitrarily well any functional continuous mapping

from a finite-dimensional space to another, provided the number of hidden units

is sufficient [15, 48]. This is an important result as we can conclude that ANN

classifiers (with sigmoid-like activations functions) provide universal non-linear

discriminant functions. In conclusion and comparing to the single perceptron,

the class of functions that an MLP can generate is much richer.

Some issues about BP learning

The BP algorithm is a powerful algorithm capable of implementing an approxi-

mation to gradient descent search through the space of possible network weights.

However, because the error surface may contain several local minima, backprop-

agation is only assured to converge to a local minimum of E . Fortunately, in

practice, having a minimum with respect to some weight doesn’t mean that it is

also for the other weights and so, gradient descent can proceed. Some practical

guidelines are usually used to overcome (or at least to reduce the effect of) this

problem

1. Initial weight values. Initialization is an important issue of MLP train-

ing. A suitable choice for the initial conditions can be of extreme impor-

tance, not only leading to a good final solution but also to an improvement

in the learning speed. Usually, the initial weight values are taken randomly
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from a certain distribution with a prespecified mean and standard deviation.

Taking small initial weight values causes BP to operate on a very flat

area around the origin which is a saddle point [11, 45]. Otherwise, large

initial values could leave the neurons into saturation. We should take

for initial weights (including bias), values from a zero-mean uniform [45]

or spherical Gaussian [11] distribution with variance chosen to make the

standard deviaton of the linear combinations lie at the transition between

linear and saturated parts of the activation function. Both methods are

used in our experiments.

2. Learning Rate. The learning rate parameter η controls the rate of con-

vergence (or divergence, in some cases) of the BP algorithm. A smaller η

causes smaller weight changes as we can see from (2.45). This causes the

trajectory in the weight space smoother and closer to the one computed by

the method of steepest descent. Of course in this case we have a slower rate

of learning. On the contrary, if η is large, weight changes will be greater

and the speed of learning will be increased. The problem is that if η is too

large the network may become unstable and convergence isn’t guaranteed.

Several methods to choose appropriately the value of η are discussed in the

literature, including versions of BP with an adaptive learning rate, or with

different learning rates for different weights, among others [5, 53, 72, 98]. In

practice, it is known that η should be chosen small and in the interval [0, 1].

A form of adaptive learning rate adopted in our work can be described by

the following

η(m) =











u η(m−1), E(m) ≤ E(m−1)

d η(m−1) ∧ restart, otherwise

, 0 < d < 1 ≤ u. (2.48)

If E does not increase11 from one epoch to another, the algorithm is in

11We are considering the minimization of the cost function, but a similar rule can be derived

for maximization problems.
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the right direction, so η is increased by a factor u in order to speedup

convergence. However, if η is large enough to increase E , then the algorithm

makes a restart step and decreases η by a factor d to ensure that E is being

minimized. This restart step is just a return to the weights of the previous

epoch. The values of u and d used are 1.2 and 0.2, respectively, as suggested

in [90].

3. Training Mode. There are also some issues concerning the network’s

training mode. If sequential mode of training is used (also referred as on-

line or stochastic mode) weight updating is performed after each pattern

is presented to the network. With this type of training a caution must be

taken: the randomization of the training set. This allows a random presen-

tation of the patterns to the network, preventing some cycling behaviors

(like presenting all patterns of class 1, then all patterns of class 2, etc.)

that tend to speed down the algorithm or bias the weights estimates. The

randomization tends to make the search in weight space stochastic over

the learning cycles [45]. In the batch mode of training weight updating

is done after one epoch of training examples is presented to the network.

The question then is: which method to choose? While sequential mode

requires less storage for each weight and has the possibility of escaping

from local minima because of the stochastic search in weight space, the

batch mode provides an accurate estimate of the gradient vector and is

easier to establish theoretical conditions for convergence. Our choice of

training mode is dictated by the use of entropy as cost function as we will

see later.

4. Activation function. Two examples were already given: the logistic

function and hyperbolic tangent function. Which of them is the best?

Haykin [45] states that it is preferable to use an antisymmetric activation

function (i.e, odd function) because, in general, the learning process is
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faster. The output of each neuron is permitted to assume both positive

and negative values in intervals of the type [−a, a], whereas in the case

of the logistic function, the output is restricted to [0, 1], introducing a

source of systematic bias for those neurons beyond the first hidden layer.

The hyperbolic tangent function (2.43) is an example of an antisymmetric

activation function, and is the one (with α = β = 1) considered in this

work.

5. Target encoding. One should clearly distinguish between the set of classes

Ω = {Ck}C
k=1 and the target variable used to describe it. The latter can

be encoded in several ways, depending on the number of classes. It also

influences the number of output neurons. Probably the most used encoding

scheme is the 1-out-of-C, where C is the number of classes. The number

of outputs is made equal to the number of classes and the target vector

for class Ck is12 [−1, . . . ,−1, 1,−1, . . . ,−1] where the single 1 appears in

the k-th position. A particular case arises for two-class problems. In this

case it is preferable to set a single output unit and set t = −1 for class

C1 and t = 1 for class C2, because otherwise the second output would be

performing redundant computations. An important property arises from

this encoding: the errors, or more specifically, the differences between the

targets and outputs of the network, e = t − y, regarding each class lie in

disjoint hypercubes, with the origin as their unique common point. The

three-class case is represented in Figure 2.7.

6. Pre-processing of input data. Also important in practice is the norma-

lization of the training set inputs. Zero mean and uncorrelated inputs, co-

variance equalization of the decorrelated inputs (to allow an approximately

equal learning speed of each weight) are among the proposed procedures.

Simpler and also effective methods like the normalization of each input to

12For the hyperbolic tangent activation function.
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Figure 2.7: Support space (shadowed cubes) for the error distribution in a three-

class problem, e = (e1, e2, e3).

the interval [−1, 1] or the mean and standard deviation normalization given

by

x̃i =
xi − x̄i

si
,

where x̄i and si are the mean and standard deviation respectively of input

variable xi, are usually used. Our choice falls into the latter form.

2.3.3 Cost functions

Consider an MLP trained using a set of training pairs (xi, ti), i = . . . , N ,

where each ti = (t1,i, . . . , tC,i) is a realization of a variable t = (t1, . . . , tC) that

describes the class to which xi belongs in an 1-out-of-C coding, with tk ∈ {0, 1}
or tk ∈ {−1, 1} for k = 1, . . . , C. Hence, the MLP has an output layer described

by a vector y = (y1, . . . , yC) that produces for each xi its corresponding output

yi = (y1,i, . . . , yC,i). We now discuss some of the most used cost functions.
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Mean square error

The mean square error (MSE) function is probably the most common cost

function used for MLP training and is expressed as

EMSE =
1

N

N
∑

i=1

‖ti − yi‖2. (2.49)

Originally derived for regression problems, the MSE function is obtained by

using the principle of maximum likelihood and assuming the independence and

Gaussianity of the target data. Specifically, each component tk, k = 1, . . . , C is

expressed as

tk = hk(x) + ǫk,

where hk is a deterministic function and the random (noise) variable ǫk follows

a Gaussian distribution with zero mean and variance σ2 (see [11] for a detailed

derivation of EMSE).

Note, however, that the Gaussianity assumption of the target data in classifica-

tion is not valid, due to its discrete nature (representing discrete class labels).

Nevertheless, it can be shown (see below) that when using an 1-out-of-C coding

scheme for the targets, the MSE trained outputs of the network approximate

the posterior probabilities of the class membership, yk = P̂ (Ck|x).

Cross-entropy

The cross-entropy (CE) cost function can also be derived from the maximum

likelihood principle. Each component yk, k = 1, . . . , C of the output vector

is interpreted as an estimate of the posterior probability that input pattern

x belongs to class Ck, yk = P̂ (Ck|x) associated with a “true” distribution

p = (p1, . . . , pC) with pk = P (Ck|x), k = 1, . . . , C.

Assuming that the classes are mutually exclusive, the true p(t|x), and neural

network pw(t|x) probabilistic models for t can be described by the multinomial
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distributions:

p(t|x) = pt1
1 pt2

2 . . . ptC
C , (2.50)

pw(t|x) = yt1
1 yt2

2 . . . ytC
C . (2.51)

We would like the model in (2.51) to approximate the true distribution (2.50).

This can be achieved by maximum likelihood or using Kulback-Leibler’s diver-

gence, although, as discussed in Appendix A they are equivalent. Thus, from

(A.11) and considering a set of observed pairs {(xi, ti)|i = 1, . . . , N} we expect

to minimize

N
∑

i=1

log

(

p(ti|xi)

pw(ti|xi)

)

=

N
∑

i=1

log

(

p
t1,i

1,i . . . p
tC,i

C,i

y
t1,i

1,i . . . y
tC,i

C,i

)

= −
N
∑

i=1

C
∑

k=1

tk,i log (yk,i) +
N
∑

i=1

C
∑

k=1

tk,i log (pk,i) . (2.52)

Note that, as the values pk,i = P (Ck|xi) are unknown, (2.52) cannot be used

as an error function. However, the pk,i do not depend on the parameters w

of the MLP which means that the minimization of (2.52) is equivalent to the

minimization of

ECE = −
N
∑

i=1

C
∑

k=1

tk,i log (yk,i) . (2.53)

Expression (2.53) is known in the literature as the cross-entropy cost function.

For the two-class case we only need one output such that y = P̂ (C1|x) (while

1 − y = P̂ (C2|x)) and the Bernoulli distribution is used for p(t|x) and pw(t|x).

A word of caution regarding cross-entropy

The designation cross-entropy associated to expression (2.53) may cause some

confusion. Despite the similarities between (2.53) and −∑
x

p(x) log q(x), the

cross-entropy between two discrete distributions represented by probability mass

functions p and q, one must note that the tk,i, or more precisely ti, are not

probabilities (but are in fact random vectors with multinomial distribution).

The role of p(x) in cross-entropy is played by the unknown p(t|x) as defined
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above. Since it is not dependent on the network’s parameters, it is of no

consequence for the minimization process, and thus, can be disregarded. Of

course, there may be the tendency to “interpret” the tk,i as P (Ck|xi) and

some literature is misleading in that sense. However this is incorrect since

as tk,i ∈ {0, 1} (it could be also tk,i ∈ {−1, 1} by a linear mapping) this would

mean that a pattern would always be correctly classified! Briefly, the tk,i do not

form a valid probability distribution. In fact, the tk,i in (2.53) are just acting

as switches. When a particular tk,i = 1 (which means that xi belongs to class

Ck), then yk,i must be maximum and thus we just minimize − log(yk,i) (all the

other tj,i = 0, j 6= k).

Mean square error or cross-entropy

From the above discussion it seems natural to choose the cross-entropy cost

function to train neural network classifiers, because when interpreting the out-

puts as probabilities this is the optimal solution (in a maximum likelihood

sense). In fact, ECE takes into account the binary characteristic of the targets.

Several authors have studied the conditions that the outputs of a neural network

must satisfy in order to use them as estimators of the posterior probabilities.

In [35, 86] it is shown that for an 1-out-of-C coding scheme, with large N

and a number of samples in each class that reflects the prior probabilities,

networks trained with MSE provide outputs that are approximations to posterior

probabilities. These authors also derived ECE from the maximum likelihood or

maximum mutual information principles and have arrived to the same con-

clusions. Hampshire and Pearlmutter [49] go further and derive a general

condition that any cost function must satisfy so that yk = P̂ (Ck|x). They

assume independence of the target components tk and furthermore that the

cost function is written as a distance functional between outputs and targets

E =
∑

i

∑

k

f(|yk,i − tk,i|).
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Given these conditions, f must satisfy

f ′(1 − y)

f ′(y)
=

1 − y

y
. (2.54)

It can easily be shown that EMSE satisfies this condition, while ECE as in (2.53)

does not (there is a different expression for ECE with independent targets, that

satisfies (2.54) [7, 35, 47, 49, 106]). Note that the assumption of independence

between target variables to derive (2.54) is not present in the derivation of (2.53),

because when using the multinomial distribution we are assuming dependence

(in the form of mutually exclusive classes). There are other reasons to choose

ECE . Several authors reported marked reductions on convergence rates and

density of local minima [75, 106] due to the characteristic steepness of ECE . In

fact, it is easy to see that slight changes on the output of the network have more

effect when using ECE than EMSE, because cancelations in the error gradients

generate high error gradients for outputs very distant from their targets. As a

function of the absolute errors, EMSE tends to produce large relative errors for

small output values. As a function of the relative errors, ECE is expected to

estimate more accurately small probabilities [7, 11, 35, 47, 106].

In conclusion, if the training size is large enough and BP doesn’t converge to

a local minimum, we can use the MLP output as an approximation of the

posterior class probabilities. In this sense, one can regard an MLP as a network

of (universal) discriminant functions and derive a decision rule associated with

this classifier

assign x to Ck if yk(x) > yj(x) ∀j 6= k.

Two final notes. First, we observe that in order to interpret the outputs of the

network as probabilities one should set the outputs with the logistic activation,

to have a range in the interval [0, 1]. Nevertheless, even using the hyperbolic

tangent we can always perform a simple mapping to [0, 1] and still interpret

outputs as probabilities.
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Figure 2.8: Contours of EMSE for a C1 pattern.

Second, as argued in [50, 71], minimization of the cost function does not neces-

sarily imply misclassification minimization in practice (especially for small data

sets or in the presence of local minima). Sub-optimal solutions may occur due

to flat regions in weight space. This can be seen with a simple example. Let

us assume a two class problem with one output per class. The squared error

for a particular pattern x from class C1 can be written as (for t ∈ {0, 1} and

y ∈ [0, 1])

EMSE = (t1 − y1)
2 + (t2 − y2)

2

= (1 − y1)
2 + y2

2. (2.55)

The contours of EMSE are shown in Figure 2.8. Using the rule that x belongs

to class C1 if y1(x) > y2(x) we can see that while x2 is correctly classified,

x1 is misclassified. However, x1 has a lower EMSE than x2, which reinforces

the idea that sub-optimal solutions may occur. The same happens with ECE.

Thus, minimization of these cost functions does not imply misclassification

minimization. For this reason, they were designated non monotonic in [50].
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In the same work, a monotonic cost function is proposed: classification figures

of merit (CFMmono). This cost function focuses mostly on the reduction of

misclassification (this is known as differential learning) and not on achieving an

exact convergence to the target values. However, training with CFMmono was

found to be much slower than with EMSE or ECE . In Appendix B, we define a

simple monotonic function, ESMF , for two-class problems which is used in the

experiments of Chapter 3.

2.4 Entropy and its Estimation

It was the fundamental work made during the second world war on radar

communication by Claude Shannon that culminated with the publication of

the 1948 classic paper A Mathematical Theory of Communication [97]. It was

in this paper that the famous source coding theorem was proved and used to

define entropy as a measure of information content of a set of messages. This

can be considered the starting point of all we know as information theory.

2.4.1 Basic Definitions and Properties

Given a discrete random variable X taking values in a finite set {x1, . . . , xL}
with probabilities pk = P (X = xk), the Shannon entropy of X is defined as

HS(X) = −
L
∑

k=1

pk log pk, (2.56)

where the logarithm base defines the abstract units of measure. Shannon used

base 2 and entropy comes in bits. If the natural logarithm is used, entropy

is measured in nats (this is the units considered in this work). Entropy can

be understood as a measure of uncertainty. When the system is the most

“unpredictable” or uncertain, i.e, all values of X are equiprobable (pk = 1/L)
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Figure 2.9: Surface and contours (filled with a grayscale colormap where brighter

colors correspond to higher values) for HS as a function of the probabilities.

then entropy is maximum while if there is some k such that pk = 1 entropy is

minimum (the system is totally predictable). Figure 2.9 shows HS(X) and its

contours for the case of L = 3. Note that we can take p3 = 1−p1−p2 and HS(X)

comes as a function of two variables. The figure evidenciates two properties of

entropy, that is, a continuous and concave function of the probabilities. Entropy

has several other interesting properties that we briefly enumerate. For that

purpose consider the alternative notation: HS(p1, . . . , pL) = HS(X). Then:

1. 0 ≤ HS(X) ≤ log(L). HS(X) = 0 if pk = 1 for some k and pj = 0 ∀j 6= k;

HS(X) = log(L) for the equiprobable case, where pk = 1/L, ∀k.

2. HS(p1, . . . , pL) = HS(p2, p1, . . . , pL) = . . . . Entropy is independent of the

order of the outcomes; entropy is said to be symmetric.

3. The entropy of independent variables is additive, i.e, given two indepen-

dent random variables X and Y , the entropy of the joint event (X,Y ) is

HS(X,Y ) = HS(X) + HS(Y ).
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Several other entropy-related quantities can be defined in an intuitively manner.

Consider a pair of discrete random variables (X,Y ) with joint distribution

p(x, y) and marginal distributions p(x) and p(y) for X and Y , respectively.

We may define

Joint entropy: HS(X,Y ) = −
∑

x

∑

y

p(x, y) log p(x, y), (2.57)

Conditional entropy: HS(Y |X) = −
∑

x

∑

y

p(x, y) log p(y|x), (2.58)

Mutual information: I(X;Y ) =
∑

x

∑

y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.59)

Several formulas relate these quantities and HS(X) (for example, mutual infor-

mation can be written as I(X;Y ) = HS(X) − HS(X|Y )) and have an informa-

tion theoretic interpretation [13]. In this particular case, mutual information

is the reduction in the uncertainty of X due to the knowledge of Y . Another

important quantity is the Kullback-Leibler (KL) divergence or relative entropy

[63]. This is defined for two probability functions p(x) and q(x) as

KL(p||q) =
∑

x

p(x) log
p(x)

q(x)
(2.60)

and can be seen as a distance (not a metric) measure between p(x) and q(x) (see

section A.2 of Appendix A for more details). Rényi designates KL(p||q) as gain

of information [84]. From (2.59), one can write I(X;Y ) = KL(p(x, y)||p(x)p(y))

and mutual information comes as a measure of independence between two ran-

dom variables. It is worth noting (in fact, it will be important later) that most

of these quantities can be seen as expected values. For example, entropy and

KL divergence come as HS(X) = −E{log p(X)} and KL(p||q) = E{log p(X)
q(X)}.

Hence, reliable estimates can be obtained if one uses the usual sample mean

estimator.

Different definitions of entropy can be found in the literature. Examples are

Havrda and Charvat’s [44], Alfred Rényi’s [84, 85] and Kapur’s [58, 59, 60]
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families of entropies (see Kapur’s books for an extensive discussion of several

entropy definitions). We pay more attention to Rényi’s definition given by

HRα(X) =
1

1 − α
log

(

L
∑

k=1

pα
k

)

, α > 0, α 6= 1 (2.61)

which has a particular relation to Shannon’s definition. In fact, it can be proved

that

HRα(X) ≥ HS(X) ≥ HRβ
(X), 0 < α < 1, β > 1 (2.62)

lim
α→1

HRα(X) = HS(X)

Thus, Shannon entropy can be seen as a particular case of Rényi’s entropies.

It is important to emphasize, contrarily to the approach followed here and in

many textbooks, that Shannon’s entropy can be deduced from a set of postulates

that establish a set of “reasonable” characteristics that an information measure

should have. Moreover, it can be proved that HS(X) is the only measure

that satisfies all those postulates (see [1, 85] for a detailed discussion). The

gain of information (or Kullback-Leibler divergence) is then derived. In [84],

HRα(X) is obtained in the opposite way. The gain of information is assumed as

a basic concept (based on a set of postulates) and the corresponding measure

of information is posteriorly derived. This culminates in the parameterized (by

α) family of entropies above.

Similar measures are defined for continuous random variables where as usual

sums are substituted by integrals. However, this generalization is not completely

straightforward. In fact, one can show that for a continuous random variable

X, Shannon’s entropy comes as

HS(X) = −
∫

f(x) log f(x) dx − lim
δx→0

log δx,

where δx is the bin width of a discretization of the range of X and f(x) is

the pdf of the random variable X. From the above formula, one sees that the
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entropy of a continuous random variable is infinitely large, which really makes

sense given the fact that X can assume any value of its support. To avoid this

problem, the term limδx→0 log δx is ignored (rigourously, it can be interpreted

as a reference), and differential entropy comes as (the same notation, HS(X) or

HRα(X), will be used)

HS(X) = −
∫

f(x) log f(x) dx, (2.63)

HRα(X) =
1

1 − α
log

(
∫

f(x)αdx

)

, α > 0, α 6= 1. (2.64)

For notation simplicity we shall denote formulas (2.63) and (2.64) simply as

entropies (without the word differential) and by HS and HRα , respectively. Note

that the relations in (2.62) are still valid and that the distribution with minimum

entropy is the δ-Dirac.

2.4.2 The Principle of Minimum Error Entropy

Since the establishment of a more concise theory on information measures after

the important contributions made by Shannon, several entropy-related principles

have been proposed and used with different applications. Probably the first one

is due to Jaynes [55] and was designated maximum entropy (MaxEnt) principle,

stating that

When an inference is made on the basis of incomplete information, it should be

drawn from the probability distribution that maximizes the entropy, subject to

constraints on the distribution.

This results in a constrained optimization problem. MaxEnt has been applied

in several areas such as thermodynamics and statistical mechanics, statistical

inference or speech and signal processing. For example, it is possible to show that

for a given variance (constraint on the distribution), the Gaussian distribution
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is the one with largest entropy.

The principle of minimum discrimination was introduced by Kulback [62] as

a powerful tool to build complete probability distributions when only partial

knowledge is available.

The first application to a self-organizing system is due to Linsker and his

maximum mutual information (Infomax ) principle [69]. The basic idea is to

maximize the mutual information between the inputs and outputs of an adaptive

system. As an example, we could perform feature extraction if the outputs

are in less number than the inputs and in a way that the information passed

from the inputs to the new features is maximized. Several variants have been

proposed since then. Two of the most known are the approach of Comon [12]

to independent component analysis and the maximum entropy method for blind

source separation of Bell and Sejnowski [9].

In recent years, the use of information-theoretic measures in system adaptation

has gained a great impulse due to the works of Pŕıncipe’s group. In fact, it was

this author that first termed this paradigm as information theoretic learning

(ITL). It all started with Fisher’s work [30, 31] on subspace projections and

nonlinear principal component analysis. A great advance was obtained by Xu

[83, 114, 115] who introduced the estimator for Rényi’s quadratic entropy. The

great novelty here was the obtention of a nonparametric estimator of entropy

using the kernel density estimator (Gaussian kernel). The principle of minimum

error entropy (MEE) was posteriorly proposed by Erdogmus [19, 21, 24]. Instead

of minimizing MSE, the adaptive system must be trained such as to minimize

the entropy of the error (difference between the target and the output of the

system), that is, in a way such that the amount of information lost to the error is

minimized. The first approach was to utilize Rényi’s quadratic entropy, because

an estimator was already known from Xu’s work. An error-entropy minimization

algorithm for MLP training in regression was proposed [21, 24] and shown to

outperform MSE trained MLP’s in the prediction of the Mackey-Glass temporal
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series. A generalized estimator for Rényi’s entropy of any order was posteriorly

proposed and analyzed, allowing both the use of any entropy order and any

kernel function [22, 25].

Erdogmus and Pŕıncipe not only presented practical evidence but also theoret-

ical results about MEE for regression-type problems. The authors proved that

searching for the parameters w of a learning machine by minimizing the error

entropy is equivalent to minimizing a Csiszár distance [14] (with convex function

(.)1−α) between the joint pdfs of the input-target and input-output distributions

when Rényi’s α-order entropy is used

min
w

1

1 − α
log

∫

fα
e,w(e)de ≡ min

w

∫ ∫

fxy,w(x, y)

(

fxt(x, y)

fxy(x, y)

)1−α

dxdy

or minimizing the Kullback-Leibler divergence in the case of Shannon’s entropy

min
w

−
∫

fe,w(e) log fe,w(e)de ≡ min
w

∫ ∫

fxy,w(x, y) log

(

fxy(x, y)

fxt(x, y)

)

dxdy.

This amounts to the reduction of the expected information contained in the

error, which leads to a maximization of the mutual information between the

desired target and the model output [24]. In other words, the network is learning

the target variable and the concept is proved as optimal in a statistical sense.

In the same work, it was also shown that the use of the kernel density estimator

to obtain the estimator for Rényi’s quadratic does not affect the location and

globalness of the optimal solution. These results in conjunction gave rise to

a wide panoply of practical applications. Similar results have been obtained

for the generalized estimator of Rényi’s entropy [25] and convergence properties

have also been studied [26].

The connection to classification has been performed in [23, 27] where the well-

known Fano’s bound for the probability of error [29] of a classifier is extended.

Whereas Fano’s version only provides a lower bound based on Shannon’s entropy,

Erdogmus provides several lower and upper bound based on Rényi’s definitions

of entropy. The application of the MEE principle for the training of neural
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networks classifiers was performed in our team and is the topic of discussion in

Chapter 3.

2.4.3 Estimating Entropy from Data

In the previous section we constantly referred to some estimators of entropy

without directly presenting them. This will be the theme of the present section.

Let us consider from now on, the problem of determining the entropy of a

continuous random variable. If f(x) is known, one can directly determine the

integral (when it is possible and tractable). For example, if f(x) is a Gaussian

univariate density with variance σ2 then HS = log(σ
√

2πe) while for a uniform

random variable in the interval [a, b] one has HS = log(b − a). Several other

formulas for univariate and multivariate densities can be found in the literature

[3, 37, 66]. The problem arises when the density is not known and all that is

provided is a set of data points. In this case entropy estimators have to be

derived. Note that most of the literature is concerned with Shannon’s entropy

estimators. We start by discussing some HS estimators and afterwards we

present a recently proposed estimator for Rényi’s entropy.

2.4.3.1 Estimating Shannon’s Entropy

This section follows the overview presented in [8]. To set terminology, let us

consider ĤS as an estimator13 of HS obtained from an i.i.d. random sample

X1,X2, . . . ,XN . The authors classify the estimators in three categories: Plug-

in, Sample-spacing based and Nearest Neighbor Distances based estimators. We

will just consider the former group as they use a consistent density estimate of

f(x), like the kernel density estimate. For information on the other categories

13In fact, we should write ĤS,N to emphasize the dependency on the (size of the) data, but

we rely that for the hat symbol and adopt the simpler notation.
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of entropy estimators see [28, 41, 61, 110].

Plug-in Estimates

These entropy estimators are based on a consistent density estimation f̂ of

f provided by, for example, the kernel density estimator (2.31). There are

four different plug-in estimators: integral estimator, resubstitution estimator,

splitting data estimator and cross-validation estimator. Although our choice

fall into the resubstitution version, we briefly present all the approaches.

• The integral estimator is of the form

ĤS = −
∫

An

f̂(x) log f̂(x) dx, (2.65)

where, in the set An one usually excludes tail values of f̂ . The first

integral estimator was proposed in [17], to estimate (2.65) for the case

of an unidimensional pdf and used the kernel density estimator to obtain

f̂ . The strong consistency of this estimator was shown, that is

lim
n→∞

ĤS = HS a.s.. (2.66)

However, the evaluation of the integral in (2.65) requires numerical approx-

imation which is not easy if f̂ is computed by a kernel density estimator

and particularly if f̂ is a multivariate pdf [57]. The integral can be easily

calculated if f̂ is an histogram. Strong consistency of such an histogram

based estimator under some conditions was proved in [38].

• The resubstitution estimator is of the form

ĤS = − 1

N

N
∑

i=1

log f̂(Xi). (2.67)

The resubstitution estimator was first proposed in [2], where f̂ is obtained

by kernel density estimation. The mean square consistency of such an

estimator can be shown under mild regularity conditions.
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Estimation of HS for multivariate pdf’s, using (2.67) and kernel density

estimation, was also studied in [57] where was pointed out that the sample

size needed for good estimates increases rapidly with the dimension of the

multivariate density. Asymptotic bias and variance terms where obtained

under some smoothness and tail conditions on f and it was shown that non-

unimodal kernels satisfying certain conditions can reduce the mean square

error.

• In the splitting data estimator the data is split in two sub-samples with sizes

L and M : X1,X2, . . . ,XL and X∗
1 ,X∗

2 , . . . ,X∗
M , N = L + M . First, using

one sub-sample (for example, the L-sized), the estimation f̂ is computed,

and then, using this estimation and the other sub-sample, the entropy is

estimated by:

ĤS = − 1

M

M
∑

i=1

I[X∗

i ∈AL] log f̂(X∗
i ). (2.68)

This approach was proposed in [38], [39] and [40] with f̂ being, respec-

tively, the histogram density estimate, the kernel density estimate and any

L1-consistent density estimate. Strong consistency was shown for general

dimension d, under some mild tail and smoothness conditions. Of course,

this estimator requires more data.

• The cross-validation estimator is based on cross-validation, or leave-one

out, density estimation. If f̂˜i denotes a density estimation based on the

sub-sample X1,X2, ...,Xn leaving Xi out, entropy will be estimated by:

ĤS = − 1

N

N
∑

i=1

I[Xi∈AN ] log f̂˜i(Xi). (2.69)

A cross-validation entropy estimation based on kernel density estimation

was proposed in [51] and [41]. In [51] the strong consistency of the estimator

is shown and the rate of convergence properties were also presented. In [41]

the root-N consistency is shown for 1 ≤ d ≤ 3.
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2.4.3.2 Rényi’s Quadratic Entropy Estimation

We now discuss the estimation of Rényi’s entropies. As previously discussed,

Rényi’s quadratic entropy was the first to be studied. The proposed estimator

uses the Parzen window estimator for the pdf with a (standardized) Gaussian

kernel [114, 115]. This estimator differs from the approaches used for Shannon’s

entropy because in reality the only estimate made is in the pdf. If G(x) is the

standardized Gaussian kernel then14

ĤR2
= − log

∫ +∞

−∞

(

1

Nh

N
∑

i=1

G

(

x − xi

h

)

)2

dx

= − log
1

N2h2

N
∑

i=1

N
∑

j=1

∫ +∞

−∞
G

(

x − xi

h

)

G

(

x − xj

h

)

dx

= − log





1

N2h2

N
∑

i=1

N
∑

j=1

1√
2
G

(

xi − xj√
2h

)



 . (2.70)

where the last expression is derived by the fact that the integral of the product

of two Gaussians is again a Gaussian with variance equal to the sum of the

original variances [114].

The generalized estimator posteriorly proposed by Erdogmus for the general α-

order Rényi’s entropy [19, 25] considers the fact that (2.64) can be expressed as

an expectation and the usual sample mean approximation is used to bring (for

a general kernel)

ĤRα =
1

1 − α
log

1

N

N
∑

i=1

[

f̂(xi)
]α−1

=
1

1 − α
log

1

Nαhα−1

N
∑

i=1





N
∑

j=1

K

(

xi − xj

h

)





α−1

. (2.71)

These estimators were proven to preserve the global minimum, that is, when

the distribution of the samples is a δ-Dirac.

14For notation simplicity we shall denote from now on hN simply as h.



Chapter 3

Neural Networks with Error

PDF Estimation

In this chapter we discuss the implementation of neural network classifiers

using cost functions that optimize some measure of the error pdf. We start by

discussing Rényi’s entropy and proceed to introducing Shannon’s entropy and to

presenting some experiments [104]. Guided by the ideas of entropy minimization

we derive the Z-EDM cost function as well as a generalization to an exponential

cost function both of which we have recently developed [99, 100, 101].

3.1 The Principle of Minimum Error Entropy

The most commonly used cost function for adaptive systems has been the mean

square error, EMSE. This choice is justified by the assumption that most real-life

random processes can be explained by the Gaussian distribution and its first and

second order statistics. However, this Gaussianity assumption is very restrictive.

As we have already discussed, the cross-entropy cost function appears to be more

55



56 CHAPTER 3. NN WITH ERROR PDF ESTIMATION

appropriate for classification than MSE. It has also been a major concern to

utilize more appropriate criteria able to take advantage of higher-order statistical

behaviors. Entropy and related measures have thus been proposed as more

powerful alternatives. We devote this section to the principle of minimum error

entropy (MEE) (introduced in section 2.4.2) applied to the training of neural

networks classifiers.

3.1.1 The MEE Approach using Rényi’s Entropy

The first applications of the MEE principle used Rényi’s definition of entropy.

A wide panoply of theoretical results and applications concerning this entropy

measure have been developed by Pŕıncipe and co-workers, namely in time series

prediction [24], feature extraction, clustering [36, 56] and blind source separation

[20, 46]. The extension of MEE to classification problems with feedforward

MLP’s was performed in our team by Santos et al. [90, 91, 93, 96] as well as

with recurrent networks [4]. The experimental results presented by Santos et

al. showed that Rényi’s entropy generally performs better than MSE in terms

of minimum classification test error.

Consider E = T − Y as the error r.v.1 between the output Y of the neural

network and the desired target T . Rényi’s quadratic entropy of the error can

therefore be estimated using (2.70) as

ĤR2
= − log





1

N2h2

N
∑

i=1

N
∑

j=1

1√
2
G

(

ei − ej√
2h

)



 = − log V̂R2
. (3.1)

The term V̂R2
is called information potential and an analogy to physical systems

(interaction between particles, forces, etc) is given in [82]. An interesting

practical aspect arises here when we are dealing with a regression-type problem

(or more specifically, when the output activation is linear): the final set of

1We are considering, for notation simplicity, the case of a single output, but the extension

for multiple outputs is straightforward.
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weights may not yield zero-mean error, giving rise to a biased estimate of the

input-desired mapping. This is related to the theoretical fact that entropy is

mean invariant, and is reflected in practice by the impossibility to train the bias

term at the output. To better illustrate what we are saying, consider a single

perceptron with activation function ϕ(x) and output given by y = ϕ(wTx+w0).

Taking the information potential one derives

∂V̂R2

∂w0
=

1

a

∑

i

∑

j

G′
(

ei − ej

h

)

[

ϕ′(wTxj + w0) − ϕ′(wTxi + w0)
]

, (3.2)

where a is an appropriate constant. Thus, if ϕ(x) = x, the above derivative

is always zero, and it is not possible to train the bias term. The first solution

proposed by the authors was to properly modify the bias weight of the output

unit after training [24]. Later, in [64], a modified version of (3.1) was proposed

by minimizing the divergence between the error pdf and a δ-Dirac distribution

located at zero. The result was the term in (3.1) plus another quantity that

allows the automatic training of the bias weight.

This issue is not found in classification, where ϕ(x) is a squashing activation

function like tanh. Looking to expression (3.2) we see that the derivatives of

ϕ do not cancel in general. It should also be noticed that driving e = t − y to

zero, although essential for regression as we have seen above, is not necessary

to make classification work in the sense of using MEE and reaching a δ-Dirac

error pdf. Indeed, it is only needed that all the errors are equal. Let us consider

an unidimensional two-class problem where yi is the output of pattern xi. One

can prove:

Theorem 2. (new in this work) An MLP trained with N cases xi, i = 1, . . . , N

from two classes C-1 and C1 with targets t-1 and t1, respectively, will be able to

reach a δ-Dirac distribution of the error (the minimum error entropy) if and

only if for all cases the MLP outputs are constant within each class and their

inter-class output differences are equal to the respective target differences.
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Proof. The minimum of entropy corresponds to a δ-Dirac function for the error

variable, thus one can assume ei = ǫ, ∀i. Then it is easy to see that

for xi ∈ Cc, with c ∈ {−1, 1}, ei = tc − yi ⇒ yi = tc − ǫ, (3.3)

i.e., within each class we have constant output. Furthermore, for any pair (xi, xj)

such that xi ∈ C-1, xj ∈ C1, one must have

ei = ej ⇔ t-1 − yi = t1 − yj ⇔ yi − yj = t-1 − t1. (3.4)

Of course, it is more appropriate (and desirable) to have e = 0. But this amounts

to a particular case of the above Theorem. We state it as a trivial Corollary

[90]:

Corollary 1. Consider a two class supervised classification problem with a

unidimensional output vector. Let y ∈ [r, s] be the output of the network and

t ∈ {a, b} be the target set. If r = a, s = b and a = −b then the least possible

error entropy will be reached when all the errors are zero.

Thus, in light of this Corollary, if the family of functions implemented by the

classifier is rich enough to allow the convergence of the error pdf to a δ-Dirac

distribution and the training algorithm assures such convergence, then the MEE

algorithm will provide the best classification solution. One can conclude from

this result that it would be necessary to have an activation function in the output

neuron of the form (a < 0)

ϕ(x) =



















−a x ≥ c1

g(x) x ∈]c0, c1[

a x ≤ c0

, (3.5)

for some c0, c1 ∈ R and g(x) such that ϕ(x) is continuous. We note that in

the case of the usual continuous activation functions it is never possible to have
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constant output for each class. In practice, as we choose the hyperbolic tangent

for activation function, we encode the targets with a = 1 for a single output or

with an 1-out-of-C scheme for multiclass problems (described in section 2.3.2).

The work of Jorge Santos provided the first application of MEE to the training

of neural network classifiers [91] (the principle was coined EEM in his work).

The comparison with MSE trained MLP’s showed increased performance of the

proposed methodology both for artificial and real data sets. Several optimization

strategies have been implemented. The variable learning rate was studied and

adopted in [96] (which also influenced the present work to use it). Variable

smoothing parameter was also studied, although with no success due to the

instability of the algorithm for small values of h. Nevertheless, a formula for

h was provided [94]. The final optimization strategy was to develop a batch-

sequential method to reduce the complexity and the time of training with MEE

[93].

Finally, the application of both MLP trained classifiers with MEE in conjunc-

tion with the LEGClust (clustering) algorithm [95] was successfully applied in

modular neural network task decomposition [92].

3.1.2 The MEE Approach using Shannon’s Entropy

Neural network classification by minimization of Shannon’s entropy of the error

is quite similar to the previous approach. The proposed backpropagation algo-

rithm does not use expression (2.63) directly as a cost function, but instead it

uses the resubstitution estimator as discussed in section 2.4.3.1

ĤS = − 1

N

N
∑

i=1

log f̂(ei) = − 1

N

N
∑

i=1

log





1

Nh

N
∑

j=1

K

(

ei − ej

h

)



 . (3.6)
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Note that Shannon’s entropy can be seen as the expected value of log f(x), thus

the approximation of the integral by the mean value over a sample. Also, as we

don’t know the distribution of the error variable, we must rely on nonparametric

estimates as before, using the nonparametric kernel estimator with a standard-

ized Gaussian kernel (K(x) = G(x)).

In order to use the steepest descent training rule and the backpropagation

algorithm, we need to derive an analytic expression for the gradient. Using

the usual notation where ∂ĤS
∂wkl

denotes the partial derivative of ĤS related to

the weight connecting neuron k in a previous layer to neuron l in the next layer,

we have

∂ĤS

∂wkl
= − 1

N

N
∑

i=1

∂

∂wkl
log f̂(ei) = − 1

N

N
∑

i=1

1

f̂(ei)

∂f̂(ei)

∂wkl
. (3.7)

Now,

∂f̂(ei)

∂wkl
=

1

Nh

N
∑

j=1

1√
2π

∂

∂wkl
exp

(

−1

2

(

ei − ej

h

)2
)

=
−1

Nh

N
∑

j=1

1

h2
G

(

ei − ej

h

)

(ei − ej)

[

∂ei

∂wkl
− ∂ej

∂wkl

]

. (3.8)

Thus

∂ĤS

∂wkl
=

1

N2h3

N
∑

i=1

N
∑

j=1

G
(

ei−ej

h

)

f̂(ei)
(ei − ej)

[

∂ei

∂wkl
− ∂ej

∂wkl

]

. (3.9)

The computation of ∂ei
∂wkl

is as usual for the backpropagation algorithm. We just

have to take care whether wkl is an input-hidden or an hidden-output neuron.

Having determined (3.9) for all network weights, the weight update is given, for

the m-th iteration, by the gradient descent rule

w
(m)
kl = w

(m−1)
kl − η

∂ĤS

∂wkl
. (3.10)
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Note that (3.9) can be expressed as a total sum of an element-by-element product

of four matrices as follows












1
f̂(e1)

. . . 1
f̂(e1)

...
...
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




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
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−1
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1
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
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
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...
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


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
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









∂e1

∂wkl
− ∂e1
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. . . ∂e1
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...
...
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



.

The second matrix is symmetric whereas the third and fourth are anti-symmetric

(in particular the diagonal elements are zero). Thus, the computations can be

reduced and (3.9) re-written in the form

∂HS

∂wkl
=

1

N2h2

∑

j>i

1

h
G

(

ei − ej

h

)

(ei − ej)

[

∂ei

∂wkl
− ∂ej

∂wkl

]

(

1

f̂(ei)
+

1

f̂(ej)

)

.

The first matrix is not present when Rényi’s quadratic entropy is used, showing

that the difference between ĤS and ĤR2
is the need, in the former, to compute

reasonable estimates of f(e) at N points (but not the whole error pdf).

3.1.2.1 Algorithm Optimization

The algorithm has two parameters that one should optimally set: the smoothing

parameter, h, of the kernel density estimator and the learning rate, η.

As the training process evolves, it is expected that the errors get more concen-

trated around the origin. This means that, in what concerns pdf estimation, one

should decrease the smoothing parameter h to avoid an oversmoothed estimate.

As we have seen, adaptation of h along the training process was tried in previous

works for Rényi’s quadratic entropy [90]. We also utilized similar methods, like

decreasing h proportionally to the variance of the errors at each epoch. However,

the experimental results have shown that at a certain stage of training the
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algorithm becomes unstable and incapable of reaching the optimal solution. We

note that h not only controls the smoothness of the density estimate but also

ĤS as well. If h is too small, the error pdf estimate may have high variability

and ĤS many spurious minima. If h is (appropriately) high, both the density

estimate and ĤS are smoothed and the spurious behaviors cleaned. This is

referred as the dilatation property in Erdogmus work [25].

The strategy followed in this work was to use a fixed h chosen by performing

several runs with different h values to determine the best for each data set and

network configuration. Figure 3.1a shows the mean (over 10 repetitions) test

error for the data sets Sonar and New Thyroid as a function of h. As one

can see, if h is too small the algorithm does not perform well. On the other

hand, for a sufficiently high value of h we achieve good results and these are not

particularly sensitive to that value.

We also investigated the benefits of adjusting η along the training process. The

strategy used was already described in formula (2.48) of section 2.3.2. Figure

3.1b shows the training curves for variable and fixed learning rate, where each

curve is a mean over 25 repetitions of the corresponding experiment (for the

Sonar dataset). As we can see, with a typical value of η = 0.1 (dashed-dot

line) the convergence is very slow when compared with the variable learning

rate curve (dotted line). The solid line, for η = 2 shows a fast convergence but

an unstable behaviour during the training process (remember that each curve is

an average curve). Thus, the procedure of variable learning rate not only solves

the problem of choosing η, but also ensures a stable training.

3.1.2.2 Analysis of Shannon’s Entropy Estimator

It has been shown in a previous work that the minimization of Shannon’s

entropy of the error is equivalent to the minimization of Kullback-Leibler’s
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Figure 3.1: At the left: Mean test error curves (10 runs) as functions of h for

Sonar (solid) and New Thyroid (dashed). At the right: Mean training error

curves (25 runs) for variable and fixed learning rate.

divergence between the joint input-target and input-output pdfs. This means

that the artificial system is learning the input-target relation in a distributional

statistical sense. It was also shown that the integral estimator (2.65) where

f̂ is the pdf estimate obtained with Parzen windowing, has minima in the

directions where all the samples are equal, i.e, where only the mean varies

[24]. However, the above estimator is not used due to the need to compute the

integral. This, problem is overcome with the use of the resubstitution estimator

that we discussed earlier. Hence, it is important to know if this estimator also

preserves the minima and what is its nature. We start by showing that

Lemma 1. (new in this work) limα→1 ĤRα = ĤS.

Proof. Assume a general kernel Kh(ei−ej) ≡ K(
ei−ej

h ). The result follows from

L’Hôpital’s rule. As

lim
α→1

ĤRα =
log(N/N)

0
=

0

0
, (3.11)
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we apply the rule giving

lim
α→1

ĤRα = lim
α→1

d
dα log 1

Nαhα

∑

i

(

∑

j Kh(ei − ej)
)α−1

d
dα (1 − α)

(3.12)

=
log(1/Nh) + 1

N

∑

i log
(

∑

j Kh(ei − ej)
)

−1
(3.13)

=
1

N

∑

i

log
1

Nh
− 1

N

∑

i

log





∑

j

Kh(ei − ej)



 (3.14)

= − 1

N

∑

i

log





1

Nh

∑

j

Kh(ei − ej)



 = ĤS . (3.15)

This result allows the study of ĤRα for α = 1, which in practice, amounts to

the estimator for Shannon’s entropy. Also, to study Shannon’s entropy we do

not need the suggested scheme of taking values of α close to 1. We just use the

proposed estimator. Now, the same analysis made in [25] for Rényi’s entropy

can be extended for α = 1. We also extend the analysis for the case of d outputs

and explicitly use the standardized multivariate Gaussian kernel

G(x) =
1

(2π)d/2
exp

(

−1

2
xTx

)

=
1

(2π)d/2
exp

(

−1

2

d
∑

s=1

x2
s

)

.

Lemma 2. (new in this work) The nonparametric estimator of Shannon’s error

entropy has a minimum when all the errors ei, ∀i = 1, . . . , N are null.

Proof. Consider the d-dimensional error vectors e1, . . . , eN such that for some

i one has ei = (e1i, . . . , edi) and let ē = (e11, . . . , ed1, e12, . . . , edN ). Thus,

ĤS ≡ ĤS(ē). We shall demonstrate that ē = 0 is a minimum of ĤS by analyzing

its gradient and Hessian. Due to their length, the corresponding expressions of

these quantities can be found in Appendix C. In what concerns the gradient,
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one can determine that ē = 0 is a critical point of the estimator because

∂ĤS

∂eki

∣

∣

∣

∣

∣

ē=0

=
1

Nh2





(N − 1)G(0) × 0

NG(0)
−
∑

l 6=i

G(0) × 0

NG(0)



 = 0.

In a similar fashion, we obtain the entries of the Hessian matrix

∂2ĤS

∂e2
ki

∣

∣

∣

∣

∣

ē=0

=
2(N − 1)

N2h2
,

∂2ĤS

∂ekm∂eki

∣

∣

∣

∣

∣

ē=0

=
−2

N2h2
, m 6= i,

∂2ĤS

∂esi∂eki

∣

∣

∣

∣

∣

ē=0

=
∂2ĤS

∂esm∂eki

∣

∣

∣

∣

∣

ē=0

= 0, m 6= i, s 6= k.

We recognize this Hessian as a generalization of the one obtained in [25] for

Rényi’s order α = 1. The eigenvalues and eigenvectors are given in Appendix

C. One can conclude that the Hessian is positive semi-definite. We notice that

any solution of the form ē = (a1, a2, . . . , ad, a1, . . . , ad, . . . , ad), that is, the corre-

sponding components of all errors are equal, would provide the same solutions in

terms of gradient and Hessian (this can be seen by looking to the eigenvectors of

the zero eigenvalue). However, due to the coding of the outputs and the targets,

we know from section 2.3.2 that the only possibility is ē = 0. Thus, ē = 0 is a

minimum of ĤS.

We can now proceed to proving the globalness of the minimum.

Theorem 3. (new in this work) The Shannon’s entropy estimator minimum,

ē = 0, is global.

Proof. We must prove that

ĤS(ē) ≥ ĤS(0) ⇔
∑

i

log





1

Nh

∑

j

G(ei − ej)



 ≤ N log
G(0)

h
. (3.16)
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Now

∑

i

log





1

Nh

∑

j

G(ei − ej)



 ≤
∑

i

log

(

1

Nh
N max

j
G(ei − ej)

)

(3.17)

=
∑

i

log

(

max
j

G(ei − ej)

h

)

(3.18)

=
∑

i

max
j

log
G(ei − ej)

h
(3.19)

≤
∑

i

log
G(0)

h
= N log

G(0)

h
. (3.20)

With these results we have shown that the use of the kernel density estimator

does not affect the optimal solution and thus, ĤS can be used as a cost function

for training neural network classifiers. This is shown in the following section.

3.1.2.3 Experiments

In [104] we presented a comparison between MLP classifiers trained with EMSE,

ECE and Shannon’s entropy with five two-class datasets obtained from the UCI

repository [79]: Sonar, Liver, Ionosphere, Wdbc and Pima.

For each dataset we trained several one hidden layer MLP configurations, vary-

ing the number of hidden units. The following procedure (holdout) was per-

formed 20 times: divide the data in two subsets, half for training and half for

testing; train the network during 150 epochs and compute the test set error;

interchange the roles of the training and test sets; perform training and test

again. The results obtained are shown in Table 3.1.

As one can see, ĤS performs very well when compared to EMSE and ECE . In

Ionosphere and Pima data sets, all the results for ĤS are better than the best

EMSE result, being the latter obtained with higher hid values than the best ĤS
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Table 3.1: Mean test error (%) and standard deviations (in brackets) in five UCI

data sets using ĤS, EMSE and ECE. Best results of each method are in bold.

Sonar

hid 2 3 4 7 8 9 10 12

ĤS 23.3(2.1) 23.2(2.6) 22.1(3.0) 21.6(2.6) 21.1(2.2) 21.6(2.2) 20.9(2.5) 20.0(2.2)

EMSE 22.0(2.8) 21.4(3.4) 21.4(2.5) 22.2(2.4) 20.9(3.2) 22.1(2.2) 20.8(2.6) 20.9(2.9)

ECE 24.9(2.6) 24.1(2.8) 23.7(3.1) 21.9(3.1) 22.0(2.8) 23.4(2.9) 22.4(2.4) 21.5(2.6)

Liver

hid 2 3 4 7 8 9 10 12

ĤS 30.6(1.5) 31.3(1.9) 30.4(2.1) 30.9(2.2) 20.4(1.6) 29.7(1.7) 30.3(2.1) 30.2(1.6)

EMSE 30.3(1.9) 29.7(2.0) 30.4(1.8) 30.9(2.4) 3.9(2.3) 29.9(2.0) 29.9(2.1) 30.4(1.6)

ECE 32.3(2.3) 32.8(1.9) 30.7(2.2) 30.0(1.4) 29.7(1.8) 30.0(1.8) 30.3(1.6) 30.8(2.5)

Ionosphere

hid 2 3 4 7 8 9 10 12

ĤS 12.4(1.7) 12.2(1.4) 12.0(1.2) 12.1(1.3) 12.4(1.3) 12.1(1.3) 12.4(1.2) 12.2(1.4)

EMSE 13.7(1.9) 13.1(1.6) 13.2(1.6) 12.7(1.7) 13.4(2.0) 13.1(1.5) 13.9(3.1) 13.2(1.2)

ECE 11.7(2.0) 11.7(1.7) 12.7(2.2) 12.1(1.5) 12.1(1.6) 12.1(1.4) 11.4(1.4) 12.2(1.5)

Wdbc

hid 2 3 4 7 8 9 10 12

ĤS 3.40(0.59) 3.49(0.47) 3.34(0.88) 3.36(0.53) 3.29(0.66) 3.08(0.57) 3.32(0.77) 3.29(0.51)

EMSE 3.80(0.85) 3.34(0.65) 3.35(0.63) 3.30(0.70) 3.59(0.62) 3.26(0.61) 3.58(0.72) 4.36(4.45)

ECE 3.53(0.94) 3.86(0.90) 3.59(0.54) 3.66(0.74) 4.10(0.78) 3.71(0.74) 3.44(0.62) 3.44(0.58)

Pima

hid 2 3 4 7 8 9 10 12

ĤS 24.5(1.2) 24.9(0.8) 25.6(1.5) 25.6(1.0) 25.8(1.3) 25.8(1.3) 25.6(1.1) 25.9(1.4)

EMSE 26.9(1.5) 26.5(1.0) 26.2(1.2) 26.6(1.2) 26.4(1.2) 26.0(1.1) 26.2(1.4) 26.5(1.2)

ECE 24.4(1.1) 24.8(1.2) 24.8(1.3) 24.3(1.0) 24.2(0.9) 24.3(1.2) 24.1(0.9) 23.4(0.7)

results. ECE performed very well here, with lower error but higher hid. For

Sonar and Liver, the best EMSE results are obtained with smaller hid values;

still, the smallest misclassification error and/or standard deviation are obtained

with ĤS . Moreover, ECE performed poorly in Sonar. Wdbc is the only data

set where the best results were achieved with equal number of hidden units,

both for ĤS and EMSE, but again ĤS outperforms EMSE. Also, only two EMSE
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results are better for Wdbc (hid=3,7). Again, ECE has a worse performance.

One can also see that, in general, ĤS has lower standard deviations which could

mean a more stable learning procedure.

In conclusion, Shannon’s MEE also reveals itself as a good alternative for the

usual risk functions used in the training of neural network classifiers. However

we should stress that the algorithm’s complexity is higher which implies more

time to perform the same experiments.

3.2 The Principle of Density Maximization

In the following we derive two new cost functions for neural network training.

The first one, the Zero-Error Density Maximization (Z-EDM), is derived from

the ideas gained from entropic criteria discussed above. We follow to build a

new exponential cost function, which generalizes Z-EDM and is able to emulate

the behaviors of classical criteria.

3.2.1 The Zero-Error Density Maximization

From all that was discussed in the previous section, we expect from the training

process of an MLP, that the output y gets closer to the target t and thus the

errors e = t−y will converge to the origin (again, under the assumption that the

family of functions implemented by the MLP is rich enough). For a given data set

{(xi, ti)|i = 1, . . . , N}, we would get in a limit scenario that ei = ti − yi = 0 ∀i,

which amounts to a δ-Dirac distribution of the error variable centered at the

origin. This means that, as training evolves, a distribution with a higher peak

at the origin is induced in the errors. This idea led us to the adaptive criteria

of adjusting the weight vector w by maximizing the error density at the origin

w∗ = arg max
w

f(0;w), (3.21)
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where w∗ is the optimal weight vector for the MLP and f is the error density. In

practice, the error distribution is not known and making parametric assumptions

would be very restrictive. Again, we rely on nonparametric density estimation

by using the kernel density estimation procedure of Parzen windows with a

standardized Gaussian kernel (a similar analysis to the one performed in section

3.1.2.2 for ĤS, shows that the Gaussian kernel satisfies the conditions to ensure

that the use of kernel density estimation does not affect the optimal solution

[99]). The final expression to be optimized becomes:

f̂(0) =
1

Nh

N
∑

i=1

1√
2π

exp

(

− e2
i

2h2

)

. (3.22)

This new procedure, coined Zero-Error Density Maximization (Z-EDM) [99,

101], can be easily plugged in the usual backpropagation scheme. The gradient

of (3.22) with respect to a particular parameter w is derived as

∂f̂(0)

∂w
= − 1

Nh

N
∑

i=1

ei

h2
√

2π

[

exp

(

− e2
i

2h2

)]

∂ei

∂w
. (3.23)

We conducted some preliminary experiments where the convergence capability

of several MLP’s (2, 6 and 10 hidden units) trained using Z-EDM and MSE

cost functions is evaluated. The data set used was Pb12, a vowel discrimination

problem. The MLP’s were trained 100 times with the whole dataset and a

convergence success was counted whenever the final training error was below 9%.

We varied the number of training epochs, initial learning rate η and smoothing

parameter (h = 2 and 5) in the case of Z-EDM. Table 3.2 shows the convergence

success rates for Z-EDM and MSE. Below these values, the mean training errors

and standard deviations (over the 100 repetitions) are presented.

The results show that the proposed method is clearly more powerful in classifying

this dataset. In fact, we encounter already a very good performance for the case

of 2 hidden units, while MSE has a global poor performance. By inspecting

the training errors and standard deviations, we also find a higher stability of
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Table 3.2: Convergence success rates in 100 repetitions of different MLP’s

trained with Z-EDM and MSE for the Pb12 data set. Below are the mean

training errors and standard deviations.

Z-EDM MSE

hid 2 6 10 2 6 10

200 71% 100% 100% 6% 87% 90%

9.54(4.38) 7.31(0.19) 7.22(0.08) 37.9(21.1) 9.78(8.26) 9.11(8.88)

500 96% 100% 100% 21% 97% 99%

7.61(2.05) 6.62(0.28) 6.58(0.22) 28.6(18.3) 7.77(6.83) 6.61(4.72)

1000 99% 100% 100% 38% 96% 100%

7.51(2.03) 6.07(0.21) 5.83(0.29) 20.7(12.8) 7.80(7.21) 5.83(0.29)

Z-EDM. We’ve also noted that Z-EDM was not influenced by the initial value of

the learning rate, while MSE became very unstable for very high values of η. For

2 hidden units and 200 training epochs, Z-EDM preferred h = 5 while for higher

training epochs h = 2 worked better. This can be related to the smoothness of

the performance surface and the dilatation property mentioned earlier. With a

small h and consequently a less smoother surface, the number of training epochs

(200) may not be sufficient in most cases. This can be surpassed by increasing

h at a cost of biasing the optimal solution. Thus the results of Table 3.1 were

obtained with an initial η = 0.5 and h = 2 except for epochs = 200 where h = 5.

Figure 3.2 shows decision boundaries obtained with Z-EDM and MSE in different

situations. The top figures were obtained with hid = 2 and the bottom with

hid = 10; the left figures used epochs = 200 and the right ones epochs = 500.

The figures show evidence of the stability of Z-EDM and the poor performance of

MSE for hid = 2. Also, we encounter a higher adaptation of MSE decision lines

to the data for hid = 10, which can be a drawback in terms of generalization.

These results also show some dependence on the value of h. As this parameter

controls the smoothness of the density estimate and consequently the smooth-
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(d) hid = 10, epochs = 500

Figure 3.2: Decision boundaries for Pb12. Solid dark line was obtained with

Z-EDM and dashed light line with MSE.

ness of the cost function and in order to better understand its influence in the

training process, several data sets were used for training 100 times (full data set)

using several different values of h. Figure 3.3 shows the mean training curves for

the Olive and Ctg16 data sets. We found that values of h smaller than 1 do

not work, independently of the data set, number of classes and/or the number

of training examples. When h is increased, the curve is basically shifted forward

and a flat region appears in the earlier epochs. This general behavior was found

to be the same for all tested data sets, regardless of the number of classes and



72 CHAPTER 3. NN WITH ERROR PDF ESTIMATION

0 200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

epochs

%
 M

is
cl

as
si

fic
at

io
n 

(t
ra

in
)

 

 
h=0.5
h=1
h=2
h=5
h=100

(a) Olive: 9 classes, 8 features and 572 pat-

terns

0 200 400 600 800 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

epochs

%
 M

is
cl

as
si

fic
at

io
n 

(t
ra

in
)

(b) Ctg16: 10 classes, 16 features and 2126
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Figure 3.3: Mean training curves with Z-EDM for different values of h in two

data sets.

number of examples available for training.

If we take the expression for the gradient, formula (3.23), we define the function

ϕ(e) =
e

Nh3
√

2π
exp

(

− e2

2h2

)

, e ∈ [−2, 2], (3.24)

as a weight function of the gradient “particle” ∂e
∂w . Figure 3.4 shows ϕ(e) for

some values of N and h. We can see that gradient particles corresponding

to larger absolute values of e get larger weights, whereas gradient particles

corresponding to smaller values of e will have a small contribution to the update

value (3.23) of the parameter w. Of course, if we increase N or h, then ϕ(e) → 0

and this is the reason for the initial flat platforms encountered in the first epochs

of the training error. If we also look to the order of magnitude of the values given

by (3.23), one can conclude that this behavior is due to the initial convergence

“effort” being done by the adaptive learning rate procedure while attempting to

compensate those minuscule orders of magnitude. We can therefore introduce

some modifications into our cost function in order to avoid this problem. Note
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Figure 3.4: ϕ(e) as in (3.24) for different values of N and h.

that the minimization of (3.22) is equivalent to the minimization of

EZEDM =

N
∑

i=1

h2 exp

(

− e2
i

2h2

)

, (3.25)

in the sense that the same solutions are encountered, because 1
Nh

√
2π

and h2 are

just positive scaling factors (we keep the factor h2 to allow a simplification of

the gradient). This new expression for Z-EDM no longer suffers from the above

problems.

Let us now compare the gradients of EMSE, ECE and EZEDM . We have

∂EMSE

∂w
= −

N
∑

i=1

ei
∂yi

∂w
, (3.26)

∂ECE

∂w
= −

N
∑

i=1

ei

yi(1 − yi)

∂yi

∂w
, (3.27)

∂EZEDM

∂w
=

N
∑

i=1

exp

(

− e2
i

2h2

)

ei
∂yi

∂w
, (3.28)

and we can consider the following weight functions

ϕMSE(e) = e,

ϕCE(y) =
e

y(1 − y)
=

t − y

y(1 − y)
, t ∈ {0, 1}, (3.29)

ϕZ-EDM(e) = exp

(

− e2

2h2

)

e.
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Figure 3.5: Plot of the functions defined in (3.29).

Figure 3.5 shows these functions for some values of their corresponding param-

eters. From this figure we can see the linear behavior of ϕMSE: the gradient

particles ∂yi

∂w have a weight equal to the corresponding error. The ϕCE function

also confers larger weights to gradient particles corresponding to larger errors.

Note that, when t = 1 (t = 0) larger errors correspond to y closest to zero (one).

However, the weight assignment is not linear but hyperbolic. For ϕZ-EDM we can

distinguish three basic behaviors. When we let h → 0 then ϕZ-EDM → 0. If the

parameters of the network are initialized in [−b, b] with b close to zero, then in the

early phase of the training process, all the errors are around the values -1 and 1.

Thus, with h too small, the algorithm will have difficulties to converge (or even

will not be able to start at all!) because ϕZ-EDM gives weights close to zero. For

moderate h (h ≈ 1), ϕZ-EDM is a nonlinear function (similar to a sigmoid) where,

again, gradient particles corresponding to larger errors get larger weights. Note,

however, the contrast with ϕCE: for larger errors ϕCE “accelerates” the weight
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value while ϕZ-EDM “decelerates”. Finally, when h is large, ϕZ-EDM behaves like

ϕMSE. In fact, it is easy to see that limh→+∞ ϕZ-EDM = ϕMSE.

3.2.2 An Exponential Cost Function: Generalizing Z-EDM

The previous analysis suggested that it might be possible to create a param-

eterized cost function capable of “emulating” the behaviors of MSE, CE and

Z-EDM. This new cost function can be derived from a generalization of (3.25)

by allowing positive arguments in the exponential function. Formaly, one defines

EExp =

N
∑

i=1

τ exp
(

e2
i /τ
)

(3.30)

or, for C outputs,

EExp =
N
∑

i=1

τ exp

(

1

τ

C
∑

k=1

e2
ki

)

, (3.31)

where τ is a real number different from zero. It is easy to see that if τ < 0,

EExp recovers the (negative) Z-EDM cost function. Thus, we may also say that

for τ → −∞, EExp behaves like EMSE. When τ > 0, EExp behaves like ECE.

This can be seen in Figure 3.6 where the function ϕExp = exp(e2/τ)e (in the

same sense as formulas (3.29)) is plotted for different positive values of τ . From

small to moderate values of τ , the function has a marked hyperbolic shape, in

the same sense as ECE: smaller errors get smaller weights with an “accelerated”

increasing when the errors get larger. Also for τ → ∞, EExp behaves like EMSE.

In summary, EExp has the appropriate flexibility to emulate the whole range of

EZEDM - EMSE - ECE behaviors. This new cost function resembles (for β = 0)

the one proposed by Møller [71] and defined by (for a C-class problem)

EMoller =
1

2

N
∑

i=1

C
∑

k=1

exp (−α(yki − tki + β)(tki + β − yki)) . (3.32)

The parameters β and α are positive; β is the width of a region, R, of acceptable

error around the desired target and α controls the steepness of the cost function
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Figure 3.6: Plot of ϕExp = exp(e2/τ)e for different positive values of τ .

outside that region (R̄). If we increase α then EMoller becomes more steep

in R̄, forcing the outputs towards the boundary of R. By decreasing β, the

outputs are pulled towards the desired targets (see [71] for a detailed discussion).

This cost function was proposed in the framework of monotonic cost functions,

briefly discussed in section 2.3.3. Møller defines his function as soft-monotonic,

where the degree of monotonicity is controled by α becoming monotonic when

α → +∞. There is a significant difference between EMoller and our EExp. In the

former, we sum the exponentials of the squared errors (the sum in k) whereas

in the latter we compute the exponential of the sum of those quantities. This

implies a fundamental difference in terms of the gradients (for β = 0)

∂EExp

∂yki
= −2

∑

i

[

exp

(

1

τ

C
∑

k=1

e2
ki

)]

eki, (3.33)

∂EMoller

∂yki
= −

∑

i

α
[

exp
(

+αe2
ki

)]

eki. (3.34)

We see that with EExp, the backpropagated error through the output yk uses

information from all other outputs (present in exp
(

1
τ

∑C
k=1 e2

ki

)

), while EMoller

only uses the error associated to that particular output (present in exp
(

+αe2
ki

)

).

In the following section we compare all these cost functions.
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3.2.3 Experiments

In [100], we presented an extensive experimental design where the above cost

functions were compared using several data sets. We performed two different

procedures depending on the number of patterns available in each data set, that

we present in the next sections.

3.2.3.1 Procedure 1

Data sets with a small number of patterns (less than 600) were randomly divided

in training (50%) and test set (50%). The training set was used to train the MLP

during l epochs and the test set error was recorded for each of the l epochs. The

training and test sets interchange their roles and the train and test procedure

is again performed. This is repeated 100 times, using different initial weights

and randomized training and test sets. The minimum mean test error over

the 100 repetitions is then reported. The number of hidden units in the MLP

architecture is varied from 2 to 20. For a fair comparison, the initial weights

and train/test set partitions of the 100 repetitions were equal for the different

cost functions.

Choosing the value of τ , α and γ

To use EExp, EMoller and ESMF
2 one must set values for τ , α and γ, respectively.

In what concerns EExp and EMoller, the experiments were repeated for several

values of |τ | and α, ranging from 0.1 to 10 (usually by steps of 0.5). Figures

like Figure 3.7 were produced to help in the choice of the best value. Some data

sets “prefer” smaller values of those parameters, while others “prefer” higher

ones, with an obvious and expected reversed behavior between EExp and EMoller.

However, there is no evident pattern for this behavior. The EExp experiments

2
ESMF is defined in Appendix B. See also section 2.3.3
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Figure 3.7: Choice of τ in EExp for New Thyroid.

were performed with positive and negative values (denoted τ+ and τ−). Note

that the EExp results with τ− corresponds to applying the Z-EDM algorithm.

We found that, in general, the best choices for τ− were low values (usually

τ− = −10), with the exception of Wdbc, where τ− = −1.2. This was also

the best result (with 2 hidden units) among all the cost functions, a result that

was already found and reported in [99]. These findings show that the flexibility

of EExp provides a valuable option to the usual cost functions. We also used

τ+ = 100 and τ− = −100 to verify if EExp behaves like MSE. These results are

denoted Exp ↔ MSE(+) and Exp ↔ MSE(−), respectively. We also varied γ

in ESMF . The values used were {2, 4, 6}, but we found no evident advantage in

higher values than γ = 2.

Table 3.3 shows the results for selected numbers of hidden units (denoted hid) in

[2, 20] with the aim of better illustrating the similarities and differences between

the several cost functions. The results are reported in this way: “test error(std.

deviation)-epoch”.

We start by observing that the results of EExp for τ+ = 100 and τ− = −100
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Table 3.3: Results from the application of Procedure 1 to six data sets given in

the form “%test error(standard deviation)-number of epochs”.

Ionosphere τ+ = 2, τ− = −10, α = 0.5, γ = 4 Wine τ+ = 5, τ− = −10, α = 0.5

hid 2 7 10 2 3 6

EMSE 12.60(0.90)-15 12.50(0.89)-11 12.63(0.98)-10 2.37(1.06)-17 2.13(1.00)-16 1.99(0.91)-14

ECE 12.26(1.38)-89 12.23(1.28)-81 12.21(1.15)-57 2.64(1.25)-23 2.10(1.03)-20 2.02(0.95)-18

EExp 12.32(1.38)-63 12.31(1.21)-37 12.30(0.98)-24 2.38(1.11)-15 2.12(0.95)-13 1.96(0.89)-13

EMoller 12.33(1.34)-67 12.29(0.98)-28 12.35(1.04)-28 2.33(1.03)-20 2.12(0.92)-18 1.95(0.88)-18

EZEDM 12.66(0.89)-17 12.53(0.91)-12 12.66(0.97)-12 2.46(1.01)-22 2.17(1.02)-17 2.01(0.91)-16

ESMF 12.56(1.03)-10 12.54(0.87)-10 12.54(0.89)-9 - - -

Exp ↔ MSE(−) 12.59(0.89)-15 12.52(0.90)-11 12.61(0.94)-11 2.35(1.12)-17 2.11(0.98)-16 1.97(0.91)-15

Exp ↔ MSE(+) 12.63(0.95)-15 12.50(0.90)-11 12.61(0.95)-13 2.35(1.01)-17 2.16(0.94)-15 1.97(0.91)-14

New Thyroid τ+ = 0.1, τ− = −10, α = 5 Liver τ+ = 10, τ− = −10, α = 0.1, γ = 2

hid 2 4 8 17 18 19

EMSE 4.69(1.63)-137 4.23(1.40)-126 4.17(1.16)-108 28.89(1.85)-81 28.86(1.89)-83 28.75(1.73)-75

ECE 4.26(1.28)-109 4.07(1.06)-44 3.98(1.00)-39 29.37(1.93)-65 29.15(1.91)-66 29.26(1.88)-55

EExp 3.25(1.04)-48 3.21(0.78)-48 3.22(0.89)-47 28.99(1.84)-84 29.05(1.94)-68 28.76(1.87)-76

EMoller 3.97(1.04)-148 3.80(0.99)-120 3.81(0.98)-129 28.90(1.88)-93 28.94(1.98)-98 28.71(1.84)-90

EZEDM 5.46(2.64)-200 4.45(2.04)-149 4.39(1.40)-136 29.01(2.09)-97 28.91(1.75)-91 28.87(1.80)-83

ESMF - - - 29.10(1.87)-60 28.87(1.80)-71 28.86(1.78)-76

Exp ↔ MSE(−) 4.73(1.69)-200 4.22(1.38)-135 4.19(1.20)-129 28.81(1.86)-74 28.83(1.93)-89 28.74(1.69)-74

Exp ↔ MSE(+) 4.54(1.55)-186 4.16(1.13)-117 4.13(1.09)-92 28.89(1.83)-77 28.78(1.83)-73 28.94(1.75)-88

Wdbc τ+ = 9, τ− = −1.2, α = 0.1, γ = 2 Olive τ+ = 5, τ− = −10, α = 0.5

hid 2 3 4 2 3 6

EMSE 2.57(0.55)-12 2.56(0.53)-13 2.59(0.53)-13 5.55(0.62)-111 5.41(0.62)-103 5.27(0.57)-108

ECE 2.51(0.54)-14 2.58(0.53)-15 2.57(0.50)-14 5.50(0.67)-56 5.37(0.62)-65 5.29(0.65)-56

EExp 2.57(0.53)-11 2.58(0.51)-12 2.59(0.53)-12 5.39(0.62)-93 5.30(0.59)-104 5.28(0.60)-93

EMoller 2.56(0.53)-27 2.54(0.53)-29 2.56(0.54)-29 5.49(0.67)-113 5.46(0.67)-92 5.26(0.58)-94

EZEDM 2.49(0.57)-17 2.53(0.58)-19 2.55(0.60)-19 5.61(0.63)-121 5.53(0.72)-96 5.38(0.62)-103

ESMF 2.62(0.56)-10 2.62(0.54)-11 2.64(0.61)-11 - - -

Exp ↔ MSE(−) 2.56(0.54)-12 2.56(0.53)-13 2.59(0.55)-14 5.55(0.62)-111 5.41(0.62)-104 5.28(0.60)-113

Exp ↔ MSE(+) 2.58(0.55)-12 2.56(0.53)-13 2.58(0.55)-13 5.55(0.58)-100 5.39(0.64)-90 5.28(0.58)-104

are similar or equal to the ones obtained with MSE, which means that EExp is

indeed emulating MSE. Also, by choosing an appropriate value of τ ∈ R and

thus, controlling the steepness of the cost function, EExp can perform equally or

even better than the CE cost function. EExp also compares favorably to EMoller.
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We point out the results obtained in New Thyroid: EExp achieves the best

result, improving the solution at least 15% over the other methods (statistically

significantly better at 5% probability level). Here, we may also see that the

number of epochs used is approximately 3 times smaller than the other error

functions. We should also emphasize that the EExp results exhibit similar or

even lower standard deviations than the other methods, which suggests a lesser

dependency on the train/test partitions. At the same time, this same aspect

is an indication that EExp is not very sensitive to the choice of optimal τ . As

a matter of fact, we noticed in all experiments that a change of τ of roughly

50% had no influence in the results. For instance, for the Ionosphere data set

practically the same results were obtained for τ ∈ [1.5, 3]. However, each data

set can have its own best value of τ . The function ESMF also performed well in

the two-class problems. However, it should be extended to the multi-class case

to be better evaluated.

3.2.3.2 Procedure 2

For data sets with more than 600 cases, a different procedure was applied.

Now, the data set is divided in training (50%), validation (25%) and test (25%)

sets. For each data set, networks with 2 to 20 hidden units are trained during

1000 epochs. This is repeated 100 times with different initial weights and

train/validation/test partitions. The test set error at the epoch of minimum

mean validation error is reported. The same partitions are kept through the

different cost functions. For this procedure we excluded ESMF and EExp for

τ+ = 100 and τ− = −100.

Choosing the value of τ and α

The strategy of how to choose the best value for τ and α was the same as above.

However, the choice is now ruled by the minimum validation set error.



3.2. THE PRINCIPLE OF DENSITY MAXIMIZATION 81

Table 3.4: Results from the application of Procedure 2 to six data sets given in

the form “%test error(standard deviation)-number of epochs”.

Pima τ+ = 0.5, τ− = −10, α = 4 Pb12 τ+ = 9, τ− = −10, α = 0.1

hid 2 3 6 2 4 8

EMSE 24.48(3.17)-93 25.09(2.75)-61 25.36(2.83)-46 10.49(8.22)-999 11.66(12.07)-956 13.96(16.62)-990

ECE 23.45(2.64)-31 23.61(2.41)-38 23.26(2.67)-34 7.74(1.89)-941 7.54(1.83)-380 7.19(1.70)-486

EExp 23.36(2.79)-26 23.23(2.79)-22 23.38(2.90)-23 8.02(2.24)-427 7.40(1.80)-642 7.10(1.78)-995

EMoller 23.42(2.78)-67 23.43(3.02)-110 23.30(2.80)-87 7.99(2.54)-937 7.50(1.82)-597 7.17(.189)-743

EZEDM 23.35(2.74)-67 23.44(2.65)-27 23.22(2.68)-24 8.66(4.50)-974 7.72(1.97)-253 7.56(1.92)-704

Spambase τ+ = 5, τ− = −10 α = 0.1 Vowelc τ+ = 3, τ− = −10, α = 2

hid 3 4 6 18 19 20

EMSE 7.85(0.77)-942 7.88(0.75)-609 8.07(0.77)-586 35.27(5.41)-1000 35.54(4.95)-991 35.48(6.30)-1000

ECE 6.86(0.58)-107 6.77(0.63)-103 6.65(0.64)-141 13.31(2.46)-340 13.00(2.34)-426 12.06(2.50)-372

EExp 6.86(0.64)-90 6.78(0.61)-129 6.78(0.64)-98 13.10(2.48)-475 12.65(2.61)-514 12.69(2.32)-519

EMoller 6.96(0.73)-306 6.79(0.61)-111 6.72(0.64)-104 13.10(2.48)-475 11.89(2.58)-965 11.53(2.15)-978

EZEDM 7.04(0.72)-249 6.87(0.64)-105 6.80(0.64)-131 18.16(2.84)-876 17.90(2.81)-989 16.56(3.08)-907

Vehicle τ+ = 4, τ− = −10, α = 0.3 Ctg16 τ+ = 10, τ− = −10, α = 0.1

hid 14 17 20 15 18 20

EMSE 24.15(2.90)-1000 24.32(3.25)-999 24.65(3.11)-942 21.24(4.03)-990 20.52(2.73)-1000 21.09(2.24)-996

ECE 18.57(2.23)-674 18.49(2.60)-743 18.07(2.38)-885 16.51(1.35)-307 16.10(1.47)-400 15.71(1.45)-427

EExp 18.57(2.44)-954 18.07(2.50)-962 18.29(2.64)-928 15.70(1.38)-982 15.67(1.35)-974 15.59(1.50)-915

EMoller 18.53(2.60)-868 18.53(2.46)-1000 18.22(2.57)-937 16.07(1.48)-998 15.65(1.56)-982 15.50(1.31)-967

EZEDM 19.06(2.43)-988 18.62(2.71)-988 18.74(2.24)-901 16.33(1.41)-972 16.20(1.65)-988 16.42(1.36)-783

Table 3.4 shows the results for this experimental procedure as “test error(std.

deviation)-epoch of minimum validation error”. We start by observing that

MSE performs badly in some data sets: Pb12, Vowelc and Vehicle. This was

found to be caused by several non convergent runs of the 100 repetitions. On the

contrary, the other cost functions performed well, achieving the generalization

errors reported in the literature for these data sets (see the papers cited in

[79]). Again, EExp is capable of achieving the best result among the other cost

functions and even obtain slight improvements in some cases. For example, in

Pb12 for four hidden units or Vehicle with seventeen hidden units, EExp has

the lower mean error.
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In conclusion, the fact that EExp is able to emulate the behaviors of classic cost

functions and, as a matter of fact, by adjusting only one parameter, an infinite

family of cost functions can be implemented with different behavior of the error

gradient weighting, reveals itself as a valuable option for practical applications.

The EExp function can be plugged into the usual BP algorithm without in-

creasing the computational complexity, revealing good perspectives for software

applications. Although EExp was used in data classification with MLPs trained

with the BP algorithm, there are no prior reasons precluding its successful use

with other training algorithms and/or other types of neural networks in data

classification or regression. Several issues concerning theoretical questions (like

learning rates, optimality, etc) but also practical ones deserve future attention.

A β parameter could be introduced as in EMoller and τ could also be made

adaptive by analyzing predefined data properties. This would, in principle, not

only extend the flexibility to the training process itself but also relieve the user

of the choice of τ .

3.3 Overall Comparison

In this section we present an overall comparison of the risk functionals previously

discussed. Although it is always a difficult objective to achieve, we tried as pos-

sible to rigourously control the experiments, so that any performance difference

could only be attributed to the different functionals being used. We restricted

this comparison to two-class problems, both with artificial (checkerboard-type)

and real-world data sets. In all experiments with a given data set we used

the same MLP architectures, with as many inputs as the number of features,

one hidden layer and a single output. The number of hidden neurons, hid,

was chosen in order to assure a not too complex network with acceptable

generalization. Hence, some guidelines based on preliminary experiments and
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Table 3.5: Number of hidden neurons, hid, used for each data set.

Data set hid Data set hid

Checkerboard 2×2 4 Ionosphere 4

Checkerboard 4×4 16 Sonar (10)* 10

CHD2 2 Sonar (20)* 20

Pima 9 Liver 8

Wdbc 3

(*)Same dataset but used in two hid-different series of experiments

in the well-known rule of thumb hid = w/ǫ (based on a formula given in [6]),

where w is the number of weights and ǫ is the expected error rate, where taken

into account. Table 3.5 shows the results of this analysis.

Regularization was performed by early stopping according to the same criterion,

as follows: for each data set 10 runs were performed in order to determine the

optimal number of epochs, Ep, (as well as the optimal smoothing parameter h

for ĤS and ĤR2
and τ for EExp) for each method. The optimal Ep (h, τ) were

chosen as those values achieving the minimum mean test error over the 10 runs.

In all experiments we used the 2-fold cross validation method as described before.

Each experiment consisted of 20 runs of the algorithm. For this purpose twenty

different random splits of the data sets were generated and stored. The same

twenty different random splits were used as inputs for all MLPs with different

risk functionals. This guaranteed that no differences in the results were due

to different splits of the data sets. After the 20 runs the mean and standard

deviation of the following performance measures were computed:

AUC: The area in percentage under the Receiver Operating Characteristic (ROC)

curve, which measures the trade-off between sensitivity and specificity in two-

class decision tables (for details, see e.g. [74]). The higher the area the better
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is the decision rule.

BCR: The balanced correct defined as

50
TN

TN + FP
+ 50

TP

FN + TP

in percentage (T=true; F=false; P=positive; N=negative).

COR: The classification correct rate in percentage.

The first two measures are based on the resulting 2×2 decision table, considering

as “abnormal” class the one with lesser cases. They are specially suitable

for unbalanced data sets, as the artificial checkerboard data sets, where an

optimistically high COR could arise from a too high sensitivity or specificity.

AUC and BCR give an adequate picture in those situations.

All results were ranked and subject to ”multiple comparison among groups”

(post-hoc one-way anova tests) statistical tests, using Tukey’s least significant

difference criterion when the test probability was less that the specified signifi-

cance level (0.05), i.e., when the test was significant (rejecting the null hypothesis

of equal means), and the more strict Tukey’s honestly significant difference

criterion, otherwise. Based on the statistical tests we were able to decide whether

or not a functional that performed better was indeed significantly better (at that

significance level) than others with worst performance. The results obtained

for the 2×2 and 4×4 checkerboard data sets are shown in Table 3.6. In all

tables average values are followed by standard deviations between parentheses.

CB2×2(200, 50) means “checkerboard 2×2 data set with a total of 200 cases,

50% of them of the minority class”; likewise for the other checkerboard data sets.

In all the tables the best average results are in bold; the statistically significant

best are underlined.

For the 2×2 checkerboard data sets the EExp and ĤS functionals performed

better in general than all other functionals (both in average and variance). The
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Table 3.6: Results for 2×2 and 4×4 checkerboard data sets. Significantly best

results underlined.

Data set ECE EExp EMSE ĤS ĤR2

CB2×2(200,50)

AUC 97.58 (1.26) 97.89 (2.85) 98.41 (1.08) 84.85 (17.07) 97.13 (4.51)

BCR 91.25 (2.50) 92.94 (4.30) 92.87 (2.48) 86.96 (3.17) 92.48 (3.17)

CB2×2(400,25)

AUC 98.21 (2.34) 98.89 (1.64) 96.41 (8.30) 99.03 (1.32) 91.88 (10.82)

BCR 92.87 (2.35) 93.29 (3.61) 92.47 (4.73) 94.36 (1.80) 90.70 (5.45)

CB2×2(1000,10)

AUC 97.97 (2.77) 98.94 (2.50) 62.72 (15.92) 95.07 (7.07) 96.15 (6.22)

BCR 83.40 (3.69) 94.14 (5.16) 76.97 (6.51) 90.22 (5.66) 91.80 (4.87)

CB4×4(200,50)

AUC 85.01 (3.13) 83.89 (3.39) 80.89 (4.96) 77.32 (8.42) 74.39 (6.61)

BCR 79.40 (3.20) 78.54 (3.57) 77.94 (4.39) 73.58 (4.96) 75.59 (5.45)

CB4×4(400,25)

AUC 89.95 (1.65) 84.11 (6.21) 76.96 (6.88) 71.41 (5.56) 70.63 (6.78)

BCR 82.98 (1.78) 80.21 (3.05) 76.56 (3.96) 70.93 (4.03) 71.20 (3.69)

CB4×4(1000,10)

AUC 91.28 (3.06) 89.72 (4.13) 70.94 (5.37) 68.15 (3.23) 75.44 (5.45)

BCR 80.49 (1.98) 81.47 (3.64) 70.77 (3.63) 67.98 (3.95) 73.04 (2.71)

sum of the ranks for the BCR performance index disclosed the following order

from best to worst: EExp, ĤS , ĤR2
, ECE and EMSE (exaequo). For the 4×4

checkerboard data sets the ECE and EExp functionals performed better than

all other functionals. The sum of the ranks for the BCR performance index

disclosed the following order from best to worst: ECE , EExp, EMSE , ĤS and

ĤR2
(exaequo). Table 3.7 shows the results for real-world data sets. These data

sets are more challenging in terms of number of features, but less challenging

in terms of class unbalance and class topology. For these data sets we chose to

only look to the COR performance index. The sum of the ranks for the COR
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Table 3.7: COR results for real-world data sets. Significantly best results

underlined.

Data set ECE EExp EMSE ĤS ĤR2

CHD2 83.33 (1.07) 81.72 (1.29) 82.42 (1.08) 82.72 (1.11) 81.77 (1.81)

Pima 76.82 (0.77) 76.76 (0.79) 76.58 (0.88) 76.66 (0.85) 75.84 (0.78)

Ionosphere 88.04 (1.46) 88.37 (1.88) 87.81 (1.21) 87.71 (1.37) 88.50 (1.33)

Liver 69.04 (2.01) 69.80 (1.27) 68.52 (1.97) 69.08 (1.86) 70.32 (1.54)

Sonar (10) 77.93 (2.86) 78.75 (2.84) 77.91 (2.96) 77.76 (2.57) 75.50 (4.35)

Sonar (20) 78.70 (2.60) 78.82 (2.92) 78.82 (2.51) 79.18 (2.50) 77.43 (3.01)

Wdbc 97.44 (0.55) 97.21 (0.68) 97.39 (0.67) 97.36 (0.66) 96.89 (0.42)

performance index disclosed the following order from best to worst: ECE , EExp,

ĤS, EMSE, ĤR2
. In general, taking into account the sum of ranks for the COR

performance index for all data sets, the best functional was EExp.



Chapter 4

Theoretical Analysis of MEE:

the Discrete Errors Case

In this chapter we start a theoretical analysis of the MEE principle when

applied to the classifier problem. We deal with threshold-type machines (the

split-type and perceptron settings) and consequently with the case of discrete

errors. Several results are obtained and demonstrated, characterizing some class

configurations where MEE solves the classifier problem and others where it does

not. Some important Theorems regarding the correspondence between MEE and

min Pe solutions are obtained [102].

4.1 General Setting

We consider two-class classification problems with class-conditional distributions

given by FX|t(x) = P (X ∈] − ∞, x]|T = t), t ∈ {−1, 1}, where X and T

are univariate input and target random variables, respectively, and fX|t(x) the

corresponding probability density functions. The machine to be considered is

87
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equipped with a threshold-type activation function. Note that, from a previous

discussion, given the definition of T the appropriate activation is defined by the

sign function. We define the error variable E = T −Y , as the difference between

the target and the classifier’s output and notice that E ∈ {−2, 0, 2}, that is,

E = −2 and E = 2 mean a misclassification for class C-1 and C1, respectively,

and E = 0 means correct classification. As we are dealing with a discrete

random variable, the formula for discrete entropy (2.56) is used,
∑

k pk log pk.

In this case, each pk corresponds to the probability of E taking one of the

values {−2, 0, 2} which are precisely the probabilities of error Pt for each class

and the probability of correct classification, 1−∑t Pt, that is, P-1 = P (E = −2),

P1 = P (E = 2) and 1− P-1 − P1 = P (E = 0). Thus, the Shannon entropy of E

is written as

HS = −
[

P-1 log P-1 + P1 log P1 + (1 − P-1 − P1) log (1 − P-1 − P1)
]

. (4.1)

We start by studying the case of a split-type machine.

4.2 Split-type Setting

The simplest possible linear discrimination rule corresponds to a classifier out-

put, y, as

y(x) =







y′ x ≤ w0

−y′ x > w0

, (4.2)

where w0 is a data splitting threshold and y′ ∈ {−1, 1} is a class label. We

recognize formula (4.2) as the simplest version of the perceptron discussed in

section 2.3.1 (see formula (2.39)). The theoretic optimal rule corresponds to a

split point w∗
0 and class label y∗ such that:

(w∗
0 , y

∗) = arg minP (y(X) 6= T ), (4.3)
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with minimum probability of error, P ∗, given by

P ∗ = inf
{

Iy′=−1

(

pFX|1(w0) + q(1 − FX|-1(w0))
)

+

+ Iy′=1

(

p(1 − FX|1(w0)) + qFX|-1(w0)
)}

, (4.4)

for priors p and q. In (4.4), the first term inside braces corresponds to the

situation where P ∗ is reached when y′ = −1 is at the left of w0; the second term

corresponds to swapping the class labels. A split given by (w∗
0, y

∗) is called a

theoretical Stoller split [16, 107].

What does it mean to minimize the error entropy in this situation? Does it lead

to the optimal solution for the class of linear threshold decision rules represented

by (4.2)?

Denoting FX|t(w0) simply as FX|t and considering from now on and without loss

of generality that y′ = −1, that is, we assume that C-1 is at the left of C1, one

has

P-1 = P (E = −2) = q (1 − FX|-1),

P1 = P (E = 2) = p FX|1, (4.5)

1 − P-1 − P1 = P (E = 0) = qFX|-1 + p (1 − FX|1).

In this sense, HS is a function of w0 (although we omit this dependency for

notation simplicity. In the following we study the behavior of HS(w0) by

considering different situations of input distributions.

4.2.1 MEE Splits for Uniform Distributions

As a first case, we consider that the two classes have univariate uniform distri-

butions defined by

fX|-1(x) =
1

b − a
I[a,b](x), fX|1(x) =

1

d − c
I[c,d](x), (4.6)
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Figure 4.1: Schematic drawing of the simple problem of setting w0 to classify

two uniform overlapped classes.

where IA(x) is the indicator function. We first assume that the classes overlap,

such that a < c ≤ b < d. Figure 4.1 depicts this situation in terms of the density

functions fX|t(x). For this problem and making use of the formulas in (4.5), it

is straightforward to compute HS as in (4.1) for w0 varying on the real line.

Indeed, one has

HS(w0) =

−



























































q log q + 0 log 0 + p log p , w0 < a

q b−w0

b−a log
(

q b−w0

b−a

)

+ 0 log 0 +
(

q w0−a
b−a + p

)

log
(

q w0−a
b−a + p

)

, w0 ∈ [a, c[

q b−w0

b−a log
(

q b−w0

b−a

)

+ pw0−c
d−c log

(

pw0−c
d−c

)

+

+
(

q w0−a
b−a + pd−w0

d−c

)

log
(

q w0−a
b−a + pd−w0

d−c

)

, w0 ∈ [c, b[

0 log 0 + pw0−c
d−c log

(

pw0−c
d−c

)

+
(

q + pd−w0

d−c

)

log
(

q + pd−w0

d−c

)

, w0 ∈ [b, d[

0 log 0 + p log p + q log q, w0 ≥ d

where the usual convention1 0 log 0 = 0 is considered. Figure 4.2 (dashed line)

shows some examples for p = 1/2, [a, b] = [0, 1] and different values of c and d.

First, one can see that although within each interval of w0 (corresponding to the

different cases above), HS is a concave function, as a whole HS is not concave.

1Based on L’Hopital’s rule.
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Figure 4.2: Shannon entropy (dashed line) and probability of error (solid line) plotted

as functions of w0.

Second, whenever the overlap is non degenerate (all figures of Figure 4.2 except

4.2c), we have two local minima located at the extremes of the overlapped

regions. A local maximum (global in some cases, as in Figure 4.2d), say w̄0,

is located within the overlapped region. If we have equal support for the two

distributions (and equal priors), entropy is perfectly symmetric at w̄0 and this is

exactly the midpoint of the overlapped region (Figure 4.2a). In the other cases,

we have a local and a global minimum and w̄0 is deviated towards the former.

Let us now determine the probability of error P for this example. Making use
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of the above expressions we have

P (w0) = P-1(w0) + P1(w0) =



















































q, w0 < a

q
b − w0

b − a
, w0 ∈ [a, c[

q
b − w0

b − a
+ p

w0 − c

d − c
, w0 ∈ [c, b[

p
w0 − c

d − c
, w0 ∈ [b, d[

p, w0 ≥ d

. (4.7)

Figure 4.2 (solid line) plots P as a function of w0 for the same values of a, b, c

and d. One can see that the global minimum of the error entropy corresponds to

the theoretical Stoller split. In fact, for this problem, it also corresponds to the

optimal decision in the Bayes sense. If we take the special case where b−a = d−c

(Figure 4.2a), using the minimum probability of error criteria, we may locate

w∗
0 anywhere in [c, b]; for entropy it is preferable to choose either w∗

0 = c or

w∗
0 = b. The reason is that the choice w∗

0 ∈]c, b[ increases the uncertainty or

instability of the system. At c or b, E only takes two values of the set {−2, 0, 2},
otherwise E can assume every value in that set, which implies an increase in

entropy. In other words, entropy prefers to classify correctly one class and leave

all the errors to the other one.

Figure 4.2 can be easily reproduced for unequal priors, where the general be-

havior is the same. In fact, we can show that

Theorem 4. (Lúıs Silva et al. [102]) Suppose we have two overlapped uniform

distributions as in (4.6) such that a < c ≤ b < d. HS and P have the same

global minimum.

Proof. Consider the P-1×P1 plane. First, notice that an error probability path,

Ppath, produced by P as in (4.7) is always composed of 3 linear segments: two

along the axes connected by the remaining one (in some situations degenerated

to one point). Second, notice that HS, as a function of the probabilities (surface
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Figure 4.3: (a) Contours of HS (filled with a gray colormap where brighter

colors correspond to higher values) and a general path, Ppath, produced by P .

Also shown, some contours for P = P-1 + P1 = const. (b) P and HS plotted as

functions of w0 for the Ppath in (a).

contours in Figure 4.3a), is concave and symmetric about the vertical plane

P-1 = P1. Therefore, the global minimum of HS constrained to Ppath always

coincides with the global minimum of the probability of error.

The above demonstration can be illustrated using Figure 4.3, where the contour

lines of HS are plotted as functions of P-1 and P1. The solid line represents

Ppath (Figure 4.3b plots P and HS as functions of w0 for this path) and the

dashed lines are contours of equal probability. The solution to the problem

min HS subject to Ppath corresponds to the min HS point in the curve obtained

by intersecting the HS surface with the vertical plane passing through PA and

PB . Thus, the sought for minimum can only occur at the curve ends (either PA

or PB or both).

When we have separable classes it is obvious that we should set w∗
0 anywhere in

]b, c[. The minimum entropy value (HS = 0) also occurs in that interval because



94 CHAPTER 4. MEE WITH DISCRETE ERRORS

P (E = 0) = 1. Again we are led to the minimum probability of error.

4.2.2 MEE Splits for Mutually Symmetric Distributions

We now progress to the study of MEE single splits for continuous pdf’s, which

was not the case of the uniform pdf’s above. In particular, we will need to define

the special case of two-class problems with mutually symmetric input pdf’s. We

start by characterizing the critical points (roots of the first derivative) of HS.

Critical Points of the Error Entropy

Suppose the two classes Ct, t ∈ {−1, 1} are represented by arbitrary continuous

pdf’s, fX|t (see Figure 2.1a in section 2.1). We define the center at of a

distribution as its median. Let us consider, without loss of generality, that

class C1 is centered at 0 and the center of class C-1 lies in the non-positive part

of the real line. We are looking for the relations between the Stoller split w∗
0

and the split obtained by minimizing error’s entropy. The following result is a

starting point by relating w∗
0 to the critical points of HS .

Theorem 5. (Lúıs Silva et al. [102]) In the univariate two-class problem, the

Stoller split w∗
0 is a critical point of the error entropy if the error probabilities

of each class at w∗
0 are equal.

Proof. From formula (4.1) one derives

dH

dw0
= qfX|-1 log (P-1) −

(

qfX|-1 − pfX|1
)

log (1 − P-1 − P1) − pfX|1 log (P1) .

A critical point of HS must satisfy

dH

dw0
= 0 ⇔ p

q

fX|1
fX|-1

=
log
(

P-1/(1 − P-1 − P1)
)

log
(

P1/(1 − P-1 − P1)
) . (4.8)

If the densities are continuous the Stoller split w∗
0 is obtained either at a pfX|1

vs qfX|-1 intersection, pfX|1(w
∗
0) = qfX|-1(w

∗
0), or at +∞ or -∞ (cf. Theorem 1,
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section 2.1). In the latter case, the error probabilities of each class are unequal.

In the former case, we have, from (4.8)

pfX|1(w
∗
0) = qfX|-1(w

∗
0) ⇔ P-1(w

∗
0) = P1(w

∗
0), (4.9)

where P-1(w
∗
0), P1(w

∗
0) are the probabilities of error of each class with split point

at w∗
0.

The above result states the conditions for a correspondence between the Stoller

split and an entropy extremum. It shows that the MEE principle cannot be

applied in general situations. Moreover, Theorem 5 says nothing about the

nature (maximum or minimum) of the critical point. As we will see, the obtained

solution is not guaranteed to be an entropy minimum. We first illustrate the

above Theorem with a simple example.

Example: Take the situation depicted in Figure 4.2a for uniform input distribu-

tions, restricted to the overlapped region [c, b] = [0.7, 1] (to ensure derivability).

The Stoller split can be at any point of this interval but the critical point (in

this case a maximum) of entropy occurs at the middle point of that interval,

which corresponds precisely to the split where the two classes have equal error

probabilities.

To further evaluate the nature of the critical points obtained in Theorem 5, we

analyze the sign of d2HS

dw2
0

∣

∣

∣

w∗

0

. One has

d2HS

dw2
0

= q
dfX|-1
dw0

log

(

P-1

1 − P-1 − P1

)

− p
dfX|1
dw0

log

(

P1

1 − P-1 − P1

)

−

−
q2f2

X|-1 + p2f2
X|1

1 − P-1 − P1
−

q2f2
X|-1

P-1
−

p2f2
X|1

P1
. (4.10)

In order to deal with expression (4.10) we make a simplification by restricting

to the case of mutually symmetric distributions defined by the following
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Definition 1. Two class distributions represented by probability densities g1

and g2 and priors p and q respectively, are said to be mutually symmetric if

pg1(a1 − x) = qg2(x − a2) where at is the center of the density gt.

It is easy to see that, if fX|-1 and fX|1 are mutually symmetric, one has

q
dfX|-1
dw0

∣

∣

∣

∣

w∗

0

= − p
dfX|1
dw0

∣

∣

∣

∣

w∗

0

. (4.11)

In the conditions of Theorem 5 one has

pfX|1(w
∗
0) = qfX|-1(w

∗
0) and P-1(w

∗
0) = P1(w

∗
0). (4.12)

For notation simplicity, one defines pfX|1(w
∗
0) ≡ f and P1(w

∗
0) ≡ P and (4.10)

can be simplified and re-written as

d2HS

dw2
0

∣

∣

∣

∣

w∗

0

= −2

(

df

dw0

∣

∣

∣

∣

w∗

0

log
P

1 − 2P
+

f2

P

)

. (4.13)

Therefore, for mutually symmetric distributions we only need to analyze what

happens at one side of one of the distribution centers (in this case a1). Since we

have set a1 = 0, w∗
0 occurs at half distance of the median of C-1 to the origin,

somewhere in ] −∞, 0]. Let2

Q(w∗
0) =

df

dw0
log

P

1 − 2P
+

f2

P
. (4.14)

The function Q(w∗
0) plays the key role in the analysis of the error entropy critical

points. If the classes are sufficiently distant, i.e., C-1 slidding to the left (w∗
0 →

−∞ or w∗
0 tends to the infimum of the support of C1), then df

dw0
> 0 and we can

rewrite expression (4.14) as

Q(w∗
0) =

df

dw0

(

log
P

1 − 2P
+

f2

df
dw0

P

)

. (4.15)

Using the results given in Appendix D, the second term between brackets is

finite, while P can be made sufficiently small such that the first term is greater

2We let fall the dependency of the derivative on w∗

0 in order to simplify notation.
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in absolute value than the second one. Thus, Q(w∗
0) < 0 and (4.13) is positive.

Hence the Stoller split w∗
0 is an entropy minimum. If the classes are sufficiently

close, i.e., C-1 slidding rightwards (w∗
0 → 0), there are three situations to

consider. Define xM and xm as the abcissas where f has the mode and the

median, respectively. Then

1. xM = xm. In this case, f is symmetric and by the continuity of Q(·)
and the fact that Q(xM ) > 0 (since df

dw0

∣

∣

∣

xM

= 0), Q(w∗
0) is positive in a

neighborhood of xM .

2. xM < xm. Again, Q(w∗
0) > 0 in a neighborhood of xM , because Q(xM ) > 0.

3. xM > xm. We have no guarantee on a sign change in Q(w∗
0).

The first two situations show that Q(w∗
0) changes its sign, which means that

the Stoller split turns to be an entropy maximum if the distributions are close

enough.

In the third situation we may have or not a sign change of Q(w∗
0). In fact,

as shown below for the special case of input lognormal distributions, we have

situations where there is always an entropy minimum in an intersection of the

posterior densities, but the Stoller split changes its location as the distributions

get closer.

Furthermore, for each probability distribution, the ratio w∗
0/∆ between the

possible solution of Q(w∗
0) = 0 and the distribution’s scale ∆, is a constant.

In fact, for two variables X and Y , with Y = ∆ ·X (Y is a scaled version of X),

we have

FY (y) = FX(y/∆),

fY (y) =
1

∆
fX (y/∆) , (4.16)

dfY

dy

∣

∣

∣

∣

y

=

(

1

∆

)2 dfX

dx

∣

∣

∣

∣

y/∆

.
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Substituting in expression (4.14) we get

dfY

dy

∣

∣

∣

∣

y

log
FY (y)

1 − 2FY (y)
+

f2
Y (y)

FY (y)
= 0 ⇐⇒

(

1

∆

)2
(

dfX

dx

∣

∣

∣

∣

y/∆

log
FX(y/∆)

1 − 2FX(y/∆)
+

f2
X(y/∆)

FX(y/∆)

)

= 0. (4.17)

Thus, the solution is w∗
0(Y )/∆ = w∗

0(X).

Critical Points for Some Distributions

We present three specific examples of univariate split problems that illustrate

the results of previous sections. In the first two examples, for the triangular

and Gaussian distributions, we determine the minimum distance between the

classes such that the Stoller split is an entropy minimum. We define d/∆ as a

normalized distance between the centers of the two classes where d = a1 − a-1

and ∆ is the distribution’s scale. Remember from the end of last section that

it is only needed to set ∆ = 1. We also set p = q = 1/2 in all examples. The

third example shows that one can have an entropy minimum in an intersection

point where the probabilities of error are equal, but it is not the location of the

Stoller split.

The Triangular Distribution Case

The triangular density function with width (scale) ∆ is given by

f(x) =



















0, x < 0

2
∆ −

(

2
∆

)2 ∣
∣x − ∆

2

∣

∣ , 0 ≤ x ≤ ∆

0, x > ∆

. (4.18)

Setting ∆ = 1, class C1 is centered at 1/2 and class C-1 is moving between −1/2

and 1/2. The Stoller split occurs at w∗
0 = (1/2 + a-1) /2. Carrying out the

computation of Q(w∗
0) one finds that w∗

0 will be a minimum of entropy if

2 log
w∗2

0

1 − 2w∗2
0

+ 4 < 0 ⇔ w∗
0 <

1√
e2 + 2

(4.19)
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and a maximum otherwise.

Thus, for any ∆, the Stoller split is an entropy minimum if

d

∆
> 1 − 2√

e2 + 2
≈ 0.3473. (4.20)

The Gaussian Distribution Case

For Gaussian distributions one has at = µt where µt is the distribution mean

of class Ct. Q(w∗
0) can be easily re-written as a function of d. Indeed, setting

∆ ≡ σ = 1

Q(w∗
0) ≡

d

2
log

(

1 − Φ(d/2)

2Φ(d/2)

)

(1 − Φ (d/2)) +
exp

(

−d 2/8
)

√
2π

, (4.21)

where Φ(·) is the standard Gaussian cumulative distribution function.

If d is below some value, expression (4.21) will be positive and the Stoller split

is an entropy maximum. If it is above, the Stoller split is an entropy minimum.

This turning value was numerically determined to be tvalue = 1.405231264.

The Lognormal Distribution Case

The lognormal distribution has density

g (x|µ, σ) =
1

xσ
√

2π
exp

(

−(log x − µ)2

2σ2

)

. (4.22)

We consider the problem where fX|-1(x) ≡ g(x) and fX|1(x) ≡ g(−x + a-1 + xm)

where xm ≡ a1 is the center (median) of fX|1. Note that this is precisely

the situation 3 (xM > xm) mentioned in section 4.2.2, with xm = eµ and

xM = eµ−σ2

. Figure 4.4 shows the splitting problem in two different conditions:

in Figure 4.4a the distributions are distant and in Figure 4.4b the distributions

have the inner intersection point at their centers. We found that this intersection

is always an entropy minimum (thick solid line) but the Stoller split moves to

one of the outer intersections (as we can see from the minimum probability

of error curve represented by the dashed line) as the distributions get closer.

This illustrates the way Theorem 5 was enunciated, because one can have an
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Figure 4.4: The lognormal distribution case. (a) If the distributions are distant

the Stoller split is an entropy minimum at the inner intersection. (b) The inner

intersection is still an entropy minimum but the Stoller split is at one of the

outer intersections.

intersection point with equal probabilities of error and thus an entropy critical

point, but it may not correspond to the Stoller split intersection.

4.2.3 MEE Splits in Practice

In this section we evaluate, in practice, the ability of the MEE principle to

perform classification in a single-split setting. The results are compared with

the ones obtained by using MSE.

The empirical Stoller split and MSE

In section 2 we discussed how to obtain a theoretical Stoller split (or any

other more complex decision) for a given problem when the class-conditionals

are known. However, in practice, one has only available a set of examples

whose distributions are in general unknown. Stoller [107] proposed the following
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practical rule to choose (w0, y
′) such that the empirical error is minimal

(w0, y
′) = arg min

(x,y)∈R×{−1,1}

1

N

N
∑

i=1

(

I{Xi≤x,Ti 6=y} + I{Xi>x,Ti 6=−y}
)

. (4.23)

The probability of error of Stoller’s rule converges to the Bayes error for N → ∞
[16]. If we take the MSE cost function

EMSE = c
N
∑

i=1

(ti − yi)
2, (4.24)

where c is a constant3, it is easy to see that it is equivalent to Stoller’s rule

(4.23), in the sense that the same discrimination rule (4.2) is determined. In

fact,

EMSE = c





∑

Xi∈C-1
(ti − yi)

2 +
∑

Xi∈C1

(ti − yi)
2



 (4.25)

= c





∑

Xi∈C-1
4I{Xi>x} +

∑

Xi∈C1

4I{Xi≤x}



 (4.26)

= 4c
N
∑

i=1

(

I{Xi≤x,Ti 6=−1} + I{Xi>x,Ti 6=1}
)

, (4.27)

which is the same as in (4.23) if we take c = 1/4N and use the convention that

class C-1 is at the left of the splitting point. Thus, the solution to

(w0, y
′) = arg min

(x,y)∈R×{−1,1}
EMSE (4.28)

is the same as in (4.23).

MEE Empirical Procedure

We have to develop a practical rule to minimize (or maximize, depending on the

conditions of the problem) the error entropy given in (4.1). Recall that

P-1 ≡ P-1(w0) =

∫ −∞

w0

qfX|-1(s)ds = q

[

1 −
∫ w0

−∞
fX|-1(s)ds

]

, (4.29)

P1 ≡ P1(w0) = p

∫ w0

−∞
fX|1(s)ds. (4.30)

3The value of c (which can be 1/N for MSE definition or 1/2 for derivative simplification

reasons) has no influence on the minimization of the cost function.
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The above class-conditionals are to be estimated with the (Gaussian) kernel

density estimator

fX|t(x) ≈ 1

Nh

∑

xi∈Ct

1√
2π

exp

(

−(x − xi)
2

2h2

)

. (4.31)

Hence
∫ w0

−∞
fX|t(s)ds ≈ 1

N

∑

xi∈Ct

Φ

(

w0 − xi

h

)

, (4.32)

where Φ(x) is the standardized Gaussian cumulative distribution function at x.

Expression (4.32) is used to compute and optimize HS(w0) and expression (4.23)

is used to obtain the optimal solution for MSE. The optimization algorithm

we have used in our experiments is based on the Golden Section search with

parabolic interpolation [81].

Experiments

Simulated data: the two-class Gaussian problem

We first study how the MEE principle works with simulated Gaussian data,

where all the conditions can be controlled. To ensure the conditions of Theorem

5, two classes with Gaussian distribution only differing in location (σ was set

to 1) were generated. We also set p = q = 0.5. Several experiments were

made varying the normalized distance d/σ between classes. Taking into account

the tvalue for Gaussian classes, the distance values were chosen so as to have a

maximization problem (d/σ = 1) and two minimization problems (d/σ = 1.5

and 3), one of them with d/σ very close to tvalue. We also varied the number

of available training (# train) and test (# test) patterns for each class. The

solution was determined both for MEE and MSE with the training set and

tested with the test set over 1000 repetitions. To determine the value of h to

use in each problem, we conducted preliminary experiments where we varied h

in order to choose the best one. The final values used were h = 1.7, 0.1 and 0.8

for d = 1, 1.5 and 3, respectively. As these problems can be solved optimally,
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Table 4.1: Test error (%) and standard deviations (in parenthesis) obtained with

MEE and MSE for the simulated Gaussian data. Different values of d were used

and the Bayes error was determined for each case. Underlined results are not

statistically different from the Bayes error.

d = 3 Bayes error: 6.68%

# train 100 1000 100000

# test MEE MSE MEE MSE MEE MSE

50 6.79(2.41) 7.02(2.59) 6.75(2.51) 6.72(2.60) 6.75(2.51) 6.66(2.41)

500 6.82(0.83) 7.07(1.00) 6.70(0.81) 6.76(0.81) 6.66(0.81) 6.69(0.81)

5000 6.81(0.30) 7.11(0.59) 6.69(0.25) 6.72(0.27) 6.68(0.25) 6.67(0.25)

50000 6.81(0.20) 7.11(0.60) 6.69(0.08) 6.74(0.13) 6.68(0.08) 6.68(0.08)

d = 1.5 Bayes error: 22.66%

# train 100 1000 100000

# test MEE MSE MEE MSE MEE MSE

50 25.23(4.65) 23.22(4.22) 24.67(4.58) 22.74(4.23) 22.61(4.21) 22.54(4.10)

500 25.33(2.75) 23.30(1.54) 24.82(2.48) 22.84(1.36) 22.83(1.38) 22.67(1.32)

5000 25.32(2.49) 23.22(0.84) 24.72(2.15) 22.82(0.48) 22.80(0.46) 22.68(0.42)

50000 25.46(2.54) 23.27(0.77) 24.83(2.21) 22.81(0.23) 22.82(0.24) 22.67(0.13)

d = 1 Bayes error: 30.85%

# train 100 1000 100000

# test MEE MSE MEE MSE MEE MSE

50 30.63(4.64) 31.56(4.60) 30.90(4.48) 31.05(4.61) 30.70(4.82) 30.69(4.56)

500 30.95(1.39) 31.54(1.62) 30.88(1.45) 31.01(1.46) 30.80(1.49) 30.75(1.44)

5000 30.93(0.47) 31.37(0.84) 30.87(0.47) 31.04(0.50) 30.84(0.46) 30.84(0.45)

50000 30.93(0.17) 31.39(0.70) 30.86(0.14) 31.02(0.26) 30.85(0.14) 30.86(0.15)

in the Bayes sense, by an unique split, we’ve determined the Bayes error for

each experiment for comparison purposes. Table 4.1 shows the mean values and

standard deviations for the test error of each experiment.
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For d = 1 and d = 3, both MEE and MSE achieve Bayes discrimination

if the training sets are asymptotically large, with slightly better results for

MEE. However, with small training sets, MEE outperforms MSE (statistically

significant differences at level 5%). In fact, we encounter lower test error and

standard deviations, which means that MEE solutions have more stability and

more generalization capability. Increasing the number of test patterns has the

major effect of decreasing the standard deviation of the error estimates. In

this sense, the results for d = 1.5 were quite unexpected. As we can see, the

results of MEE are always worse than with MSE, mainly for small sample sizes.

Further investigations revealed that the problem was due to the proximity of

d = 1.5 to the turning value. The estimate of entropy has high variance and the

location of extrema is highly dependent on the value of h. To solve this problem

we investigated the possibility of transforming the minimization problem into

a maximization problem getting a more accurate and stable procedure. This

is achieved by increasing the value of h. We recall that, estimating a density

function using the kernel method leads to a pdf estimate with mean µ̂ and

variance σ̂2, such as

µ̂ = x̄, σ̂2 = h2 + s2, (4.33)

where x̄ is the data sample mean, s2 is the sample variance and a pdf with

variance h2 is used as kernel function (cf. formula (2.33) in section 2.2.2).

When h is too small, the kernel estimate has large variance leading to a non-

smooth entropy function. When h is large, we have an oversmoothed density, but

entropy is smooth and preserves the extrema. Figure 4.5 depicts this dichotomy.

In Figures 4.5b and 4.5c, the values of h are given by the optimal rule for

Gaussian distributions (formula (2.36) in section 2.2.2) and by expression (4.35)

with c = 3 (see below), respectively. The vertical solid line shows the theoretical

Stoller split for the problem. It is important to note that this is a minimization

problem. In practice, the increased h has the effect of approximating the classes

and thus the maximum instead of the minimum in Figure 4.5c. This means that
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Figure 4.5: Error entropy for different values of h in the Gaussian distribution

example with d = 1.5.

it is more efficient to maximize entropy also when d/σ is close to the turning

value. To set h in order to have a maximization problem, it is sufficient to ensure

that
d

σ
≈ tvalue

c
, (4.34)

where c > 1 and σ is the standard deviation of the estimated density. Thus,

with straightforward calculations one has

h2 ≈
(

d c

tvalue

)2

− s2, (4.35)

or h equal to some large value (empiricaly obtained) if the right hand side of

equation (4.35) is non-positive. An evident choice for c may be c = tvalue,

because this implies d/σ = 1. The increase in c leads to increased h and

the entropy function becomes smoother. Of course, one cannot increase h

indefinitely, because this can bring an almost flat HS and the optimization

algorithm may fail to find its maximum.

The results obtained by applying this strategy shows an increased performance

both in terms of lower test error and lower number of iterations needed. Table 4.2

presents the comparison between MSE and the maximization approach, where h

was determined by formula (4.35) with c = 3. As we can see, MEE now behaves
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Table 4.2: Test error (%) and standard deviations (in brackets) obtained with

MEE (maximization approach) and MSE for the simulated Gaussian data

(d = 1.5). Underlined results are not statistically different from the Bayes error.

# train 100 1000 100000

# test MEE MSE MEE MSE MEE MSE

50 22.95(3.93) 23.22(4.22) 22.78(4.01) 22.74(4.23) 22.47(4.14) 22.54(4.10)

500 22.73(1.28) 23.30(1.54) 22.71(1.32) 22.84(1.36) 22.63(1.33) 22.67(1.32)

5000 22.73(0.41) 23.22(0.84) 22.65(0.43) 22.82(0.48) 22.66(0.41) 22.68(0.42)

50000 22.75(0.17) 23.27(0.77) 22.67(0.14) 22.81(0.23) 22.67(0.13) 22.67(0.13)

similarly as for d = 1 and d = 3 above, outperforming the results of MSE.

For each of the above experiments, we also tested if the mean values obtained

were statistically equal to the Bayes error. The results underlined in the tables

correspond to the cases were this hypothesis cannot be rejected. Again, (ex-

cluding the case d = 1.5 in Table 4.1) we observe an increased performance of

MEE, being more capable of reaching the optimal value.

Real data

The MEE and MSE procedures were also applied to real data. We used four

data sets: Corkstoppers from [73] and Iris, Wine and Glass from the UCI

repository [79]. To allow the use of the results already derived for Gaussian

distributions we have conducted hypothesis testing on the normality of the

samples and homogeneity of variances. Table 4.3 shows a brief description of

the data used and the results of these tests.

All samples except the ones from Glass verify the normality assumption (for a

significance level α = 0.05). The homogeneity of variance property can also be

assured for the same significance level, except for Wine and Glass. Thus, it is

expected a worse performance of MEE in these data sets, because the conditions
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Table 4.3: Description of the univariate two-class problems used from real data.

x is the input variable used and classes is the two classes used from each data

set. The last two rows show the p-values for the normality and homogeneity of

variances tests.

Corkstoppers Iris Wine Glass

x N sepal length sepal width petal length alcalinity of ash Na

classes 1 vs 2 2 vs 3 1 vs 2 1 vs 2

d/σ 1.474 1.036 0.629 2.341 0.717 0.068

normality 0.97; 0.76 0.58; 0.91 0.45; 0.53 0.25; 0.29 0.18; 0.43 0.04; 0.00

hom. var. 0.72 0.15 0.85 0.26 0.01 0.02

of Theorem 5 are not assured. Taking into account the d/σ values we have two

minimization (Corkstoppers and Iris-petal length) and four maximization

problems.

The train and test procedure was a simple holdout method: half of the data set

for training and half for testing. This was repeated over 1000 times varying the

train and test sets. The results obtained are shown in Table 4.4.

Table 4.4: Percentage of test error (standard deviation in brackets) for the

univariate split problems of Table 4.3 with MEE and MSE. The last row presents

the p-values of the test of equality of means.

Corkstoppers Iris Wine Glass

MEE 22.94(4.50) 27.25(4.62) 41.25(8.30) 8.15(2.73) 33.64(4.13) 52.64(3.22)

MSE 26.19(4.84) 30.24(5.43) 40.77(8.2) 8.52(3.17) 35.43(4.50) 52.81(3.29)

p-value 0.00 0.00 0.098 0.005 0.00 0.122

The results show that MEE outperforms MSE in most cases with definitely

better results in four of the six data sets (according to the p-value). Even in
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Wine MEE outperformed MSE. In Corkstoppers, the minimization of error

entropy performed poorly. This is in agreement with the results obtained for the

Gaussian simulated problem with d = 1.5. Thus, the results of Corkstoppers

in Table 4.4 were obtained with the maximization procedure using (4.35) with

c = 3 to set h.

In Iris-petal length we used the minimization approach with better results

than MSE, but it was interesting to notice that the maximization approach

achieved even better results (!): test error of 7.18% and standard deviation

2.78%. We sought an explanation for the difference of the maximization and

minimization results and found it on the small number of patterns used each time

in the training sets, where each class density is estimated with approximately

25 patterns. Also, the optimal value used for the minimization was a mere

h = 0.16 (empirically found), which in conjunction with the small number of

patterns produces very rough density estimates (see Figure 4.6a), constrasting

with those obtained with a large h (Figure 4.6b for the maximization procedure).

Furthermore, as the training sets (remember that each experiment is repeated

1000 times) may vary a lot, the same value of h = 0.16 for all of them is certainly

not an optimal choice. On the other hand, as the maximization approach uses

larger h, the possible differences between different training sets are smoothed out

and have less influence on the final result. This explains the difference between

the minimization and maximization results. In conclusion, for very small data

sets (when the sample may not be representative of the distribution) one should

consider the maximization approach.

4.3 Perceptron Setting

The previous setting of univariate input distributions and single split decisions

was obviously simplistic but important to show that MEE (with discrete errors)
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Figure 4.6: Density estimates of a training set for the two class problem of iris-

petal length with h = 0.16 in (a) (minimization procedure) and h = 1 in (b)

(maximization procedure).

is sub-optimal. It was also possible to characterize the type of solvable problems.

In this section we begin the extension to the general perceptron-type machine

which ends the discussion of the case of discrete errors.

4.3.1 The General Setting

The perceptron with threshold activation function implements the linear dis-

criminant:

y = sign(wTx + w0), (4.36)

which geometrically defines a decision hyperplane (see section 2.3.1). To study

the data classification problem in light of the MEE principle, is tantamount

to analyzing whether the MEE hyperplane corresponds to the optimal solu-

tion in the min Pe sense (for the class of hyperplane decisions). As discussed

before, the error r.v. E = T − Y takes value in {−2, 0, 2} with probabilities

P (E = −2) = P-1, the probability of misclassifying a C-1 pattern, P (E = 2) = P1,
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the probability of misclassifying a C1 pattern and P (E = 0) = 1− P-1 −P1, the

probability of making a correct classification. The error entropy is given by

formula (4.1) and the error probabilities are computed as follows

P-1 = P (Y = 1, T = −1) = P (wTx + w0 ≥ 0, T = −1) = q(1 − Fz|-1(0)),

(4.37)

P1 = P (Y = −1, T = 1) = P (wTx + w0 ≤ 0, T = 1) = pFz|1(0), (4.38)

where Fz|t(0) = P (z ≤ 0|T = t) is the conditional distribution value at the

origin of the univariate r.v. z = wTx + w0.

We study in particular the case of bivariate Gaussian input distributions, that

suffices to show how MEE behaves for the general perceptron. We note that for

a bivariate distribution one has (d = 2)

2
∑

i=1

wixi + w0 ≥ 0 ⇐⇒ w1x1 + w2x2 + w0 ≥ 0,

where at least one of w1 or w2 must be non-zero. Three situations can occur:

1. w1 = 0 and w2 6= 0.

The decision surface is the horizontal line given by x2 = −w0

w2

2. w1 6= 0 and w2 = 0.

The decision surface is the vertical line given by x1 = −w0

w1

3. w1, w2 6= 0.

The decision surface is the general line given by

x2 = −
(

w1

w2
x1 +

w0

w2

)

. (4.39)

We notice the similarity between cases (a) and (b) to the Stoller split problem,

but we recall that we are now considering bivariate distributions and thus

x2 = −w0

w2
represents an horizontal line. In the forthcoming sections we will

reveal their relations. Case 3 can also be reduced to cases 1 or 2 by appropriate
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shifts and rotations, without affecting the error probabilities and entropy.

As a first result we prove a generalized version of Theorem 5. It is shown that

equal class error probabilities is a necessary condition to ensure that the optimal

solution w∗ is a critical point of error entropy.

Theorem 6. (Lúıs Silva et al. [103]) In the two-class multivariate problem,

if the optimal set of parameters given by w∗ = (w∗
1, . . . , w

∗
d, w

∗
0)

T of a separat-

ing hyperplane constitute a critical point of the error entropy then the error

probabilities of each class at w∗ are equal.

Proof. We start by noticing that the linear discriminant can be viewed has a one-

dimensional classification problem. In fact, z̄ = wTx is a projection of x onto w.

From an initial distribution represented by a density g(x) = qgX|-1(x)+pgX|1(x)

we get, on the projected space, the distribution of the projected data given by

f(z̄) = qfz̄|-1(z̄) + pfz̄|1(z̄). The parameter w0 then works as a Stoller split: a

given pattern is classified in C1 if z̄ ≥ w0. Thus, and from the results of section

4.2.2, one can assert that qfz̄|-1(z̄) = pfz̄|1(z̄) at w∗.

We rewrite the error probabilities of each class as

P-1 = q(1 − Fz̄|-1(−w0)), P1 = pFz̄|1(−w0), (4.40)

and compute

∂P-1

∂w0
= −qfz̄|-1(−w0),

∂P1

∂w0
= pfz̄|1(−w0). (4.41)

From (4.1),

∂HS

∂Pt
= log

(

1 − P-1 − P1

Pt

)

, t ∈ {-1, 1}.
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From the chain rule and using the fact that qfz̄|-1 = pfz̄|1 at w∗ we see that

∂HS

∂w0
(w∗) = 0 ⇔ (4.42)

⇔ pfz̄|1(w
∗
0)

(

log

(

1 − P-1 − P1

P-1

)

− log

(

1 − P-1 − P1

P1

))

= 0 (4.43)

⇔ fz̄|1(w
∗
0) = 0 ∨ P-1 = P1. (4.44)

Note that fz̄|1(w
∗
0) = 0 if and only if the classes have distributions with disjoint

supports (they are separable). But in this case P-1 = P1 = 0. Thus, in both

cases P-1 = P1 is a necessary condition.

If it were possible to compute the partial derivatives with respect to w1 and w2

(and hence, have the complete gradient ∇HS) one could also show whether or

not the equal-error-probability condition is also sufficient. The above result is

illustrated with the two following examples for Gaussian distributed classes.

Example 1. We assume µ-1 = (−5, 0), µ1 = (5, 0) and Σ1 = Σ-1 = I. In this

case P-1 = P1 only if p = 1/2. The optimal decision line can be derived as

x∗
1 =

1

10
ln

(

1 − p

p

)

.

Hence,

−w∗
0

w∗
1

=
1

10
ln

(

1 − p

p

)

and therefore we can set

w∗
2 = 0; w∗

1 = 1; w∗
0 = − 1

10
ln

(

1 − p

p

)

.

Now, we can determine (numerically) that ∇HS(w∗) = 0 only if p = 1/2; but

this is the case of equal class error probabilities.

Example 2. In the second example we assume, µ-1 = (−2, 0), µ1 = (2, 0),

p = 1/2, Σ-1 = I and

Σ1 =





2 0

0 1



 .
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Although the covariance matrices are different the optimal decision line is still

a vertical line with equation

x∗
1 = −6 +

√

32 + 2 ln(2).

The error probabilities are unequal, with values P-1 ≈ 0.02 and P1 ≈ 0.03. We

also verify that

∇HS(1, 0,−6 +
√

32 + 2 ln(2)) ≈ (−0.0153, 0,−0.0695) 6= 0, (4.45)

∇HS(−1, 0, 6 −
√

32 + 2 ln(2)) ≈ (0.0149, 0, 0.0672) 6= 0. (4.46)

Thus, the optimal solution is indeed not a critical point of the error entropy.

4.3.2 The Case of Two Gaussian Classes

Consider the two-class problem with input data having bivariate Gaussian dis-

tributions. From the previous discussion, we see that it is crucial to determine

the distribution of z = wTx + w0. For that purpose, we take into account that

Gaussianity is preserved under linear transformations:

Property 1. If x = (x1, . . . , xd)
T has multivariate Gaussian distribution with

mean vector µ and covariance matrix Σ, i.e, x ∼ Gd(µ,Σ), w0 ∈ R
m and W is

a m × d real matrix, then:

z = Wx + w0 ∼ Gm(Wµ + w0,WΣWT).

We now consider two classes such that

Ct∈{-1,1}, : x ∼ G2(µt,Σt) ⇒ z ∼ G1(w
T
µt + w0,w

TΣtw).

Hence, for t ∈ {−1, 1}, we have

Fz|t(0) = Φ

(

−wT
µt + w0√
wTΣtw

)

, (4.47)
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where Φ denotes here the standard Gaussian cumulative function. Therefore,

for equal priors

P-1 =
1

2

(

1 − Φ

(

−wT
µ-1 + w0√
wTΣ-1w

))

; P1 =
1

2
Φ

(

−wT
µ1 + w0√
wTΣ1w

)

. (4.48)

To further investigate this two-class problem in light of the MEE principle we

assume the following:

1. Considering µt = (µt1, µt2) for t ∈ {−1, 1}, we set µt2 = 0 and µ-11 = −µ11

with µ11 > 0; i.e, the centers of the classes lie in the horizontal axis and are

symmetric to each other. Note that every possible class configuration can

be reduced to this case by applying shifts and rotations. As this does not

alter the probabilities P-1 and P1, HS is only shifted and rotated, preserving

the extrema.

2. Σ-1 = Σ1 = I. By assuming equal covariances, the optimal decision surface

is linear (a line in this case). Moreover, assuming the identity matrix for

the covariances (spherical distributions) allows important simplifications in

the above formulas.

With these assumptions, it follows that the optimal solution w∗ = (w∗
1, w

∗
2, w

∗
0)

T

corresponds to the vertical line x1 = 0 and the optimal decision is to classify

x = (x1, x2)
T in C1 if x1 ≥ 0. This means that w∗

0 = w∗
2 = 0 and w∗

1 must be a

positive real number (to give the correct orientation of the classes).

Graphical Analysis

Due to representational reasons, one must fix one of the parameters w1, w2 or

w0. As we have some prior knowledge about the solutions we start by setting

w2 = 0 and plot HS as a function of w1 and w0 in Figures 4.7a and 4.7b.

Note that we are assuming as the solution to the problem a vertical line with

freedom to make shifts. This is in fact equivalent to the Stoller split case. We

may distinguish two regions defined by w1 > 0 and w1 < 0.
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Figure 4.7: HS for different values of µ11 = −µ-11. From left to right we decrease

the distance between the classes. The top figures were drawn with w2 = 0, while

the bottom ones were drawn with w0 = 0.

• w1 > 0

When the classes are distant, the optimal solution is obtained at w0 = 0,

although small shifts of the line are also acceptable (the flat region in Figure

4.7a). In fact, there are infinite near-optimal solutions with approximately

the same entropy (HS ≈ 0). This is because the probabilities P1 and P-1

are not greatly affected by (small) shifting when the classes are distant.

However, when the classes get extremely close (Figure 4.7b), we obtain a

local maximum of the entropy for w0 = 0, which is in accordance to the

results obtained for Stoller splits in a previous section.
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• w1 < 0

In this case, a swapped classification is being performed, C-1 ↔ C1. The

same behaviors as for w1 > 0 are observed.

If we now set w0 = 0, we are considering a solution given by a line passing

through the origin but capable of rotating. Let us analyze the w1 > 0 case, by

inspecting Figures 4.7c and 4.7d. As expected, the minimum of HS is attained

when w2 = 0, but now it will not turn into a maximum when the classes get

closer. Simply, the flat region disappears, because decision boundaries that are

not vertical are less tolerable here (there is more probability of error). Thus,

we encounter different behavior for w2 = 0 and for w0 = 0. A natural question

then arises: what is the behavior of HS when all the parameters are free to

vary? More precisely, when training a learning machine that implements a

hyperplane as the decision surface (like the single perceptron), there is, in

general, no prior information that one or more of the parameters w1, w2 or

w0 should be set to zero (assuming appropriate data shift and rotation). Does

the optimal set of parameters also correspond to an entropy minimum? Does it

turn to a maximum when the classes get closer (as in the Stoller split case)? We

start investigating these questions by inspecting the surface levels of HS , the

equivalent to contour levels in the two variable case. In other words, we examine

the surfaces HS(w1, w2, w0) = c for increasing or decreasing values of c ∈ R.

Figure 4.8 shows some surface levels (iso-entropy surfaces or iso-entropics) of

HS. For distant classes, Figures 4.8a and 4.8b show that as one decreases the

value of c, the iso-entropics converge to the positive w1 axis, meaning that

HS(w1, 0, 0) for w1 > 0 has the lowest entropy value. On the other hand, when

the classes get closer the behavior is completely different. This case is split into

three subfigures in Figure 4.8c, where from left to right, we gradually increase

the value of c. We find that when c is decreased to its minimum, the iso-entropics

converge to the w0 axis (left figure). On the other hand, when c is increased
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Figure 4.8: Surface levels of HS (values of c also shown). Figure (c) is split into

three subfigures with increasing value of c from left to right.

to its maximum (for w1 > 0), the iso-entropics converge to the axis w2 (right

figure). The positive w1 axis appears as a solution when an intermediate value

of c is used, shown in the middle figure of Figure 4.8c, which means that this

solution (in fact, the optimal solution) is not a global minimum nor maximum

of the entropy. In fact, as we found with Figure 4.7b the positive w1 axis is a

local maximum.

First and Second Order Information

Despite the above graphical suggestions one cannot conclude with confidence the
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exact nature of the solutions. We now study their behavior from an analytical

point of view, using first and second order information about HS (first and

second order derivatives). In what follows we omit several expressions due to

their complexity and length. First, we notice that HS is piecewise constant at

the w1 axis (for w1 6= 0) in the following way: HS(w1, 0, 0) = c1 ∈ R, ∀w1 > 0

where c1 → 0 (100% correct classification) as the distance between the classes

is increased; H(w1, 0, 0) = c2 ∈ R, ∀w1 < 0, where c2 → ln(0.5) (ditto,

with swapped class labels) as the distance between the classes is increased.

Computing the gradient of HS we find that vectors of the form w̄ = (w1, 0, 0)
T

for w1 6= 0 are critical points of HS or, in other words, that ∇HS(w̄) = 0.

The nature of these critical points can be further investigated using second

order information about HS , given by its Hessian matrix. Let us consider the

following cases:

1. µ11 = 5 (distant classes) and w1 > 0

The Hessian matrix ∇2HS at w̄ is given by

∇2HS(w̄) =











0 0 0

0 0.4809
w2

1

0

0 0 0.3527
w2

1











,

which is a positive semi-definite matrix. Since it is a diagonal matrix,

its eigenvalues are directly given by the diagonal elements. Due to the

singularity of the Hessian, w̄ is said to be a degenerated critical point and

a clear conclusion about its nature cannot be made. However, we can use

the Taylor expansion of HS to analyze its behavior in a neighborhood of

w̄. Consider increments h = (h1, h2, h3)
T where hi, i = 1, . . . , 3, is small.

We can write

HS(w̄ + h) = HS(w̄) + hT∇HS(w̄) + hT∇2HS(w̄)h + o(‖h‖2). (4.49)
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For very small ‖h‖, one may neglect o(‖h‖2) and write

HS(w̄ + h) − HS(w̄) ≈ hT∇2HS(w̄)h. (4.50)

Now, if the Hessian were positive definite (all positive eigenvalues), then for

any h, the quadratic form hT∇2HS(w̄)h would be positive and w̄ would be

a strict local minimum. However, it is easy to see that there are increments

h such that hT∇2HS(w̄)h = 0; these are of the form h = (h1, 0, 0). But

in this case, w̄ + h belongs to the positive w1 axis where HS is constant.

Along any other h directions, the quadratic form is positive. This means

that w̄, or more precisely, the whole positive w1 axis, is in fact an entropy

minimum.

2. µ11 = 0.5 (close classes) and w1 > 0

The Hessian now becomes

∇2HS(w̄) =











0 0 0

0 0.2641
w2

1

0

0 0 −0.1377
w2

1











. (4.51)

This matrix is indefinite, because it has positive and negative eigenvalues.

This means that there are directions such that w̄ is a minimum and di-

rections such that w̄ is a maximum (and of course, as discussed above,

directions where HS remains constant). These critical points are called

saddle points.

This analysis shows that the discrete MEE principle applied to hyperplane

learning, is even less general than in the unidimensional case. In fact, while

for the Stoller split problems the minimum of entropy changes to a maximum as

the classes get closer, in the bivariate case the minimum may change to a saddle

point, which brings about further difficulties when applying an optimization

strategy. Figure 4.9 illustrates, in terms of the error probability mass func-

tion (pmf), the way the minimum-to-maximum flip is performed in the Stoller
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Figure 4.9: Probability mass functions for close (top) and distant (bottom)

classes in the Stoller split setting. Figures from left to right correspond to the

split position at the left, at the location and at the right of the optimal split,

respectively.

split case. At the top, for close classes, HS has a maximum at the optimal

solution, whereas for distant classes (at the bottom), HS has a minimum. In

particular, it is intuitive that the distribution in Figure 4.9b corresponds to

a more uncertain system than in Figure 4.9a. Moreover, looking to the pmf’s

corresponding to the optimal splits (Figures 4.9b and 4.9e), one understands that

the peaky distribution for distant classes is gradually lost and the relation to

the non-optimal counterparts is significantly altered resulting in the minimum-

to-maximum flip. In the bivariate case, since one may encounter a saddle point

in the (w1, w2, w0) space for sufficiently close classes, one gets a behavior such

as the one shown at the top of Figure 4.9 for the (w1, 0, w0) subspace (allowing
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shifts along x1) or the one shown at the bottom of Figure 4.9 for the (w1, w2, 0)

subspace (allowing rotations in the (x1, x2) plane around the half-distance point

between the means). This behavior of course generalizes to the multivariate

perceptron.

Minimum Distance for Gaussian Classes

It is worth asking when are the Gaussian classes no longer “distant” and the

minimum of HS turns into a saddle point. This can be studied using the

eigenvalues of the Hessian matrix. In fact, ∇2HS(w̄) is always a diagonal

matrix with one zero entry, one positive entry, and a third entry that changes

sign as the classes get closer (as previously illustrated); these entries are the

eigenvalues of the matrix. We can, therefore, determine the minimum distance

yielding a minimum of HS at (w1, 0, 0)
T for w1 6= 0, by inspecting when the sign-

changing eigenvalue changes of sign. With µ11 = −µ-11, µ12 = µ-12 = 0 and

Σ1 = Σ2 = σ2I, this eigenvalue can be written as a function of d = µ11/σ, which

can be seen as a normalized half distance between the classes. The obtained

expression is rather long but it can be verified that the eigenvalue is positive if

the following expression is positive:

√
2πd(1 − Φ(d)) ln

(

2Φ(d)

1 − Φ(d)

)

− e−
d2

2 , (4.52)

where Φ is as before. The turning value is approximately d = 0.7026, which

corresponds to a normalized distance between the classes of approximately

1.4052. This is precisely the same value encountered for the Stoller split problem

in section 4.2.

In this section we analyzed the MEE principle for the case of discrete errors. We

started by characterizing the two-class problem with uniform distributions were

we found that MEE leads to the optimal classifier for the class of Stoller split

decision rules. This optimal solution also corresponds to the optimal decision
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rule obtained using the minimum probability of error criterion. Thus, Bayes

error is also guaranteed in this situation. For general class density functions, we

proved in Theorem 5 that a Stoller split occurs at an entropy extremum only if

the error probabilities for both classes are equal, which restricts the applicability

of MEE. Moreover, we showed that for mutually symmetric distributions and

in the conditions of Theorem 5, the Stoller split may be either an entropy

minimum or maximum, depending on the proximity of the classes. We actually

determined the turning proximity values for some distributions. These were

used as a guideline for the empirical procedure, where MEE outperformed MSE

specially for small sample sizes. We also encountered a high sensitivity of

the discrimination process to the smoothing parameter, h. Meanwhile, our

analysis enlightened the fact that in the cases where d/∆ is near the turning

proximity value, it is preferable to set h so as to convert the minimization

process into a maximization process. In what concerns the perceptron setting,

we found that the maximum-to-minimum turning point for the class closeness

measure generalizes to entropy saddle points. Moreover, we have confirmed

the turning point value for Gaussian inputs. We have also shown that the

necessary condition of equal class error probabilities, found for the Stoller split,

also generalizes to the perceptron setting.



Chapter 5

Theoretical analysis of MEE:

the Continuous Errors Case

In the previous chapter we have studied the case of threshold-type activation

functions which gave origin to a discrete error random variable E. We now

consider the case where the learning machine has continuous activation functions

and E is a continuous r.v. (which in fact is the strategy used in general MLP

training). Thus, the definition of entropy for a continuous random variable

is used. By analyzing the cases of split-type and perceptron-type machines, we

show that major effects can be produced if one increases the machine’s flexibility

and that the kernel density estimator present in the estimation of entropy has

an important impact [103].

5.1 General Setting

Let X be the (input) random variable with support DX from which the data

is generated and T the target variable taking value on the set {−1, 1} (as

123
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before, we represent the classes as C-1 and C1) with priors p = P (T = 1) and

q = 1 − p = P (T = −1). Hence, X has a probability density function (pdf)

given by

fX(x) = qfX(x|T = −1) + pfX(x|T = 1), x ∈ DX . (5.1)

For notation simplicity, we denote fX|t(x) ≡ fX(x|T = t), for t ∈ {−1, 1}.
The perceptron performs a mapping ϕw : DX → DY from its input to its output

(with support DY ). The function y = ϕw(x) is a continuous and differentiable

function, depending on a vector of parameters w, which is expected to generate

a discriminant rule of the form

x ∈ DX belongs to C1 if ϕw(x) ≥ 0.

The error random variable can now be defined as the difference between the

target T and the output Y

E = T − Y = T − ϕw(X). (5.2)

The present choice of target coding, suggests the use of an activation function

such that ϕw(x) ∈ [−1, 1] ⊇ DY (see Theorem 2 in section 3.1.1). Hence, E

is a continuous r.v. taking value on a uncountable subset of [−2, 2], and its

distribution is straightforward to derive

FE(e) = P (E ≤ e) = P ((T = 1, E ≤ e) ∨ (T = −1, E ≤ e))

= P (T = 1)P (E ≤ e|T = 1) + P (T = −1)P (E ≤ e|T = −1)

= pP (1 − Y ≤ e|T = 1) + qP (−1 − Y ≤ e|T = −1)

= p(1 − FY |1(1 − e)) + q(1 − FY |-1(−1 − e))

= 1 − pFY |1(1 − e) − qFY |-1(−1 − e). (5.3)

The corresponding pdf is obtained by applying differentiation

fE(e) =
dFE

de
= pfY |1(1 − e) + qfY |-1(−1 − e). (5.4)
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Figure 5.1: Illustration of the transformation E = T − Y , emphasizing the fact

that fE(0) = 0 for continuous class conditionals.

Note that if the class-conditional pdf’s of Y are continuous, we have fE(0) = 0

since limǫ→0 fY |-1(−1 + ǫ) = limǫ→0 fY |1(1− ǫ) = 0, as illustrated in Figure 5.1.

We shall study, in the following sections, the classifier problem in light of the

MEE principle, by analyzing the behavior of the error entropy as we vary the

parameters inherent to the model ϕw(x) (that we shall denote simply ϕ(x)) and

investigate if the theoretical optimal solution (in the sense of minimum prob-

ability of classification error) corresponds to an error distribution of minimum

entropy.

5.2 Split-type Setting

We start by considering perceptrons with only one adjustable parameter; that is,

the perceptron is trained to find a split point in the error distribution, as in the

Stoller split setting. The only difference is that now we have a continuous error

distribution. We start by considering the case of a linear activation function.
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5.2.1 Linear Activation Function

If the activation function is linear, with ϕ(x) = x − w0, that is, we are only

considering a bias term, we expect from what was discussed in section 3.1.1

that HS (or Rényi’s counterpart) will not be dependent on the parameter. This

can be shown with a simple example, by considering two uniform overlapping

classes defined by the densities

fX|-1(x) =
1

b − a
I[a,b](x), fX|1(x) =

1

d − c
I[c,d](x), (5.5)

with a < c < b < d. Note that, if ϕ(x) ≥ 0 ⇐⇒ x ≥ w0 we classify x as C1,

otherwise we classify as C-1. One easily derives

fY |-1(−1 − e) =
1

b − a
I[w0−b−1,w0−a−1](e), (5.6)

fY |1(1 − e) =
1

d − c
I[w0−d+1,w0−c+1](e). (5.7)

The final configuration of the transformed (shifted) distributions is dependent

on the values of c − a and d − b (in some cases the optimal solution would

need two splits). Also, E is not necessarily constrained to the interval [−2, 2].

We analyze the case where the final distributions are such that w0 − d + 1 <

w0− b−1 < w0− c+1 < w0−a−1, that is we assume an overlap in the interval

[w0 − b − 1, w0 − c + 1]. In this case,

HS = −
[
∫ w0−b−1

w0−d+1

p

d − c
ln

(

p

d − c

)

de+

∫ w0−c+1

w0−b−1

(

p

d − c
+

q

b − a

)

ln

(

p

d − c
+

q

b − a

)

de+

∫ w0−a−1

w0−c+1

q

b − a
ln

(

q

b − a

)

de

]

,
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which brings

HS =
p(d − b − 2)

d − c
ln

(

p

d − c

)

+

(

p

d − c
+

q

b − a

)

ln

(

p

d − c
+

q

b − a

)

(b − c + 2)+

q(c − a − 2)

b − a
ln

(

q

b − a

)

,

which does not dependent on w! Of course, the linear activation is not the

most appropriate for classification tasks, and in general, squashing activation

functions are used. These are the ones considered from now on.

5.2.2 Squashing Activation Function

The squashing activation function to be considered is ϕ(x) = tanh(x), a conti-

nuous, differentiable and strictly increasing function function with the property

limx→±∞ϕ(x) = ±1. Under these conditions one has

t = −1 −2 ≤ e ≤ 0 ⇒ fY |-1(−1 − e) = 0 ∀e /∈ [−2, 0], (5.8)

t = 1 0 ≤ e ≤ 2 ⇒ fY |1(1 − e) = 0 ∀e /∈ [0, 2].

Hence, and denoting fY |t(t− e) by fY |t(e) for t ∈ {−1, 1}, Shannon entropy can

be derived as

HS = −
∫ ∞

−∞
fE(e) log fE(e)de

= −
∫ ∞

−∞

(

qfY |-1(e) + pfY |1(e)
)

log
(

qfY |-1(e) + pfY |1(e)
)

de

= −
∫ 2

−2

(

qfY |-1(e) + pfY |1(e)
)

log
(

qfY |-1(e) + pfY |1(e)
)

de.

By the properties in (5.8) one has

HS = −
[

∫ 0

−2
qfY |-1(e) log

(

qfY |-1(e)
)

de +

∫ 2

0
pfY |1(e) log

(

pfY |1(e)
)

de
]

. (5.9)
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Working separately with each of the integrals in (5.9) one derives
∫ 0

−2
qfY |-1(e) log

(

qfY |-1(e)
)

de = q log q + q

∫ 0

−2
fY |-1(e) log fY |-1(e)de

= q log q − qHS|-1,
∫ 2

0
qfY |1(e) log

(

qfY |1(e)
)

de = p log p − pHS|1.

Thus HS is decomposed as a sum of the error sub-entropies for each class

HS = qHS|-1 + pHS|1 + HS(T ), (5.10)

where HS|t for t ∈ {−1, 1} is the error entropy of class Ct and HS(T ) is the

entropy of the variable T . Using similar arguments, we derive Rényi’s entropy

HRα =
1

1 − α
log

∫ ∞

−∞
[fE(e)]α de

=
1

1 − α
log

[
∫ 0

−2

[

qfY |-1(e)
]α

de +

∫ 2

0

[

pfY |1(e)
]α

de

]

.

Although Rényi’s entropy is not decomposable as a sum of class sub-entropies,

the minimization problem can be transformed into an equivalent problem where

a sum of two positive quantities (each exclusively related to each class) appears.

As an example, for the special case with α = 2, the minimization of HR2
is

equivalent to the maximization of

VR2
= exp(−HR2

) =

∫ 0

−2

[

qfY |-1(e)
]2

de +

∫ 2

0

[

pfY |1(e)
]2

de. (5.11)

This decomposition is an important property of MEE for classification which is

not encountered in the case of regression.

The same decomposition appears for multi-class problems. In fact, whenever a

pdf f(x) can be written as

f(x) =
∑

i

aifi(x),

where
∑

i ai = 1 and the supports Di of the pdf’s fi(x) are such that Di ∩ Dj = ∅,

∀i 6= j, then the Shannon’s entropy Hf associated with f is given by

Hf = −
∑

i

ai log(ai) +
∑

i

aiHfi
,
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where Hfi
is the Shannon’s entropy associated with fi. This applies to multi-

class problems whenever an 1-out-of-C coding is used (see section 2.3.2). An

equivalent decomposition appears for VR2
.

Another result needed is the following well-known theorem of r.v. transforma-

tion:

Theorem 7. Let f(x) be the pdf of the r.v. X. Assume ϕ(x) to be monotonic

and differentiable and suppose ϕ′(x) 6= 0 ∀x. If g(y) is the density of Y = ϕ(X)

then

g(y) =















f(ϕ-1(y))

|ϕ′(ϕ-1(y))| , inf ϕ(x) < y < supϕ(x)

0, otherwise

, (5.12)

where x = ϕ-1(y) is the inverse function of y = ϕ(x).

Note that our aim is to compute the density of E, which is a transformation of

the input X. For the split-type case, ϕ(x) = tanh(x − w0), is a differentiable

and strictly increasing transformation, where w0 acts as the split point. We thus

have

ϕ′(x) = 1 − tanh2(x − w0) 6= 0 ∀x, (5.13)

ϕ−1(y) = w0 + arctanh(y), (5.14)

ϕ′(ϕ−1(y)) = 1 − y2. (5.15)

We proceed to analyzing two special cases. Consider first that the two classes

have inputs described by two overlapping uniform densities as in (5.5). Making

use of Theorem 7 one derives

fY |-1(−1 − e) =
−1

(b − a)e(2 + e)
I[−1−tanh(b−w0),−1−tanh(a−w0)](e), (5.16)

fY |1(1 − e) =
1

(d − c)e(2 − e)
I[1−tanh(d−w0),1−tanh(c−w0)](e). (5.17)
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Thus, from (5.10), we obtain

HS = q





2 log
(

|e|
2+e

)

log
(

−1
(b−a)e(2+e)

)

+ 4dilog
(

2+e
2

)

4(b − a)
+

+
log |e| log

(

|e|(2+e)2

16

)

+ 2 log(2)2 − log(2 + e)2

4(b − a)





−1−tanh(a−w0)

−1−tanh(b−w0)

+

+ p





2 log
(

e
|e−2|

)

log ((d − c)e(2 − e)) + 4dilog
(

e
2

)

4(d − c)
+

+
log |e − 2| log

(

e2|e−2|
16

)

+ 2 log(2)2 − log(e)2

4(d − c)





1−tanh(c−w0)

1−tanh(d−w0)

+ HS(T ) (5.18)

and for Rényi’s entropy

VR2
= −q2

4





2 + e(2 + e) log
(

|e|
2+e

)

+ 2e

(b − a)2(2 + e)e





−1−tanh(a−w0)

−1−tanh(b−w0)

+

+
p2

4





2 + log
(

e
|e−2|

)

e(e − 2) − 2e

(d − c)2(e − 2)e





1−tanh(c−w0)

1−tanh(d−w0)

. (5.19)

Figure 5.2 shows HS and HR2
as a function of w0. Class C-1 is fixed to the

interval [a, b] = [0, 1] and p = q = 1/2. In Figure 5.2a, where the classes have

equal support width, the optimal split is any point in the interval [0.5, 1]. Both

Shannon and Rényi’s entropies have a maximum at w0 = 0.75. This is in direct

contradiction with the MEE criterion, which states that w0 should be chosen

so as to minimize the error entropy. The particular choice of this split can

be explained by the fact that this is the split point providing equal class error

probability (as already encountered in the discrete errors case). In general, one

can prove the following. Let a = 0 ≤ c ≤ b ≤ d = c+k, where k ∈ R controls the

support width of C1. For k ≥ b − a the optimal split point for the b = 1 setting

occurs obviously at w0 = 1, since it will correspond to min Pe. For Shannon
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Figure 5.2: Shannon (solid) and Rényi (dashed) entropies as a function of w0

for the case of uniform classes.

entropy

dHS

dw0
=

k log
(

cosh2(w0)

cosh2(b−w0)

)

+ b log
(

cosh(c−w0)2

cosh(c+k−w0)2

)

−2bk
, (5.20)

d2HS

dw2
0

= −
k sinh(b)

cosh(w0) cosh(b−w0) + b
(

sinh(c+k−w0)
cosh(c+k−w0)

− sinh(c−w0)
cosh(c−w0)

)

bk
. (5.21)

If we take k = b, and thus, both classes have equal support width, we get

dHS

dw0

(

b + c

2

)

= 0 ∧ d2HS

dw2
0

(

b + c

2

)

< 0, (5.22)

which means that (b + c)/2, the middle point of the overlapped region, is a

maximizer of HS.

A rather unexpected behavior (regarding the practical evidence in Chapter

3) appears when the support of class C1 is increased. In Figure 5.2b, where

[c, d] = [0.5, 2], the optimal split moves toward an unique point, w0 = 1.

However, both Shannon and Rényi’s entropies fail to identify it (now, the

maximum is at w0 ≈ 0.859 and w0 ≈ 0.841, respectively). Note that in this

case, the class error probabilities are not equal. We know that in the discrete
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Figure 5.3: Contour level dHS
dw0

= 0 as a function of c and k.

case a necessary condition for the optimal split to correspond to the entropy

extrema is that the class error probabilities are equal. However, in the present

case this correspondence is not valid. This can be seen by first answering the

question: is there any combination of c and k which yields w0 = 1 as the optimal

solution? Figure 5.3 answers this question by showing the solution of dHS
dw0

= 0

for w0 = 1 and b = 1. This figure tells us that k has to be greater than 1 and

furthermore as c decreases, a higher k is needed. As an example, we may see

that while the setting [a, b] = [0, 1] and [c, d] = [1, 2] has a maximum at w0 = 1,

the setting [a, b] = [0, 1] and [c, d] = [1, 1.9] does not. This also contradicts

the “equal-error necessary condition” hypothesis, because for c < 1 < k the

error probabilities are not equal (for example, for c = 0.8 one should have

k ≈ 1.48). Can these behaviors be attributed to the fact that the uniform pdf is

not continuous? The answer is negative and to show this we consider the case

where the input distributions are Gaussian

fX|-1(x) ∼ N(µ-1, σ
2
-1), fX|1(x) ∼ N(µ1, σ

2
1).
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Figure 5.4: Shannon (solid) and Rényi’s (dashed) entropies as a function of w0

for the case of Gaussian classes.

Applying Theorem 7 one easily gets

fY |t(t − e) =

exp

(

−1
2

(

arctanh(t−e)−(µt−w)
σt

)2
)

√
2πσt e(2t − e)

I[t−1,t+1](e). (5.23)

Figure 5.4 shows HS and HR2
as a function of w0 using approximate computation

of the integrals (there is no closed form for the integrals). Class C-1 is fixed to

(µ-1, σ-1) = (0, 1) and p = q = 1/2. In Figure 5.4a, where the class means just

differ in location, the optimal split is the middle point between the class means,

w∗
0 = 1.5. Both entropies find this point as a maximum. Moreover, in Figure

5.4b, where (µ1, σ1) = (3, 2), the optimal split changes to w0 ≈ 1.403. Both

entropies fail to identify this point. Again the error probabilities for each class

are equal in the former case, while this does not happen in the latter case.

These theoretical behaviors of both Shannon and Rényi’s entropies (maximum

instead of minimum and displaced from the minW PeΦ position) raise the natural

question: how is it possible that the MEE principle works well in practice

(as conclusively shown in Chapter 3 and [90, 104] with MLP’s and recurrent
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networks in [4])? There are two main aspects that differentiate the preceding

theoretical analysis from the mentioned practical implementation. The first

one is related to the learning machine’s flexibility/complexity. In fact, in the

preceding examples the perceptron was allowed only a sliding split that basically

sets the location of the a.f.. As shown in the following section, a more flexible

activation is more capable to drive MEE to min Pe. Secondly, as the true

class distributions are not known, the error distribution cannot be computed

using tools like Theorem 7. A kernel density estimator is used in practice and

its relevant influence in driving MEE towards minPe is also investigated in a

forthcoming section.

5.3 Perceptron-type Setting

We now assume ϕ(x) = tanh(w1x − w0), that is, instead of a split-type setting,

controlled by w0 imposing a simple sliding of ϕ(x), we now have a more realistic

perceptron setting with a parameter, w1, controlling the function shape of ϕ(x)

(in fact, the steepness of ϕ). In particular, ϕ(x) converges to the sign activation

function as w1 → +∞. We also assume that w1 > 0 since for w1 = 0, no

adaptation would be possible and if w1 < 0, ϕ would perform a swapped

classification. Using Theorem 7 one derives

ϕ′(x) = w1(1 − tanh2(w1x − w0)) 6= 0 ∀x, (5.24)

ϕ−1(y) =
1

w1
(w0 + arctanh(y)), (5.25)

ϕ′(ϕ−1(y)) = w1(1 − y2). (5.26)

We follow the same strategy as before, by analyzing the case of uniform and

Gaussian input distributions.

The error pdf’s for uniform classes are again obtained using Theorem 7. They
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Figure 5.5: Surfaces and contour plots of HS(w1, w0) for different values of [c, d].

look very similar to the previous ones

fY |-1(−1 − e) =
−1

w1(b − a)e(2 + e)
I[−1−tanh(w1b−w0),−1−tanh(w1a−w0)], (5.27)

fY |1(1 − e) =
1

w1(d − c)e(2 − e)
I[1−tanh(w1d−w0),1−tanh(w1c−w0)]. (5.28)

Entropy is now a function of two variables, w1 and w0. Figure 5.5 shows the

surface of HS and its contours. Two examples are shown with [a, b] = [0, 1] and

[c, d] = [0.2, 1.2] in Figure 5.5a and [c, d] = [0.9, 1.9] in Figure 5.5b. The grids for

w1 and w0 are chosen so that they are able to display a set of optimal solutions,

namely the middle points of the overlapping intervals. We see that both surfaces

have a maximum. Analyzing the more informative contour plots, we encounter

interesting behaviors. Let us first analyze the case where the overlapping region
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is [0.2, 1] (Figure 5.5a). Any split in this interval is optimal. In particular, the

“middle” optimal split (the one corresponding to equal class error probabilities)

corresponds to the w0/w1 = 0.6 line. This line (solid line) is represented over

the contour plot together with the w0/w1 = 0.2 and w0/w1 = 1 dashed lines,

also achieving min Pe. The solid line appears to pass at the location of the

maximum as can be more clearly seen in the zoomed image (elliptical axes).

However, instead of yielding the whole w0/w1 = 0.6 line as a solution, i.e.,

instead of exhibiting a straight “ridge”, the entropy surface exhibits a single

peak.

In the bottom figures we encounter a similar behavior. It is interesting to see that

in this case a lower value for w1 is obtained. In fact one observes a dependency

between the steepness of the a.f. and the amount of overlap, with an increased

overlap requiring an increased steepness of the activation function.

For this setting, an analytical treatment can be made. Consider HS = HS(w1, w0)

and a = 0 ≤ c ≤ b ≤ d = c + b (classes with equal-length support). Then1

∂HS

∂w0

(

w1, w1
b + c

2

)

= 0. (5.29)

This means that the middle point of the overlapped region is a candidate for an

extremum. Its nature can be studied using the second order information given

by the Hessian. We then verify that

∂2HS

∂w2
0

(

w1, w1
b + c

2

)

< 0, (5.30)

∂2HS

∂w1∂w0

(

w1, w1
b + c

2

)

=
∂2HS

∂w0∂w1

(

w1, w1
b + c

2

)

> 0. (5.31)

The expression for ∂2HS/∂w2
1 is intractable. With this information one can be

sure that if the critical point (w1, w1(b + c)/2) is not a saddle point, then it is a

maximum.

1The partial derivative with respect to w1 is intractable.
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Figure 5.6: At the top: HS(w1, w0) for fixed values of w1 and different locations

of the Gaussians. At the bottom: Surface and contour plot of HS(w1, w0).

For Gaussian input distributions, the transformed pdf’s are derived as

fY |t(t − e) =

exp

(

−1
2

(

arctanh(t−e)−(w1µt−w0)
w1σt

)2
)

√
2πw1σt e(2t − e)

I[t−1,t+1](e). (5.32)

At the top of Figure 5.6, we specified a value for w1 (the steepness parameter)

and let w0 vary in a way such that the optimal solution is displayed. Thus, HS

is plotted as a function of w0/w1. Without loss of generality, we set the “left

class” with (µ-1, σ-1) = (0, 1). Figure 5.6a refers to the setting (µ1, σ1) = (3, 1)

with corresponding optimal split at x∗ = 1.5. We observe that the increase of
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w1 causes HS to change from a maximum to a minimum at x∗. In Figure 5.6b,

where (µ1, σ1) = (1, 1) and x∗ = 0.5, we observe that the increase of overlap

between the classes requires a higher value of w1 to perform the same change.

These results suggest the need of function shaping parameters, as is the case

with multilayer perceptrons, in order to get an entropy minimum. The bottom

of Figure 5.6 shows HS as a function of (w1, w0), where one can identify the

previous behaviors2. For (w1, w0) ∈ [6.5, 6.7] × [9.5, 10.5] a local minimum is

attained as shown in the contour plot. As before, the solid line (which appears

to pass through the minimum) represents the set of solutions w0/w1 = 1.5.

Unfortunately, due to the complexity of the formulas, an analytical treatment

similar to the one performed for uniform classes, is not possible. We were also

able to observe that if the classes get closer, the same behavior is obtained,

namely the need of a higher w1 in order to obtain the minimum.

5.4 Estimating the Error Density

There is an essential difference between the theoretical MEE and how it is

implemented. In fact, the input distributions are usually unknown which makes

it impossible to use Theorem 7 to determine the exact error distributions. A

method to estimate the error pdf’s is then used and the choice falls as before

to the kernel density estimator (kde). The estimated pdf is always a smoothed

version of the original pdf and this will show up (for appropriate choices of

h) as a fundamental feature of the practical MEE implementation. Figure 5.7

illustrates the influence of kde on determining the error distribution. It shows

the theoretical and an instance of the practical error pdf’s. Note the smoothing

imposed by the kde: an increased value of h implies an oversmoothed estimate

2Note that the minima attained for small values of w1 and high values of w0 do not

correspond to an optimal solution (due to the relation w1x = w0)
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Figure 5.7: The kde smoothing effect. The top figures show the class conditional

pdf’s with the split location (solid vertical line). The middle and bottom

figures show the theoretical (solid line) and kde (dashed line) error pdf’s for

the corresponding split for two different values of h.

with greater impact near the origin. If we look to the bottom figures we can

understand the theoretical maximum found before and the changes operated

after the kde smoothing. In the left figure (where the split is not optimal),

the true error pdf for class C-1 is nearly uniform which implies a high value for

HS|-1. However, the error pdf for C1 is highly concentrated at the origin yielding

a quite low (negative) HS|1. Due to relation (5.10) the overall value of HS will

be lower than the one in the right figure, where the overall true error pdf is

more close to a δ-Dirac function. This is why entropy has a maximum at the

optimal split. When density estimation is used with sufficiently high values for

h, these behaviors are smoothed out (and in fact, the error pdf is seen as a

“whole”, ignoring relation (5.10)); now the non-optimal split estimated pdf has

a long left tail, whereas the optimal one is more concentrated around the origin,

yielding a minimum.
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The influence of kde smoothing when using Shannon and Rényi’s (α = 2)

entropies can be studied and understood with some interesting experimental

settings. Both entropies have to be estimated and we consider the following

relations as previously discussed in section 2.4.3.1

HS = E{log f(e)} ≈ 1

N

N
∑

i=1

log f(ei) ≈
1

N

N
∑

i=1

log f̂(ei), (5.33)

HR2
= − log

1√
2hN2

N
∑

i=1

N
∑

j=1

K

(

ei − ej√
2h

)

. (5.34)

In the first experiment two Gaussian classes were generated with 10000 data

points each. Class C-1 was always centered at the origin and its standard

deviation was 1. Class C1 was generated in two different settings differing

from C-1 only in its location: µ1 ∈ {1, 3}. We then applied the following

transformation

ei = t − tanh(xi − w0), xi ∈ Ct, t ∈ {−1, 1}, (5.35)

for a grid of w values. Basically we are considering here the simplest single

split case. The joint effect of varying the smoothing parameter h and of increas-

ing/decreasing the overlap between the classes is shown in Figure 5.8 for both

Shannon and Rényi’s entropies as functions of the split point w0. From left to

right we decrease the overlap while from top to bottom we increase h. We see

that the increase of h implies a change from a maximum to a minimum. Also,

this optimal extreme gradually becomes “less local”. The increase of overlap

mainly requires greater values of h to obtain the same behavior. Note that we

cannot say that any one of the used entropies is better in some sense than the

other, because they clearly work with different values for h (higher for Shannon

entropy).

In the second experiment, we searched for the minimum value of h that produces

the maximum-to-minimum flip. Again, two classes with Gaussian distribution

were generated with 50, 100 and 500 data points each. Class C-1 has zero
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Figure 5.8: Effect of the kde in Shannon’s (dashed) and Rényi’s (solid) error

entropies for the single split setting.

mean and class C1 slides from a mean of 0.4 to a mean of 4. Shannon’s

entropy was computed for different values of h over 20 repetitions. The result

is shown in Figure 5.9 where the mean value h∗ sufficient to provide an entropy

minimum close to the optimal solution is drawn as a function of the distance

between the classes (see details in the figure’s caption). We found that if the

classes are extremely overlapped it is difficult or even impossible to produce

the flip. This corresponds to the missing h∗ values for low ∆µ, which are due

to numerical constraints caused by excessive increase of h (entropy is nearly
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Figure 5.9: Minimum mean value (20 repetitions) of h that produces a minimum

of Shannon’s entropy within a neighborhood of the optimal split no greater than

10% of the distance ∆µ between the classes. The value is computed only if the

procedure is successful in more than half of the repetitions. Classes have 50

(solid), 200 (dashed) and 500 (dotted) data points each and equal unit variance.

constant). Moreover, when the number of available data is low the smoothing

“difficulties” increase and the need for higher values of h is evident. A similar

experiment was conducted for the case of unequal variances. Here we found that

higher values of h∗ are needed to produce the flip (in some cases more than 2

times higher) and the successful trials begin around ∆µ = 2. It is now clear the

impact of the kde when using the MEE principle, even for this “worst” setting,

the split-type setting, where we have previously shown the sole existence of a

theoretical maximum.

In the third experiment we considered the perceptron setting, that is

ei = t − tanh(w1xi − w0), xi ∈ Ct, t ∈ {−1, 1}. (5.36)

Figure 5.10 presents a filled contour plot illustrating the behavior of (an estimate

of) HS in different settings. We varied the distance between the classes, the

value of h and the number of data in each class. We present three settings that
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Figure 5.10: Joint effect of the kde and the perceptron in Shannon’s entropy.

Figures show contour lines filled with a grayscale colormap: higher values of HS

correspond to brighter tones. The solid white line represents the set of optimal

solutions.

illustrate the general behavior. For a low value of h, every setting (regardless

of the distance between the classes) tested presented a maximum as in Figure

5.10a. The increase of h, for close classes, produced a flip to a minimum as

illustrated in Figure 5.10b. On the other hand, when the classes are distant and

h is chosen sufficiently large, entropy presents a deep valley where the optimal

set of solutions can be found. This is shown in Figure 5.10c. In general, we found
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that higher values of h are needed to produce the flip if the classes are closer.

(Exactly the same three behaviors were found in many other experiments we

have performed using varying µ1 and h.) Moreover, the increase of available data

implies smoother surfaces and a need for lower values of h. Nevertheless, the

increased smoothing due to higher values of h benefits the “cleaning” of spurious

minima. We should also emphasize the importance of the perceptron setting in

attaining a minimum entropy situation, which by looking back to Figure 5.9 is

not always achieved in the split-type setting. We also tested the joint effect of

the kde and perceptron setting for the case of unequal variances (σ1 = 2). We

found that for close classes, it was not possible in general to match the entropy

minimum with the optimal solution. However, for sufficiently distant classes (we

tested µ1 = 3 and µ1 = 5 and sufficiently high values of h (say, above 1), one can

succeed even for low N (of course, better results are obtained if N is increased

also), and figures like Figure 5.10c tend to be produced. These experiments help

to understand the differences between theory and practice in light of the MEE

principle and illustrate why one can expect that MLP’s trained with MEE are

usually able to solve the classifier problem.

The influence of the kde can also be understood by analytical manipulation

of the above estimators. We use Rényi’s expression for simplicity and to bet-

ter emphasize the relations. The minimization of (5.34) is equivalent to the

maximization of

V̂R2
=

1√
2hN2

N
∑

i=1

N
∑

j=1

G

(

ei − ej√
2h

)

. (5.37)

Let Gij = G
(

ei−ej√
2h

)

, c = 1√
2hN2

and ct = 1√
2hN2

t

for t ∈ {−1, 1} where Nt is the

number of samples from class Ct. Then, if K is symmetrical about the origin



5.4. ESTIMATING THE ERROR DENSITY 145

(as is the Gaussian kernel) we may write

V̂R2
= c

∑

i∈C-1

∑

j∈C-1
Gij + c

∑

i∈C-1

∑

j∈C1

Gij + c
∑

i∈C1

∑

j∈C-1
Gij + c

∑

i∈C1

∑

j∈C1

Gij

=

(

N-1

N

)2

c-1
∑

i∈C-1

∑

j∈C-1
Gij +

(

N1

N

)2

c1

∑

i∈C1

∑

j∈C1

Kij + 2c
∑

i∈C1

∑

j∈C-1
Gij

= q̂2V̂R2|-1 + p̂2V̂R2|1 + 2c
∑

i∈C1

∑

j∈C-1
Gij . (5.38)

Entropy is, therefore, decomposed as a weighted sum of the error entropies for

each class (as in the theoretic derivation) plus a term that relates the errors of

one class with those of the other. For a small h this interference term is also

small and V̂R2
will be close to VR2

. For large h the interference term will be

large and the smoothing effect displayed in Figure 5.7 will show up and gives

rise to an entropy minimum.

In this section we analyzed the MEE principle for the case of continuous er-

rors. For simplicity reasons, we started to analyze the split-type setting, i.e.,

the setting where the bias weight is the sole parameter controlling the class

discrimination. We always found a maximum (no turning between maximum

and minimum as in the discrete errors case), usually displaced from the minPe

position when the class error probabilities are different. In the perceptron-type

setting, where both the input and bias weights are free to adjust, we found that

for Gaussian classes MEE is able to work for appropriate choices (dependent on

the proximity of the classes) of the parameter vector. Moreover, we have shown

the important influence of the kernel density estimator, which was responsible,

for a sufficiently large kernel bandwidth, to turn the entropy maximum into a

minimum.





Chapter 6

Conclusions

The application of the MEE principle to data classification is theoretically

justifiable for three reasons: a) MEE uses a measure of the whole error pdf,

whereas the popular MSE cost function relies solely on the error variance;

therefore, when using MEE one is using more “information” than when using

MSE. (A well-known result of probability theory states that any pdf can be

expressed in terms of all its moments; MEE will not improve over MSE when

the error distribution depends only on the second-order moment.) b) There are

possible error distributions where MSE does not solve the classifier problem and

MEE does solve (an example was shown in the Introduction). c) A theorem

presented in [90] that we reproduced and generalized in section 3.1.1 shows

that whenever the practical implementation of MEE with the Parzen window

estimation of the error pdf achieves the entropy minimum, the error distribution

will be driven towards a δ-Dirac function at zero (assuming appropriate supports

of outputs and targets). These reasons together with the considerable success of

previous practical applications of the MEE principle to many data classification

problems using Rényi’s quadratic entropy [90], motivated this study in several

ways.

147
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First, we studied and tested the applicability of Shannon’s entropy of the error

to the training of MLP classifiers. The results have shown that this is also a

valid approach. Despite the use of the kernel density estimator to build the

estimator ĤS of Shannon’s entropy, we have proved that the optimal solution is

not affected, that is, it still has the δ-Dirac distribution as global minimum. Note

that Lemma 2 also says that if we were dealing with regression (d dependent

variables) we would need to correct the bias term of every output independently.

We also found that the results are not particularly sensitive to the value of the

smoothing parameter, provided this value is sufficiently high (usually above

1). In fact, from our experience a simple and coarse pdf estimation is all

that is needed (note that what is important is to appropriately estimate the

direction of the gradient of ĤS). Moreover, with h values higher than the

ones usually recommended for pdf estimation, ĤS becomes more smooth and

local (undesired) behaviors tend to disappear. Nevertheless, and as suggested

by Erdogmus and Pŕıncipe [25], one could benefit from an adaptive h along

the training process. However, despite some attempts, we could not find an

appropriate strategy.

We progressed to derive the Z-EDM cost function, raised from the ideas of

entropic criteria that one should constraint the error distribution such as to

have a higher peak at the origin. The algorithm becomes quite simple (in fact,

the computational complexity is the same as the MSE counterpart) and the

preliminary results have shown increased performance when compared to MSE.

We also analyzed the gradients of MSE, CE and Z-EDM (the latter in its updated

version, without some constants that were delaying the convergence process). In

this analysis we found that a generalized exponential cost function dependent on

a sole parameter τ could be created to emulate the behaviors of those functions

(more precisely, an infinite family of functions). The experimental tests provided

evidence that MLPs trained with this exponential function can achieve the best
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results obtainable with classic cost functions and sometimes improve upon them.

At this point we may question: what is the advantage of having a function

with a parameter that we have to tune? Is it better than choosing from a

set of cost functions? In our opinion, the answer to the latter question is Yes.

Choosing from a set of cost functions usually implies switching between different

implementations and using three or four different approaches. The additional

work of tuning the parameter is overcome by the flexibility gained in adjusting

the cost function to the problem at hand (this, of course, also applies to the

entropic criteria). This advantages were shown in the experimental setting.

An important focus of this Thesis was also to analyze theoretically the MEE

principle when applied to data classification. We started by analyzing the case of

discrete errors, or more precisely, the case of threshold-type learning machines.

The relation between MEE and the theoretical Stoller split in univariate two-

class discrimination was the first to be studied. Besides the possible practical

applications of this analysis to univariate data splitting with MEE (e.g. in tree

classifier design using the popular univariate data splitting approach), the results

derived from this analysis served as a first step to the theoretical assessment of

MEE. Probably the most important result derived during this stage of our work,

regarding continuous distributions, was that in order to obtain a correspondence

between the MEE and min Pe solutions, the class configurations must provide

equal class error probabilities, which directly restricts the applicability of MEE

in univariate splitting, in the sense that the optimal classifier may not be

achieved. Moreover, we have shown that for certain class configurations one

must use entropy maximization instead of minimization, depending on the pro-

ximity of the classes (in fact, we were able to determine exact turning values for

some distributions). Nevertheless, we completely characterized MEE for the case

of uniform classes, proving the match between the MEE and min Pe solutions.

The generalization to the perceptron-type machine brought an interesting result
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too: the minimum-to-maximum turning behavior generalizes to entropy saddle

points. Given these findings we conclude that MEE is not an appropriate

approach for perceptrons having step activation functions (discrete outputs)

when the classes are close to each other (say, with means less than about 1.5

standard deviations apart).

The study progressed to the case of continuous errors, where the machine is

now equipped with a continuous activation function. In the simplest case,

the split-type setting, two aspects are worth noting: a) in the cases studied

MEE does not provide minimum-to-maximum turnings, and in fact, we always

encounter a maximum, sometimes displaced from the minPe position; b) MEE

does not work with linear activation functions; this was already discussed in

section 3.1.1 and is related to the mean-invariance property of entropy. The

more interesting results were obtained for the more realistic perceptron-type

setting. Here we provided abundant evidence of the influence of the flexibility

of the model and the kernel density estimator. When using MLPs in practice,

as we did in Chapter 3, we are in fact using a highly parameterized model and

the density estimation is always present in ĤS (or ĤRα). The smoothing effect

of the (Gaussian) kernel, for sufficiently large kernel bandwidth, will in general

turn the entropy maximum into a minimum. As a matter of fact, the kernel

convolution for a large class of kernel functions corresponds to a low-pass filtering

of the error pdf “signal”, enhancing its concentration around zero and driving

it towards a δ-Dirac function. In the practical experiments we obtained average

values for the smoothing parameter h, which can be used as lower bounds in

practical applications. Moreover, the analysis at the end of Chapter 4 for the

case of Rényi’s entropy enlightened why the kernel smoothing will drive the

error entropy towards a minimum.

Perceptron training with MEE is therefore a setting where a rather surprising

difference exists between theory and practice. Whereas in theory it often does
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not solve the classifier problem, in practice and for sufficiently smooth pdf

estimators it does.

Future work

This work presented contributions at several levels, including the proposal of new

cost functions for neural network training and a carefull study of the minimum

error principle for data classification. Of course, several new research directions

are raised. We restrict ourselves to present some pointers:

• In terms of practical implementations, both ĤS and EExp could benefit from

different optimization algorithms or strategies like conjugate gradient or the

batch-sequential method previously mentioned. This would, in principle,

increase the convergence or reduce the computational complexity of the

algorithms, with obvious advantages mainly for ĤS.

• Both the parameters h of ĤS and τ of EExp should be studied with the aim

to obtain an adaptive procedure such that they are appropriately tuned

during the training of the neural network. This is expected to bring better

results in some cases and of course, would be an important advantage for

the user.

• The proposal of EExp obviously requires an equivalent study to the one

performed for MEE. This would enlighten the capabilities of this new cost

function and bring further insights on the influence of the parameter τ .

• Another research direction of some importance would be to generalize the

analysis conducted for MEE for more complex tasks, including more input

dimensions.





Appendix A

Maximum Likelihood and

Kullback-Leibler Divergence

A.1 Maximum Likelihood

The maximum likelihood (ML) method allows the estimation of a probability

density function p from a set of observations (realizations) of the random vector

X. More precisely, and assuming a parameterized family of possible distributions

pθ for p, ML allows the estimation of the vector parameter θ that best supports

the observed set of i.i.d. realizations of X. Let DN = {xi : i = 1, . . . , N} be the

set of available observations. The likelihood of DN for a given θ is given by the

joint density

p(DN |θ) = p(x1,x2, . . . ,xN |θ)
i.i.d.
=

N
∏

i=1

p(xi|θ). (A.1)

Note that p(DN |θ) is a function of the vector θ and is not a density (probability)

function. The maximization of (A.1) relative to θ seeks an estimator or estimate

θ̂ such that pθ̂ is the best approximation of p within the family pθ. As the lo-

garithm function is monotonic and given the exponential form of many common
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distributions, it is usual to maximize the log-likelihood instead of (A.1)

L(θ|DN ) =

N
∑

i=1

log p(xi|θ). (A.2)

The method is quite appellative and has excellent mathematical properties

especially for large N [68].

A.2 Kullback-Leibler Divergence

The Kullback-Leibler (K-L) divergence (or relative entropy) is a discrepancy

measure between two probability distributions p and q. It is defined as (for the

discrete case):

KL(p‖q) =
∑

x

p(x) log
p(x)

q(x)
. (A.3)

Note that K-L divergence is not a metric distance because it does not satisfy the

symmetry property KL(p‖q) 6= KL(q‖p) nor the triangle inequality. However,

it has some interesting properties such as KL(p‖q) ≥ 0 and KL(p‖q) = 0 iff

p(x) = q(x). From (A.3) we observe that

KL(p‖q) = Ep

{

log
p(x)

q(x)

}

, (A.4)

where Ep denotes the expected value relative to the distribution p. Thus, we

may compute an empirical approximation by

KLN (p‖q) =
1

N

N
∑

i=1

log
p(xi)

q(xi)
. (A.5)

Also we may write

KL(p‖q) = HS(p, q) − HS(p) (A.6)

= −
∑

x

p(x) log q(x) +
∑

x

p(x) log p(x) (A.7)

≈ − 1

N

∑

i

log q(xi) +
1

N

∑

i

log p(xi), (A.8)

where HS(p) is the entropy associated with the distribution p and HS(p, q) is

the cross-entropy between p and q.
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A.3 Unifying Approach

It is now easy to unify both approaches. Consider expression (A.2). The

maximization of L(θ|DN ) is equivalent to the maximization of (we now write

pθ(x
i) instead of p(θ|xi))

1

N

N
∑

i=1

log pθ(xi) −
1

N

N
∑

i=1

log p(xi) (A.9)

= − 1

N

N
∑

i=1

log
p(xi)

pθ(xi)
, (A.10)

because the right term in (A.9) is the empirical approximation of the entropy

associated to p (see the final of section A.2), therefore does not depends on θ.

This in turn is equivalent to the minimization of

N
∑

i=1

log
p(xi)

pθ(xi)
, (A.11)

which is the same as (A.5). Thus, maximum likelihood is intrinsically related

to the Kullback-Leibler divergence: ML searches for the member of pθ closest

to p using the (empirical) Kullback-Leibler divergence as a distance measure.





Appendix B

A Simple Monotonic Cost

Function

We can define a simple monotonic cost function for a two-class problem. We

consider an MLP with one output per class y = (y1, y2) and a class encoding

defined by t = (t1, t2) = (1,−1) and t = (t1, t2) = (−1, 1) for classes C1 and

C2, respectively. A monotonic cost function should have contours parallel to

y1 = y2. This can be achieved with the following

ESMF =
1

2

N
∑

i=1

[(y1i − y2i) − (t1i − t2i)]
2. (B.1)

This is a simple transformation (rotation and shifting) of the parabolic cylinder

z = x2. Note that as ESMF ≥ 0 it has a global minimum when the outputs equal

the targets. Figure B.1 shows the error surface and corresponding contour plot

for patterns from C1 and C2. The gradient can be calculated as

(

∂ESMF

∂y1i
,
∂ESMF

∂y2i

)

=
(

(y1i −y2i)− (t1i− t2i),−[(y1i −y2i)− (t1i − t2i)]
)

, (B.2)
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Figure B.1: At the top: Error surface and contour plots of ESMF in the presence

of a pattern from C1; At the bottom: The same but for a pattern from C2.

where we note that ∂ESMF
∂y1i

= −∂ESMF
∂y2i

. The flexibility of ESMF could be enhanced

using the following version of (B.2):

ESMF =
1

2

N
∑

i=1

[(y1i − y2i) − (t1i − t2i)]
γ (B.3)
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Figure B.2: Effect of increasing the power of a polynomial function xγ .

The parameter γ is an even integer positive number ensuring that ESMF is

always non-negative. The major effect of increasing γ is exemplified in Figure

B.2. The steepness is increased in regions far from the desired target, whereas

in regions near the desired target the function is flattened.





Appendix C

Gradient and Hessian of ĤS

Consider the estimator for Shannon’s entropy of the error

ĤS = − 1

N

N
∑

i=1

log





1

Nh

N
∑

j=1

G

(

xi − xj

h

)



 , (C.1)

which can be re-written, to facilitate calculations, as

ĤS = log(Nh) − 1

N



log





∑

j 6=i

G

(

ei − ej

h

)

+ G(0)



+

+
∑

l 6=i

log





∑

j 6=i

G

(

el − ej

h

)

+ G

(

el − ei

h

)







 . (C.2)

If e1, . . . , eN are the d-dimensional error vectors with ei = (e1i, . . . , edi), we

define ē = (e11, . . . , ed1, e12, . . . , edN ) and ĤS can be seen as a function of ē,

that is, ĤS ≡ ĤS(ē). We derive the gradient and Hessian of ĤS(ē) at ē = 0.

The partial derivative in order to a given eki is

∂ĤS

∂eki
=

1

Nh2





∑

j 6=i G
(

ei−ej

h

)

(eki − ekj)

∑

j 6=i G
(

ei−ej

h

)

+ G(0)
−
∑

l 6=i

G
(

el−ei
h

)

(ekl − eki)
∑

j 6=i G
(

el−ej

h

)

+ G
(

el−ei
h

)



 .
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Therefore

∂ĤS

∂eki

∣

∣

∣

∣

∣

ē=0

=
1

Nh2





(N − 1)G(0) × 0

NG(0)
−
∑

l 6=i

G(0) × 0

NG(0)



 = 0,

which means that ∇ĤS(0) = 0, or in other words, ē = 0 is a critical point

of ĤS. The Hessian is obtained by computing second order partial derivatives,

which can be found in the following pages. Substituting by ē = 0 one obtains

∂2ĤS

∂e2
ki

∣

∣

∣

∣

∣

ē=0

=
2(N − 1)

N2h2
, (C.3)

∂2ĤS

∂ekm∂eki

∣

∣

∣

∣

∣

ē=0

=
−2

N2h2
, m 6= i, (C.4)

∂2ĤS

∂esi∂eki

∣

∣

∣

∣

∣

ē=0

=
∂2ĤS

∂esm∂eki

∣

∣

∣

∣

∣

ē=0

= 0, m 6= i, s 6= k. (C.5)

We recognize this Hessian as a generalization (for d > 1) of the one obtained in

[25] for α = 1. In the cited paper, the Hessian is composed by a diagonal with

equal entries, say A, and all non-diagonal elements equal to a value B 6= A. For

example, with N = 3, one would get











A B B

B A B

B B A











. (C.6)

The Hessian obtained here, generalizes (C.6) by inserting d − 1 diagonals with

zero entries between its diagonals. For example, for d = 2, one obtains





























A 0 B 0 B 0

0 A 0 B 0 B

B 0 A 0 B 0

0 B 0 A 0 B

B 0 B 0 A 0

0 B 0 B 0 A





























. (C.7)
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The eigenvalue-eigenvector pairs are generalizations of the ones obtained in [25]

and are given by

Eigenvalue:

λ1 = A + (N − 1)B = 0 with multiplicity d

Eigenvectors:

[1, 0, . . . , 1, 0, . . . , 0] d ones at positions 1 + (i − 1)d, i = 1, . . . , N − 1

[0, 1, . . . , 0, 1, . . . , 0] d ones at positions 2 + (i − 1)d, i = 1, . . . , N − 1

...
...

Eigenvalue:

λ2 = A − B =
2

Nh2
with multiplicity (N − 1) × d

Eigenvectors: these are more difficult to describe

These eigenvalue-eigenvector pairs are used in Lemma 2 to show that ē = 0 is

a minimum of error entropy.

The formulas for the partial derivatives, due to their length, can be found in the

following pages in a landscape orientation.



∂2ĤS
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ki

=
1

Nh2







[

∑

j 6=i

[

−1
h2 G

(

ei−ej

h

)

(eki − ekj)
2 + G

(

ei−ej

h

)]] [

∑

j 6=i G
(

ei−ej

h

)

+ G(0)
]

+ 1
h2

[

∑

j 6=i G
(

ei−ej

h

)

(eki − ekj)
]2

[

∑

j G
(

el−ej

h

)]2 −

−
∑
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[

1
h2 G

(

el−ei
h

)

(ekl − eki)
2 − G

(

el−ei
h
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[

∑
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(

el−ej

h
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+ G
(

el−ei
h
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− 1
h2

[

G
(

el−ei
h

)

(ekl − eki)
]2

[

∑

j G
(

el−ej

h
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





For s 6= k

∂2ĤS

∂esi∂eki
=

1

Nh2







[

−1
h2

∑

j 6=i G
(
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h
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G
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G
(
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h

)

(esi − esj)
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[

∑

j G
(
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h
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−
∑

l 6=i

[

1
h2 G

(

el−ei
h

)
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∑

j G
(

el−ej

h
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− 1
h2

[

G
(
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h
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j G
(

el−ej
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




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∂2ĤS

∂esm∂eki
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
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1
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∑
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(
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(ekl − eki)
] [

G
(

el−em

h

)

(esl − esm)
]

[

∑

j G
(

el−ej

h

)]2







For m 6= i
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[
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(
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∑
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)
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
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Appendix D

A Result on the Hölder

Exponent

Definition 2. Let α ∈ R
+ and x0 ∈ R. A function f : R → R is said C [α](x0)

if exists L > 0 and a polynomial P of degree [α]1 such that

∀δ > 0 : |x − x0| < δ ⇒ |f(x) − P (x − x0)| ≤ L |x − x0|α . (D.1)

The maximum value of α that satisfies (D.1) is known as the Hölder exponent

of f at x0.

The polynomial P is the Taylor expansion of order [α] of f at x0. The Hölder

exponent α measures how irregular f is at the point x0. The higher the exponent

α, the more regular is f . Figure D.1 shows the behavior of f in a neighborhood

of x0 for different values of α.

Theorem 8. (Lúıs Silva et al. [102]) Let f : R → R be a continuous function,

such that f ≡ 0 for x ≤ x0 and differentiable for x > x0. If the Hölder’s

1[α] represents the largest integer less than α. If α is not an integer [α] ≡ ⌊α⌋,
otherwise [α] ≡ α − 1.
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xx
0

f(
x)

α=1

α<1

α>1

Figure D.1: Local behavior of f for different values of α

exponent of f at x0 is α then

lim
x→x+

0

f2(x)
[

∫ x
x0

f(y)dy
]

df
dx(x)

=
α + 1

α
. (D.2)

The idea of the previous Theorem is that in a sufficiently small neighborhood

of x0, f behaves like L(x − x0)
α. Then

f2(x)
[

∫ x
x0

f(y)dy
]

df
dx(x)

=
L2(x − x0)

2α

L(x−x0)α+1

α+1 αL(x − x0)α−1
=

α + 1

α
.

The left hand side of (D.2) is also bounded if f has left unlimited support. The

proof of this result can be made using a geometrical argument. In fact,

[∫ x

−∞
f(y)dy

]

df

dx
>

f(x)b

2

f(x)

b
,

where b is the base of the shadowed triangle in Figure D.12. Thus

f2(x)
[

∫ x
−∞ f(y)dy

]

df
dx(x)

< 2.

2Note that the behavior of f in this situation is similar to the case of f with

left limited support and α > 1.



Appendix E

Data Sets

During this work we have used several real-world data sets covering many areas

of application. In this appendix we present a description of each data set. We

also used artificially generated data sets, the checkerboard, that we start to

describe.

E.1 Artificial Data Sets

As artificial data sets we used checkerboard data sets such as the one shown in

Figure E.1. Checkerboard data sets are complex, controllable and unbalanced

data sets. We used two different configurations: 2×2 and 4×4 checkerboards.

For each one of the configurations we built three data sets with different numbers

of elements (patterns) but with a common characteristic: a fixed number of

elements belonging to the minority class. The percentage of elements of this

minority class is 50, 25 and 10% of the total number of elements. In Table E.1

we show the different characteristics of the checkerboard data sets.
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Figure E.1: An example of the 4×4 checkerboard data set with 400 points (100

elements in the minority class: dots). Dotted lines are for visualization purpose

only.

Table E.1: The artificial checkerboard data sets, where k = 2, 4.

Data set # elements # elements per class

CBk×k(200,50) 200 100-100

CBk×k(400,25) 400 300-100

CBk×k(1000,10) 1000 900-100
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E.2 Real-world Data Sets

The following table contains a brief description of the main characteristics of

each of the real-world data sets used in this work. The last column is the source

where the corresponding data set can be found.

Table E.2: The real-world data sets used in this work.

Data set # samples # features # classes source

CHD2 297 13 2 [79]

Corkstoppers 150 10 3 [74]

CTG16 2126 16 10 [74]

Glass 214 9 6 [79]

Ionosphere 351 33 2 [79]

Iris 150 4 3 [79]

Liver 345 6 2 [79]

New Thyroid 215 5 3 [79]

Olive 572 8 9 [33]

PB12 608 2 4 [52]

Pima 768 8 2 [79]

Sonar 208 60 2 [79]

Spambase 4601 57 2 [43]

Vehicle 846 18 4 [79]

Vowelc 990 10 11 [79]

Wdbc 569 30 2 [79]

Wine 178 13 3 [79]

CHD2

This is one of the UCI databases of heart disease. The data was collected from

the Cleveland Clinic Foundation and all attributes are numeric-valued.

The goal is to detect the presence of heart disease in the patient. The original

data distinguishes between four types of disease, but here we only consider the
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task of predicting the absence or presence of heart disease.

Features:

1 age in years.

2 sex (1 = male; 0 = female).

3 chest pain type.

4 resting blood pressure.

5 serum cholesterol in mg/dl.

6 (fasting blood sugar > 120 mg/dl).

7 resting electrocardiographic results.

8 maximum heart rate achieved.

9 exercise induced angina.

10 ST depression induced by exercise relative to rest.

11 the slope of the peak exercise ST segment.

12 number of major vessels (0-3) colored by flourosopy.

13 3 = normal; 6 = fixed defect; 7 = reversable defect.

14 diagnosis of heart disease (angiographic disease status).

Class Distribution:

Class # samples

Absence 160

Presence 137

Corkstoppers

Corkstoppers contains measurements made on binary images of cork stoppers

defects in order to assess their quality.
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Features:

1 ART : Total area of the defects (in pixels).

2 N : Total number of defects.

3 PRT : Total perimeter of the defects (in pixels).

4 ARM : Average area of the defects (in pixels).

5 PRM : Average perimeter of the defects (in pixels)

6 ARTG : Total area of big defects (in pixels).

7 NG : Number of big defects (bigger than a specified threshold).

8 PRTG : Total perimeter of big defects (in pixels).

9 RAAR : Areas ratio of the defects.

10 RAN : Ratio of the number of defects

Class Distribution: 50 cases for each of the 3 classes

CTG16

This data set consists on measurements of cardiotocographic (CTG) exami-

nations [74]. Cardiotocography is a popular diagnostic method in Obstetrics,

consisting on the analysis and interpretation of the foetal heart rate, the uterine

contractions and the foetal movements. In this data set only the measures

corresponding to the foetal heart rate signals and computed by an automatic

system are included. The classification of the signal patterns was performed

by expert obstetricians (following a clinical protocol). Six features have been

discarded from the original data set as suggested in [74].
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The used features are:

1 Baseline value in b.p.m.

2 Number of accelerations.

3 Number of uterine contractions.

4 Percentage of time with abnormal short term variability.

5 Mean value of short term variability.

6 Percentage of time with abnormal long term variability.

7 Mean value of long term variability.

8 Number of light decelerations.

9 Histogram width (histogram of heart rate in b.p.m.).

10 Low freq. of the histogram.

11 High freq. of the histogram.

12 Number of histogram peaks.

13 Histogram mean.

14 Histogram median.

15 Histogram variance.

16 Histogram tendency.

Class Distribution:

Class # samples

Calm sleep 384

REM sleep 579

Calm vigilance 53

Active vigilance 81

Shift pattern 72

Accelerative/decelerative pattern 332

Decelerative pattern 252

Largely decelerative pattern 107

Flat-sinusoidal pattern 69

Suspect pattern 197
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Glass

Study of classification of types of glass motivated by criminological investigation.

At the scene of the crime, the glass left can be used as evidence...if it is correctly

identified!

Features:

1 RI: refractive index.

2 Na: Sodium.

3 Mg: Magnesium.

4 Al: Aluminum.

5 Si: Silicon.

6 K: Potassium.

7 Ca: Calcium.

8 Ba: Barium.

9 Fe: Iron.

Class Distribution:

Class # samples

building windows (type 1) 70

building windows (type 2) 76

vehicle windows 17

containers 13

tableware 9

headlamps 29

Ionosphere

This is a radar data collected by a system in Goose Bay, Labrador. This system

consists on a phased array of 16 high-frequency antennas. The targets were free

electrons in the ionosphere. ”Good” radar returns are those showing evidence

of some type of structure in the ionosphere. ”Bad” returns are those that do
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not. Received signals were processed using an autocorrelation function whose

arguments are the time of a pulse and the pulse number. All the 34 features are

numeric-valued, but one has removed since it has the same value (zero) for all

elements.

Class Distribution: (class value 1 is interpreted as ”good”)

Class # samples

0 126

1 225

Iris

This is the well known Fisher’s Iris plants data set, perhaps the best known

database to be found in the pattern recognition literature. Fisher’s paper [32]

is a classic in the field and is referenced frequently to this day. The data set

contains 3 classes, where each class refers to a type of Iris plant (Iris Setosa, Iris

Versicolour and Iris Virginica). One class is linearly separable from the other 2;

the latter are NOT linearly separable from each other.

Features: (all numeric-valued)

1 Sepal length in cm

2 Sepal width in cm

3 Petal length in cm

4 Petal width in cm

Class Distribution: 50 elements in each of 3 the classes.
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Liver

This is a study on liver disorders in males created by the BUPA Medical Research

Ltd. The first 5 variables are blood tests which are thought to be sensitive to

liver disorders that might arise from excessive alcohol consumption.

Features:

1 mcv - mean corpuscular volume.

2 alkphos - alkaline phosphotase.

3 sgpt - alamine aminotransferase.

4 Isgot - aspartate aminotransferase.

5 gammagt - gamma-glutamyl transpeptidase.

6 drinks - number of half-pint equivalents of alcoholic beverages drunk per day.

Class Distribution:

Class # samples

0 200

1 145

New Thyroid

This is a study with the aim of predicting the state of the thyroid gland. Five

lab tests are used to try to predict the state of the patient’s thyroid to the class

euthyroidism, hypothyroidism or hyperthyroidism.

Features:

1 T3-resin uptake test.

2 Total Serum thyroxin as measured by the isotopic displacement method.

3 Total serum triiodothyronine as measured by radioimmuno assay.

4 basal thyroid-stimulating hormone (TSH) as measured by radioimmuno assay.

5 Maximal absolute difference of TSH value.
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Class Distribution:

Class # samples

Normal 150

Hyper 35

Hypo 30

Olive

This data set contains data from eight fatty acid contents of different olive oils

from several regions of Italy [33].

The class distribution is as follows:

Class # samples

1-North Apulia Calabria 25

2-Calabria 56

3-South Apulia 206

4-Sicily 36

5-Inner Sardinia 65

6-Coastal Sardinia 33

7-East Liguria 50

8-West Liguria 50

9-Umbria 51

PB12

The data set PB12 is a speaker independent, four-class, vowel discrimination

problem [52]. The data consists on the first and second formants of the vowels [i],

[I], [a] and [A] from 75 speakers (males, females and children) and is represented

in Figure E.2. Vowels [i] and [I] form one overlapping pair of classes and vowels

[a] and [A] form the other pair.



E.2. REAL-WORLD DATA SETS 179

Figure E.2: The PB12 data set.

Features: (all numeric-valued)

1 First formant value.

2 Second formant value.

Class Distribution: 152 elements per class.

Pima

This is the result of a medical diagnostic investigating whether the patient

shows sign of diabetes according to World Health Organization criteria. All

the patients are females at least 21 years old of Pima Indians heritage.
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Features (all numeric-valued):

1 Number of pregnancies.

2 Plasma glucose concentration at 2 hours in an oral glucose tolerance test.

3 Diastolic blood pressure (mm Hg).

4 Triceps skin fold thickness (mm).

5 2-Hour serum insulin (mu U/ml).

6 Body mass index (weight in kg/(height in m)2).

7 Diabetes pedigree function.

8 Age (years).

Class Distribution: (class value 1 is interpreted as ”tested positive for diabetes”)

Class # samples

0 500

1 268

Sonar

This data set, is a study of the classification of sonar signals, containing 208

patterns obtained by bouncing sonar signals off a metal cylinder and rocks at

various angles and under various conditions. Each pattern corresponds to a

vector of 60 real numbers in the range 0.0 to 1.0, representing the energy within

a particular frequency band, integrated over a certain period of time.

Class Distribution:

Class # samples

Metal cylinder 111

Rocks 97
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Spambase

The data consists of information from 4601 email messages in a study to try

to predict whether the email was spam. The relative frequencies of 57 of the

most commonly occurring words and punctuation marks (for example, “george”,

“you”, “!”, “‘remove”) in the email messages is recorded.

Class Distribution:

Class # samples

spam 1813

non spam 2788

Vehicle

In this problem the objective is to classify a given silhouette as one of four

types of vehicles, using a set of features extracted from the silhouette. The

vehicle may be viewed from one of many different angles. The 18 features

were extracted from the silhouettes by the HIPS (Hierarchical Image Processing

System) extension BINATTS, which extracts a combination of scale independent

features utilizing both classical moments based measures such as scaled variance,

skewness and kurtosis about the major/minor axes and heuristic measures such

as hollows, circularity, rectangularity and compactness.

Class Distribution:

Class # samples

Opel 240

Saab 240

Bus 240

Van 226
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Vowelc

The problem is to recognize the eleven steady state vowels of British English

using a specified training set of lpc derived log area ratios. The version used

in this work is the modification of the original “Deterding Vowel Recognition

Data” provided by Peter Turney, such as to include contextual information on

the speaker’s gender and identity.

Class Distribution:

Class # samples

Opel 240

Saab 240

Bus 240

Van 226

Wdbc

This is the Wisconsin Breast Cancer data set. The two classes, benign and

malignant, are linearly separable using all 30 input features. These 30 features

are obtained from 10 original features, computed from a digitized image of a

fine needle aspirate (FNA) of a breast mass:

1 Radius (mean of distances from center to points on the perimeter).

2 Texture (standard deviation of gray-scale values).

3 Perimeter.

4 Area.

5 Smoothness (local variation in radius lengths).

6 Compactness (perimeter2 / area - 1.0).

7 Concavity (severity of concave portions of the contour).

8 Concave points (number of concave portions of the contour).

9 Symmetry.

10 Fractal dimension (”coastline approximation” - 1).
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The 30 features are obtained by computing the mean, standard error, and

”worst” or largest (mean of the three largest values) of the original 10 features,

computed for each image.

Class distribution:

Class # samples

Benign 357

Malignant 212

Wine

The data is the result of a chemical analysis of wines grown in the same region

in Italy but derived from three different cultivars. The analysis determined the

quantities of 13 chemical constituents found in each of the three types of wines.

The attributes are:

1 Alcohol.

2 Malic acid.

3 Ash.

4 Alkalinity of ash.

5 Magnesium.

6 Total phenols.

7 Flavanoids.

8 Nonflavanoid phenols..

9 Proanthocyanins.

10 Color intensity.

11 Hue.

12 OD280/OD315 of diluted wines.

13 Proline.

The class distribution is as follows:
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Class # samples

Cultivar 1 59

Cultivar 2 71

Cultivar 3 48
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