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Abstract— The dramatic growth in practical applications for
iris biometrics has been accompanied by relevant developments
in the underlying algorithms and techniques. Among others,
one active research area concerns about the development
of iris recognition systems less constrained to users, either
increasing the imaging distances, simplifying the acquisition
protocols or the required lighting conditions. In this paper we
address the possibility of perform reliable recognition using
visible wavelength images captured under high heterogeneous
lighting conditions, with subjects at-a-distance (between 4 and
8 meters) and on-the-move. The feasibility of this extremely
ambitious type of recognition is analyzed, its major obstacles
and challenges discussed and some directions for forthcoming
work pointed.

I. INTRODUCTION

BEing an internal organ, naturally protected, visible from
the exterior and supporting contactless data acquisition,

the human iris has - together with the face - the potential of
being imaged covertly. Additionally, its almost circular and
planar shape turns the iris region easier to parameterize, in
order to compensate for angular deviations resultant from
off-angle image capturing. These properties leaded to the
ambition of move one step ahead and perform covert iris
recognition, which remains to be achieved. Clearly, this type
of recognition systems will broad the biometrics applicability
to scenarios where the subjects’ cooperation is not expected,
which has evident interesting security and forensic applica-
tions (e.g., criminal/terrorist seek and missing children). This
area motivates growing interests on the research community
and constituted the scope of a large number of recent
publications (e.g., [1], [2] and [3]).

Currently deployed iris recognition systems rely on good
quality images, captured in a stop-and-stare interface, at
close distances and near infrared wavelengths (NIR, 700-
900 nm). The use of active NIR lighting sources enables
the utilization of imaging filters that block the wavelengths
outside the desired interval, whose are usually correspondent
to reflections that occlude portions of the iris texture (fig-
ure 1). Also, these systems require high illumination levels,
sufficient to maximize signal/noise ratio in sensor and to
capture sufficient contrast of the iris features. However, the
safety limit of illumination - defined at about 10 mw / cm2 by
both American and European standards counsel boards ([4]
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University of Beira Interior, Covilhã, Portugal (email: hugomcp@di.ubi.pt).

This work was supported by ”FCT-Fundação para a Ciência e Tecnologia”
and ”FEDER” in the scope of the PTDC/EIA/69106/2006 research project
”BIOREC: Non-Cooperative Biometric Recognition”.

and [5]) - must be taken into account, at it is known that too
high illumination levels cause permanent eye damage. Here,
the NIR wavelength is particularly hazardous because the eye
does not instinctively respond with its natural mechanisms
(aversion, blinking and pupil contraction).

(a) Near infra-red image, acquired under high constrained conditions (WVU

database [6]).

(b) Visible wavelength image, acquired at-a-distance and on-the-move

(UBIRIS.v2 database [7]).

Fig. 1. Illustration of the typical differences between close-up iris images
acquired on high constrained conditions in the near infra-red wavelength
(figure 1a) and images acquired in the visible wavelength, on less con-
strained imaging conditions (figure 1b).

If NIR wavelengths were used in the acquisition of at-a-
distance iris images, acceptable depth-of-field values would
demand significantly higher f-numbers on the optical system,
which will have (squared) direct correspondence with the
amount of light required to the process. Also, the motion
factor will demand very short exposure times, whose again
will imply higher levels of light. Due to the aforementioned
safety reasons, the process feasibility using NIR light is
strongly conditioned.

According to this discussion, the feasibility of at-a-



distance and on-the-move iris recognition is constrained
to the use of visible wavelength light. However, should
it be possible to perform this type of recognition? What
challenges arise from unconstrained imaging environments?
Is it realistic to expect reliable recognition on this scenario?

As before stated, several issues remain to achieve deploy-
able covert iris recognition systems. Unquestionably, these
type of systems will constitute a tradeoff between the quality
of the captured data and the recognition accuracy.

In this paper, we address the feasibility of this extremely
ambitious type of biometric recognition from three different
perspectives:

• Amount of information. This focuses on the amount of
information that - on average - is possible to capture on
the described conditions. Using an imaging framework
described on section II-A and without requiring sub-
jects’ cooperation, how much discriminant information
is captured? How does it varies, regarding the image
acquisition distance? Do the levels of iris pigmentation
strongly constraint the imaging process, as pointed on
previous works (e.g., [8])? In this analysis we used
a statistical measure of randomness widely used to
characterize textures: the image entropy.

• Specificity. The role of the specificity achieved by the
discussed recognition systems should be emphasized.
Due to the unconstrained and high dynamic imaging
conditions, the capturing of poor quality data is high
probable. In order to increase the confidence on any pos-
itive recognition, it should be granted that these type of
systems will not frequently produce false acceptances,
namely when matching extremely degraded data. Here,
we followed the classical Daugman’s recognition ap-
proach ([9], [10] and [11]) to perform iris segmentation,
encoding and matching.

• Sensitivity. Finally we estimated the probability for
the occurrence of false non-matches on these type of
systems. Again, we used the Daugman’s recognition
approach to encode and compare signatures extracted
from a set of good quality images (used as templates)
and a set of degraded samples.

The rest of this paper is organized as follows: Section II
discusses the imaging framework and protocol used in our
experiments, as well illustrates the resultant non-ideal im-
ages. Section III describes our experiments, focusing on the
amount of captured information and on the sensitivity and
specificity that recognition systems would achieve on these
circumstances. Finally, Section IV concludes the paper and
points directions for further work.

II. VISIBLE WAVELENGTH IRIS IMAGES

In this section we describe the most relevant parameters
of an imaging framework that operates on the visible wave-
length and is able to capture close-up iris images from at-a-
distance and on-the-move subjects. It should be mentioned
that although all the images illustrated in this paper were
captured and cropped manually, we are currently finishing

a prototype of an imaging framework that completely auto-
mates the close-up iris imaging procedure.

A. At-A-Distance and On-The-Move Image Capturing

Image Acquisition Framework and Set-Up
Camera = Canon EOS 5D Color Representation = sRGB
Shutter Speed = 1/197 sec. Lens Aperture = F/6.4 - F/7
Focal Length = 400 mm F-Number = F/6.3 - F/7.1
Exposure Time = 1/200 sec. ISO Speed = ISO-1600
Metering Mode = Pattern
Details of the Resultant Close-Up Iris Images
Width = 800 pixels Height = 600 pixels
Format = tiff Bit Depth = 24 bit
Horizontal Resolution = 72 dpi Vertical Resolution = 72 dpi

TABLE I

DETAILS OF THE IMAGE ACQUISITION FRAMEWORK AND SETUP, AS

WELL OF THE RESULTANT IMAGES.

Table I details the setup of the imaging framework used in
our experiments and the main characteristics of the resultant
images. This framework was installed on a lounge under nat-
ural light and with varying sources of artificial visible light.
We placed several marks on the floor (between three and
ten meters away from the acquisition camera) and acquired
images from moving subjects (figure 2). This process leaded
to the appearance of a large number of non-ideal images, with
several regions of the iris rings occluded by reflections, as
well significant iris obstructions due to eyelids and eyelashes.

B. Non-Ideal Images

Fig. 3. Examples of close-up iris images acquired at varying distances
(between four and eight meters), at the visible wavelength, from on-the-
move subjects and under high dynamic lighting conditions.

As it is expected from the afore described imaging
conditions, it is high probable that the captured data has
heterogeneous quality and multiple noise factors. Through
visual inspection, we identified fourteen different types of
these, classified into local or global as they affect image
regions or the complete image. The local category comprises
iris occlusions due to eyelids, eyelashes, glasses, reflections,



(a) Eight meters. (b) Seven meters. (c) Six meters. (d) Five meters. (e) Four meters.

Fig. 2. Sequence of close-up iris images acquired at the visible wavelength, from between eight (figure 2a) and four (figure 2e) meters on a continuously
moving subject, under dynamic lighting conditions and without requiring to the user any type of cooperation.

off-angle and partial images, and the global comprises poor
focused, motion-blurred, rotated, improper lighting and out-
of-iris images. Figure 3 illustrates some of the types of
non-ideal images that result of the imaging conditions and
protocol focused on this paper.

III. EXPERIMENTS

In this section we detail the performed experiments, de-
scribe the used data sets and discuss the corresponding
results.

A. Amount of Captured Information

As stated above, our initial analysis focused on the amount
of information contained on the regions correspondent to the
iris, regarding the distance from where images were captured.
We divided the initial set of 1 000 images into five sub-
sets, each one including images respectively captured from
distances of 4, 5, 6, 7 and 8 meters. Further, anticipating that
the levels of iris pigmentation should play an important role,
we sub-divided the images into three categories, according
to this criterium: ’light” category contains the blue and light
green irises, ”medium” contains the light and medium brown
and the dark green irises and, finally, ”heavy’ contains the
dark brown and almost black irises.

The upper-right region of figure 4 illustrates the performed
experiments. We started by the segmentation of each iris
region, localized its noisy regions and normalized it into
a dimensionless polar coordinate system, through a process
known as the ”Daugman Rubber Sheet”.

It is known the most successful iris encoding methods
operate locally, i.e., each signature component is extracted
from a small iris region (e.g., Daugman’s encoding strategy
iteratively convolves pairs of Gabor kernels along regions
of the normalized iris data), which leaded us to measure
the amount of information locally, on 7 × 7 windows of
the normalized images. This gives an idea about the amount
of information available on each region from where the
components of the signature are extracted.

Image entropy has been widely used in the image pro-
cessing domain to characterize textures, as a measure of the
amount of information contained by an image. It is defined
as

h(I) = −
g−1∑
0

p(k) log2(p(k)) (1)

where I is an image with g gray levels, and p(k) is the
probability of occurrence of the gray level k in I .

Figure 4 illustrates the local entropy values obtained for
the ”light” pigmented irises in our experiments. For each
imaging distance, the upper plot assess whether values could
come from a Gaussian distribution (normal data will appear
linear). The corresponding lower plot gives the histogram
and the fitted Gaussian distribution with parameters shown
in the plot’s corner. ”R-square” gives the goodness-of-fit of
the data to the corresponding Gaussian distribution.

We observed that, either for ”light”, ”medium” and
”heavy” pigmented irises, values almost perfectly fit Gaus-
sian distributions, as the R-square values were all above
0.96 (1 corresponds to a perfect Gaussian distribution). Also,
we confirmed that the average entropy values have inverse
correspondence with the imaging distance and with the levels
of iris pigmentation. This is summarized in figure 5. The X
and Y axes respectively give the imaging distance and the
levels of iris pigmentation. The vertical axis gives the average
local entropy values within the normalized iris regions.

Fig. 5. Impact of the image acquisition distance and of the levels of
iris pigmentation on the amount of information captured with the afore
described image acquisition framework and protocol. The vertical axis gives
the average of the entropy values on 7 × 7 windows located within the
normalized iris rings. For comparison purposes it should be mentioned that
a corresponding value of 3.68 was obtained for images acquired in the NIR
wavelength and on cooperative scenarios.

Apart the confirmation of the relationship between the
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Fig. 4. Measuring of the average entropy of 7 × 7 windows located within the iris rings, regarding the image acquisition distance. As illustrated in the
upper left corner, we segmented and normalized a set of close-up iris images and analyzed the amount of information that is possible to capture in these
situations. The upper sub-figure of each column gives the spread of the values along an optimal Gaussian distribution plotted linearly. The lower sub-figure
gives the correspondent histogram, the approximated Gaussian parameters and a goodness-of-fit measure (R-square).

amount of captured information, the imaging distance and
the levels of iris pigmentation, these experiments allowed us
to perceive how much values decrease and to obtain lower
bound values for the recognition feasibility. As comparison
term, in figure 6 we show the correspondent results obtained
for an image of the WVU [6] database. This image was
acquired in a stop-and-stare interface, at close distances and
near infrared (700-900 nm.) wavelengths, corresponding to
the acquisition conditions and protocols used in successfully
deployed iris recognition systems. The similarity between
the distribution of the values obtained on images acquired
in the cooperative scenario and ours is evident, although a

comprehensible gap in the average value can be observed. We
concluded that images captured from 8, 7, 6, 5 and 4 meters
have respectively 58, 59, 67, 77 and 81% of the amount
of information available on the regions of a good quality
IR image, acquired in a cooperative scenario. Forthcoming
work is required to analyze the relationship between the
recognition error rates and this information gap.

B. Specificity

Several previous works about the iris recognition tech-
nology reported a very small - almost infinitesimal - prob-
ability of produce a false match in the comparison be-
tween signatures extracted from data with good quality



Fig. 6. The upper figure gives the distribution of the entropy values of
7 × 7 windows located within the iris ring of the infra-red image shown
in figure 1a, acquired in a stop-and-stare interface, at close distance and
requiring the subject’s cooperation. This type of image represents the image
acquisition conditions of already deployed iris recognition systems. On the
bottom figure, the respective histogram is given. ”R-square” corresponds to
the goodness-of-fit of the plotted Gaussian distribution with µ = 3.68 and
σ = 0.33 to the obtained results.

(e.g., [10], [12], [13] and [14]). This is due to the chaotic
appearance of the iris texture’s main components and is
regarded as one of the technology’s major advantages, when
compared with other biometric traits. However, a fundamen-
tal hypothesis for the feasibility of the type of recognition
discussed in this paper should be tested: to assure that the
comparison between signature templates (extracted from iris
data with good quality) and samples extracted from iris
data with very poor quality or even from partial or non-iris
regions (due to failures on the eye detection and segmentation
modules, high probable in high dynamic environments) will
neither frequently produce false matches, whose would take
most of the value given to any reported positive recognition.

This hypothesis was tested through a procedure illustrated
in figure 7. Using the recognition method proposed by Daug-
man [15] - composed by iris segmentation, normalization
(Daugman Rubber Sheet), encoding (bidimensional Gabor
wavelets) and matching (Hamming distance) - we extracted
1 000 signatures from iris images with good quality and
recorded them in a templates database. Further, we built a
set of sample signatures, extracted from 1 000 iris images
with very poor quality, 10 000 non-iris or partial iris images
and 10 000 natural and synthetic textures images. Finally, we
performed a ”1-to-all” comparison, between each sample and
the set of templates, giving a total of 21 000 000 compar-
isons. During these tests we didn’t get a single dissimilarity
value close to the usual acceptance threshold (0.33) and, thus,
not even a single false acceptance was observed.

Figure 8 gives the histogram of the obtained dissimilarity
values (vertical bars) and the approximated Gaussian distri-

bution (line plot with µ = 0.49992 and σ = 0.02419). We
confirmed that, even on high degraded data, the used iris
encoding and comparison strategies produce a false match
with almost null probability. Based on the parameters of the
fitted Gaussian distribution, the probability of producing a
dissimilarity value lower than 0.33 will be approximately of
1.03923 × 10−12. Once again, the role of this value for the
type of recognition discussed in this paper should be stressed:
it can be assumed with extreme high confidence that such
recognition systems will not produce false matches and, thus,
any match reported has a full probability of being genuine.
This means that, independently of the false non-matches’
frequency (due to extreme lighting variations, movements
and perspectives) any positive recognition is high reliable and
should be regarded as a gain, as it cames from completely
human-free efforts process.

Fig. 8. Histogram of the obtained dissimilarities when comparing signatures
extracted from 1 000 templates with good quality and 21 000 signatures
extracted from iris images with bad quality, partial irises and non-iris data.
”R-square” gives the goodness-of-fit of the plotted Gaussian distribution
with µ = 0.499 and σ = 0.024 to the obtained results.

C. Sensitivity

As stated before, several authors reported the levels of
iris pigmentation as a strong obstacle to its proper visible
wavelength imaging. It is considered that heavy pigmented
irises, that constitute the large majority of the world popula-
tion, would demand strong amounts of light to be acquired
with sufficient discriminating information. Here, we infer
how much the levels of iris pigmentation increase the recog-
nition challenges. This was made through an analysis of the
separability between the intra- and inter-class comparisons
regarding the levels of iris pigmentation, which gives an
approximation for the sensitivity that recognition systems
achieve on the correspondent type of irises. Once again,
we divided the available images into three sub-sets: ”light”,
”medium” and ”heavy” pigmented irises, each one with
varying imaging distances and image quality. Then, we
performed every possible intra- and inter-class comparison,
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Fig. 7. Setup of the experiments performed to evaluate the probability of produce a false match in the comparison between iris signatures extracted
from good quality data (”iris template”) and signature samples resultant from iris data with bad quality, or even partial or non-iris data. We used the main
recognition stages proposed by Daugman and successfully deployed in recognition systems to evaluate the probability of produce a false match in these
situations.

(a) ’Light’ irises, µI = 0.29, σI = 0.07, µE =

0.49, σE = 0.03, τ = 2.350

(b) ’Medium’ irises, µI = 0.32, σI = 0.08, µE =

0.50, σE = 0.04, τ = 1.994

(c) ’Heavy’ irises, µI = 0.36, σI = 0.09, µE =

0.49, σE = 0.04, τ = 1.317

Fig. 9. Separability between intra- and inter-class comparisons, regarding the levels of iris pigmentation. The light and dark bar series represent respectively
the intra- and inter-class comparisons and the dotted line series fitted Gaussian distributions. τ gives the value of the Fisher-ratio test (2).

from which the recognition decidability [16] was measured
and the system’s feasibility inferred.

Figure 9 contains the three obtained histograms, respec-
tively for ”light” (figure 9a), ”medium” (figure 9b) and
”heavy” (figure 9c) pigmented irises. τ gives a Fisher-ratio
test indicator of the system’s decidability:

τ =
µE − µI√
1
2 (σ2

E + σ2
I )

(2)

where µI and µE denote the intra- and inter-class mean
values and σI and σE the respective standard deviation
values.

At first, we observed that the parameters obtained for

the inter-class comparisons were approximately equal for all
types of irises, which confirms the results given in the last
section. Also, an evident decrease in the separability between
intra- and inter- class comparisons regarding the levels of iris
pigmentation was observed, as the values of τ summarize.
Without surprise we obtained decidability values that are far
from the values that traditionally are accepted as good (above
3.0 [16]). This can be easily justified by the extreme poor
data quality and the dynamics of the environment from where
data was acquired.

On the other hand, it should be stressed that obtained
values are - clearly - not chaotic, and an evident discrim-
ination between intra- and inter- class comparisons can be



observed for all types of irises. Thus, it can be concluded that,
although with relatively low sensitivity values, it is possible
to recognize individuals using visible wavelength images,
even on high pigmented irises. Once again, we stress that this
conclusion results from the fact that the whole recognition
process is completely free of any human effort. It is obvious
that even close values obtained on cooperative scenarios will
make this type of systems clearly impracticable.

If the standard dissimilarity value of 0.33 is used to accept
a match between signatures, 81%, 65% and 43% of the intra-
class comparisons respectively for ”light”, ”medium” and
”heavy” pigmented irises are below that limit. This gives
an approximation about the potential sensitivity achieved for
the correspondent levels of iris pigmentation, which from our
viewpoint constitutes an encouragement for further research
on the area and stresses the recognition feasibility.

IV. CONCLUSIONS

All the successfully deployed iris recognition systems
use NIR active light sources to acquire images at very
limited distances and demand users a strong cooperative
behavior, which denies the broadening of the technology to
areas where the subjects cooperation is not expectable (e.g.,
terrorist/criminal seek, missing children).

Clearly, the use of NIR light to acquire images at larger
distances would demand stronger lighter sources, whose
are particularly hazardous to subjects’ health due to the
nonexistence of eye’s natural protective mechanisms (aver-
sion, blinking and pupil contraction). One alternative is the
performing of visible wavelength at-a-distance and on-the-
move image capturing, minimizing the probability of risk to
subjects eyes.

In this paper a set of images of the UBIRIS.v2 database -
captured on the afore described conditions - was used to give
some results about the amount of information that is possible
to capture, the probability to produce false acceptances
and the maximal sensitivity that recognition systems should
achieve in these extremely ambitious scenarios. The exper-
iments led us to confirm the increasing difficulty of proper
imaging and recognition on heavy pigmented irises. Also,
we observed the practical null probability of produce false
matches (even when using high degraded data) and obtained
rough approximations for the sensitivity and specificity that
the type of recognition systems discussed in this paper could
obtain.

Finally, it should be stressed that all the results given
in this paper were obtained when using iris segmentation,
encoding and matching methods though to cooperative and
NIR wavelength scenarios. The development of alternate
and specialized techniques able to deal with the intrinsic
properties of the focused environments should significantly
improve the results, which we believe to encourage further
research on the area.
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