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Abstract— Monolingual text-to-text generation is an emerg-
ing research area in Natural Language Processing. One
reason for the interest in such generation systems is the
possibility to automatically learn text-to-text generation
strategies from aligned monolingual corpora. In this context,
paraphrase detection can be seen as the task of aligning
sentences that convey the same information but yet are
written in different forms, thereby building a training set
of rewriting examples. In this paper, we propose a new
type of mathematical functions for unsupervised detection
of paraphrases, and test it over a set of standard paraphrase
corpora. The results are promising as they outperform state-
of-the-art functions developed for similar tasks. We consider
two types of paraphrases - symmetrical and asymmetrical
entailed - and show that although our proposed functions
were conceived and oriented toward the asymmetrical de-
tection, they perform rather well for symmetrical sentence
pairs identification.

Index Terms— Paraphrasing, Paraphrase Identification, Sen-
tence compression, Text Summarization, Text Generation,
Textual Entailment, Text Mining.

I. INTRODUCTION

In generally, a paraphrase could be defined as a state-
ment or remark explained in other words or another way,
so as to simplify or clarify its meaning. Therefore a
minimum of two monolingual ”text entities” are involved,
whether they are texts, paragraphs, sentences or simply
phrases. On this article we refer to a paraphrase as a
pair of sentences that expresses the same meaning or that
that coincide in almost the same semantical items yet are
usually written in different styles. We also identify two
types of paraphrases, which we designate as symmetrical
and asymmetrical. A symmetrical paraphrase complains
with the general notion of a paraphrase:

Definition 1: A symmetrical paraphrase is a pair of
sentences 〈Sa, Sb〉, where both sentence contains the same
information, or in terms of entailment, each sentence
entails the other one, i.e: Sa ² Sb ∧ Sb ² Sa.

We also remark a special type of paraphrases - the
asymmetrical case, defined as follows:
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Definition 2: An asymmetrical paraphrase is a pair of
sentences where at least one sentence is more general or
contains more information than the other one, i.e either
Sa 2 Sb or Sb 2 Sa.
An example of an asymmetrical paraphrase is shown next:

Sa: The control panel looks the same but responds
more quickly to commands and menu choices.

Sb: The control panel responds more quickly.

Paraphrase corpora are golden resources for learning
monolingual text-to-text rewritten patterns1, satisfying
specific constraints, such as length in summarization [1]–
[5] or style in text simplification [6]. However, such cor-
pora are very costly to be constructed manually and will
always be an imperfect and biased representation of the
language paraphrase phenomena. Therefore reliable and
efficient automatic methodologies capable of paraphrase
extraction from text, and subsequently corpus construc-
tion, are crucial. In particular, we are mainly interested in
asymmetrical paraphrase corpora construction2.

In fact, text-to-text generation is a particularly promis-
ing research direction given that there are naturally occur-
ring examples of comparable texts that convey the same
information but yet are written in different styles. Web
News Stories are obviously a natural space for searching
this type of texts. So, presented with such texts, one can
pair sentences that convey the same information, thereby
building a training set of rewriting examples i.e. a para-
phrase corpus. A few unsupervised methodologies have
been applied to automatic paraphrase identification and
extraction [4], [7]. However, these unsupervised method-
ologies show a major drawback by extracting quasi-exact3

or even exact match pairs of sentences, as they rely
on classical string similarity measures such as the Edit
Distance in the case of [7] and word n-gram overlap for
[4]. Such pairs are clearly useless for us, since we aim
for asymmetrical paraphrase examples, as explained.

As a consequence, we first propose a new function -
named the LogSimX - that presents a solution to these
limitations and outperforms all state-of-the-art metrics
both in the general case where exact and quasi-exact pairs

1For example by applying machine learning techniques
2Sice our main research task is sentence compression or summariza-

tion.
3Almost equal strings, for example: Bush said America is addicted

to oil. and Mr. Bush said America is addicted to oil.
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do not occur and in the real-world case where exact and
quasi-exact pairs occur like in Web News Stories. Second
we investigate well defined mathematical functions that
comply with the main characteristics of LogSimX, and
experimentally show that these functions performed as
well as LogSimX.

Finally we make a comparative study between already
existing functions for paraphrase extraction and our new
proposed functions. We named this two types of functions
the Asymmetrical Paraphrase functions (AP functions)
and Symmetrical Paraphrase functions (SP functions).
Results show that SP functions are preferable in any
situation, for identifying symmetrical or asymmetrical
pairs.

II. RELATED WORK

The issue of finding paraphrases in monolingual com-
parable corpora is recently becoming more and more
relevant as researchers realize the importance of such
resources for Information Retrieval, Information Extrac-
tion, Automatic Text Summarization and Automatic Text
Generation [1]–[6], [8]–[11].

In particular, three different approaches have been
proposed for paraphrase detection: unsupervised method-
ologies based on lexical similarity [4], [7], supervised
methodologies based on context similarity measures [12]
and methodologies based on linguistic analysis of com-
parable corpora [13].

Microsoft researchers [7] endeavored a work to find
and extract monolingual paraphrases from massive com-
parable news stories. They use the Edit Distance (also
known as Levenshtein Distance [14]) and compare it with
an heuristic derived from Press writing rules, where initial
sentences from equivalent news stories are considered as
paraphrases.

The evaluation shows that the data produced by the
Edit Distance is cleaner and more easily aligned than by
using the heuristic. However, evaluating by using word
error alignment rate (AER), a function borrowed from
statistical machine translation [15], evidences that both
techniques perform similarly.

In [4] they use the simple word n-gram (n = 1, 2, 3, 4)
overlap function in the context of paraphrase lattices
learning. In particular, this string similarity measure is
used to produce clusters of paraphrases using hierarchi-
cal complete-link clustering. This metric is also often
employed for string comparison, in Natural Language
Processing applications [16], [17]. We will see in section
VII that simple word n-gram overlap also performs well,
for symmetrical paraphrase identification.

More deepening techniques rely on context similarity
measures such as [12]. They find sentence alignments
in comparable corpora by considering sentence contexts
(local alignment) after semantically aligning equivalent
paragraphs. To combine the lexical similarity4 and the
proximity feature, local alignments are computed on each

4With the cosine similarity measure.

paragraph pairs using dynamic programming. Although
this methodology shows interesting results, it relies on
supervised learning techniques, which needs huge quan-
tities of training data that may be scarce and difficult to
obtain. Unlike unsupervised methodologies, this kind of
applications is limited to the existence of such data sets.

Others [13] go even further by exploring heavy linguis-
tic features combined with machine learning techniques
to propose a new text similarity function. Once again it
is a supervised approach and also heavily dependent on
valuable linguistic resources which is not available for the
vast majority of languages. We agree on the fact that lin-
guistic resources may improve accuracy and accordance
with human judges but they shorten the application of
such systems to very few languages.

Finally we address the work done by [18] that com-
pared a set of evaluation metrics for the task of text-to-text
generation. They compare the NIST simple string accu-
racy (SSA), the BLEU and NIST n-gram co-occurrence
metrics, Melameds F measure, and latent semantic anal-
ysis (LSA). The comparison was done for fluency and
adequacy of generated candidate sentences by comparison
with one or more reference sentences. Conclusions claim
that these automatic evaluation metrics are not adequate
for the task of evaluating fluency, and are barely adequate
for evaluating adequacy in the context of variation gener-
ation. These results imply that specific similarity metrics
must be defined for specific tasks as general metrics are
not reliable and may produce a great variety of results
depending on the task they tackle.

III. SYMMETRICAL PARAPHRASE DETECTION
FUNCTIONS (SP-FUNCTIONS) - OVERVIWE

In the literature [4], [14], [19], we can find the Leven-
shtein Distance [14] and what we call the Word N-Gram
Overlap Family [4], [19]. Indeed in the latter case, some
variations of word n-gram overlap functions are proposed
but not clearly explained. In this section, we will review
all the existing functions and also propose an enhanced
n-gram overlap metric based on LCP (Longest Common
Prefix) [20].

A. The Levenshtein Distance

This function, also known as Edit Distance, was created
for string similarity computation. Considering two strings,
the function computes the number of character insertions,
deletions and substitutions that would be needed to trans-
form one string into the opposite [14]. The function may
be adapted for calculating Sentence Edit Distance - upon
words instead of characters [7]. Considering two strings,
it computes the number of words insertions, deletions
and substitutions that would be needed to transform one
sentence into the other one.

A problem that we observed, while using this function
for paraphrases detection on text, was its failure on
certain types of true paraphrases like the ones where there
exists high lexical alternations or different syntactical
structures. For example, it is unlikely that sentences (1)
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and (2) would be identified as paraphrases, since Edit
Distance outputs an high value, erroneously indicating
high dissimilarity among sentences.

(1) Due to high energy prices, our GDP may
continuing to fall, said Prime Minister, early
morning.

(2) Early morning, Prime Minister said that
our GDP may continuing to fall, due to growing
energy prices.

This type of possible reordering is very unlikely to happen
among words, with some lexical proximity, and Edit
Distant was precisely conceived to be used with such
raw material and not sentences, where more complex
linguistic phenomena exists. Therefore it will fail in many
positive examples like the sentence pair previously shown.

B. The Word N-Gram Family

In fact, we found not only one, but a set of text
similarity measures based on word n-gram overlap in
the literature. Sometimes it is not clear or unspecified
which word n-gram version is used. In fact, two metrics
are usually found in the literature (the Word Simple N-
gram Overlap and the BLEU Metric). But, in order to be
complete, we propose a third metric based on the LCP
paradigm.

1) Word Simple N-gram Overlap: This is the simplest
function that uses word n-gram overlap counting between
sentences. For a given sentence pair, the function counts
how many 1-grams, 2-grams, 3-grams, ..., N-grams over-
lap, usually N is chosen equal to 4 or less [4]. Let’s
name this counting function Countmatch(n-gram). For a
given N > 1, a normalized metric that equally weights
any matching n-gram and evaluates similarity between
sentences Sa and Sb, is given in Equation 1:

simo(Sa, Sb) =
1
N
∗

N∑
n=1

Countmatch(n-gram)
Count(n-gram)

(1)

where the function Count(n-gram) counts the maximum
possible number of n-grams that exist in the shorter
sentence as it rules the max number of overlapping n-
grams.

2) Exclusive LCP N-gram Overlap: In most work in
Natural Language Processing, the longest a string is, the
more meaningful it should be [21]. Based on this idea, we
propose an extension of the word simple n-gram overlap
function. The difference between simple and exclusive
n-gram overlap lays on the fact that the exclusive form
counts prefix overlapping 1-grams, 2-grams, 3-grams, ...,
N-grams, regarding the Longest Common Prefix (LCP)
paradigm proposed by [20]. For example, if some max-
imum overlapping 4-gram is found then its 3-grams, 2-
grams and 1-grams prefixes will not be counted. Only the
4-gram and its suffixes will be taken into account. This
is based on the idea that the longer the match the more
significant the match will be. Therefore smaller matches
are discarded.

In particular, we compute exclusive n-grams co-
occurring in a sentence pair by using a suffix-array
algorithm proposed by Yamamoto and Church [20]. They
proposed this method to efficiently compute n-grams in a
long corpus and calculate term frequencies and document
frequencies.

So far, we never observed this n-gram overlap com-
puting method. However, we decided to endeavor some
experiments with this function as it is based on a sound
hypothesis for Natural Language Processing applications.
However, we will see in section ?? that the simple word n-
gram overlap function gives overall better results although
this enhanced n-gram overlap function shows interesting
results to classify false paraphrases.

In order to clarify how do this word Longest Common
Prefix be computed, we give the following example, with
sentences (3) and (4) having some n-grams in common:

(3) The President ordered the final strike over
terrorists camp.

(4) President ordered the assault.

Between these two sentences we have the LCP n-gram
overlap given by: ”President ordered the” which is a 3-
gram. So the complete set of overlapping n-grams, besides
the 3-gram, is: ”ordered the” (2-gram) and ”the” (1-gram),
i.e all its suffixes.

If one wants to normalize the n-gram overlap then a
particular difficulty rises, due to the LCP n-gram con-
siderations, i.e. the maximum number of overlapping n-
grams depends on the number of (n+1)-gram overlaps that
exist. For example, in the previous case and for 1-grams,
we only have one overlapping 1-gram (”the”) between
the two sentences and not 3 as it could be computed
with the word simple n-gram overlap metric i.e. ”the”,
”President” and ”ordered”. Thus, with this process of
considering exclusive n-grams, it is unlikely to compute
similarity based on a weighted sum like in formula 1.
Another method, more suitable, is used and it is expressed
by Equation 2

simexo(Sa, Sb) = max
n

{
Countmatch(n-gram)

Count(n-gram)

}
(2)

where Sa and Sb are two sentences and the following
functions Countmatch(n-gram) and Count(n-gram) are
the same as above with this new matching strategy i.e.
we first calculate simexo(Sa, Sb) for 4-grams and then
for the remaining 3-grams and so on and so forth, and
then choose the maximum ratio.

3) The BLEU Function: The BLEU [19] metric were
introduced as a function to automatically evaluate the
performance achieved by a translation system and was
employed in some conference contests to judge the quality
of their competing systems. In such a competition any
system must generate the translation to a given text sup-
plied by the evaluator. Afterwards the evaluator evaluate
the quality of the produced translation, by comparing it
with a set of reference translations for that text, previously
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created by humans. This comparison is executed through
the BLEU function, which are shown next in equation 7.
First it is calculated the pn value as follows:

pn =

∑
C∈{Candidates}

∑
ngram∈ C

Countclip(ngram)

∑
C∈{Candidates}

∑
ngram∈ C

Count(ngram)
(3)

and then

BLEU = BP ∗ exp
N∑

n=1

wn log pn (4)

where BP is a brevity penalty factor and wn are weight-
ing factors (wn ∈ [0, 1] and

∑N
i=1 wn = 1.0). In equa-

tion 3 {Candidates} is the reference translations set and
the functions Countclip(ngram) counts the number of n-
gram clippings (like matches) between the automatic gen-
erated translation and a given reference text. This means
that this function count n-gram relation among two texts
and as a consequence BLEU could be adapted to compute
proximity among sentences. By doing this adaptation
for sentence comparison, BLEU become BLEUadapted,
which is shown next:

BLEUadapted = exp
1
N

N∑
n=1

log Cn (5)

where Cn is computed as follows:

Cn =
∑

ngram

Countmatch(ngram )
Count(ngram )

(6)

For the brevity penalty factor we chose BP = exp(1− r
c ),

where r and s are respectively the greatest and smallest
sentence lengths, in terms of word counting. For the
weighting factors, we took wn = 1

N and end up with
nearly the geometrical mean of the Cn ratios:

BLEUadapted = BP ∗
[

N∏
n=1

Cn

] 1
N

(7)

The Countmatch(ngram) function counts the number of
exclusive or no-exclusive n-grams co-occurring between
the two sentences, and the function Count(ngram) the
maximum number of n-grams that exists in the shorter
sentence. The maximum number of n-grams (N ) was
chosen equal to 4 in our experiments, like in many other
domains where BLEU is employed.

IV. ASYMMETRICAL PARAPHRASE DETECTION
FUNCTIONS (AP-FUNCTIONS)

Paraphrase corpora are gold resources in many research
fields [2]–[5] and for us it will be used for sentence
compression rule induction, using machine learning tech-
niques. Our main research area lays in the field of
Automatic Sentence Compression and we see paraphrase
clusters as nice raw material to discover Sentence Com-
pression patterns as other authors pointed out [2]–[5],

[10]. Therefore, we intend to automatically construct a
huge paraphrase corpus.

Automatic Paraphrase corpus construction has already
be addressed by some authors [4], [7], by using some of
the functions presented previously in section III. However,
the application of the existing functions for paraphrase
detection in real-world conditions, like in Web news
stories, reveal a particular difficulty: most of the results
are exact or quasi-exact match pairs of sentences. Such
results are obviously useless for us, since we are specially
interested on asymmetric paraphrases, where one sentence
contains more information, possibly irrelevant, than the
other one. Therefore we started to think and design about
a new function capable to avoid this difficulty and to
maintain some desirable properties like those pointed
next:

(1) Achieve maximum automation in corpus construc-
tion - minimum or even no human intervention, with high
reliability.

(2) Penalize equal and almost equal sentences - they
are not useful for our research needs, but frequent in real-
world news stories situations.

(3) Ability to identify pairs having a high degree of
lexical reordering, and different syntactic structure

(4) Define a computationally fast and well founded
metric, to extract a great amount of paraphrases within
relative low computation cost and time.

A. The LogSim family

This was our first attempt to create a metric to an-
swer to our special needs of asymmetrical paraphrase
identification, having the desired properties we have just
described. The basic idea of the LogSim family lays
on the notion of exclusive lexical links between pairs
of sentences, as shown in figure 1. This metric may
be ”expanded” to integrate more complex features, like
syntactic or semantic labels, but at a first step we preferred
to maintain it at a lexical level, and so preserving language
independency. In particular, we will show in section VI
that the results obtained with this level of complexity will
be difficult to improve by the integration of any other
syntactic or semantic features, at least for this kind of
corpora.

An exclusive lexical-link defines an 1-gram, or uni-
gram, exclusive overlap: if a link is established between
sentence Sa and sentence Sb, for the word w, then other
occurrences of word w in sentence Sa will engage a
new link to sentence Sb if there exists at least one more
occurrence of w in Sb, besides the one which is already
connected.

B. LogSim

We define the number of links between two sentences
as λ and the number of words in the longest sentence as
x. The fraction λ

x (∈ [0, 1]) indicates a normalized lexical
connection among sentences. As λ

x −→ 1, it becomes
more likely that both sentences are equal, and with λ

x = 1,
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Figure 1. Links between a sentence pair.

they are in fact exactly equal. Remark that even if the
shortest sentence is strictly contained inside the longest
one, we have λ

x < 1
To calculate the LogSim function, LogSim(., .), we

first evaluate the function L(x, λ) as in Equation 85

L(x, λ) = − log2(
λ

x
) (8)

Then the LogSim(., .) is obtained as in Equation 9 ensur-
ing that the function range lays in the interval [0, 1]. The
logarithm is used as a mechanism to gradually penalize
sentence pairs that are too similar, returning exactly zero
on those situations where we have an exact match.

LogSim(Sa, Sb) =





L(x, λ) if L(x, λ) < 1.0

e−k∗L(x,λ) otherwise
(9)

The main objective of the second branch e−k∗L(x,λ) is
to dramatically penalize pairs with great dissimilarities,
since in this case λ

x −→ 0 and naturally L(x, λ) −→ +∞.
For example, if x = 30, y = 5 and λ = 4 (y is
the number of words in the shortest sentence), we get
L(x, λ) = 2.9068 and the final LogSim(., .) output value
is repositioned in [0, 1] as a small value (0.00039). The
positive k parameter is used to boost the penalization
branch. In our experiments, we decided to fixed k = 2.7.
In fact, the greater the k, the greater the penalization will
be for dissimilar pairs.

C. Expanded LogSim

The L(x, λ) function, defined in the previous subsec-
tion is independent from the number of words in the
shorter sentence y. This is not absolutely true since λ ≤ y.
However, one may thing about considering a broader
function that also depends explicitly on y. The natural
idea that follows is to consider λ

y and also applying
the log2 mechanism for high-similarity penalization, i.e
L(y, λ). So, a new function L(., ., .) depending on the
tree parameters x, y and λ could be a linear interpolation
of L(x, λ) and L(y, λ), as shown in Equation 10:

L(x, y, λ) = −α ∗ L(x, λ)− β ∗ L(y, λ) (10)

where α and β are weighting factors, such that α ∈ [0, 1]
and α = 1 − β. Remark that by varying the α weight
we obtain different L(x, y, λ) functions, in particular for

5When λ = 0, L(x, λ) = 0.

α = 1 we have L(x, y, λ) = L(x, λ).

In a same thought as for the LogSim(., .) function, and in
order to ensure that the function range lays in the interval
[0, 1], we define the LogSimX(., .) as shown next in
equation 11.

LogSimX(Sa, Sb) =

8
<
:

L(x, y, λ) if L(x, y, λ) < 1.0

e−k∗L(x,y,λ) otherwise
(11)

D. Complexity

The LogSim family was conceived to be as simple
and efficient as possible, since no digram, trigram or
n-gram (n > 1) is computed, like in ”n-gram overlap”
or BLEU metrics. Only unigrams (words) are taken into
account to calculate the λ value (number of links between
sentences). In the worst case, this computation is done
in Θ(x ∗ y) time - when the sentences are completely
different, i.e. there is no link among them. In that case,
we compute x ∗ y comparisons i.e. each word in one
sentence is compared with each word in the other. In
the best situation the computation will take only Θ(y)
time. This is the case when the shortest sentence is a
prefix of the longest one. However, these are extreme
situations and the real complexity lays between these two
- Θ(y) ≤ Θ(LogSim) ≤ Θ(x ∗ y). Similarly, the word
Edit Distance takes at least Θ(x ∗ y) time complexity
by using the commonly-used bottom-up dynamic pro-
gramming algorithm. On the opposite, any N-gram based
metric requires more computations: Θ(N ∗ x ∗ y), where
N is the maximum number of N-grams considered. For
example, if N = 3 only unigrams, bigrams and trigrams
are counted which takes Θ(x∗y)+Θ((x−1)∗ (y−1))+
Θ((x− 2) ∗ (y− 2)) = Θ(3 ∗x ∗ y) operations. Empirical
computations, realized over huge text collections, support
these statements, showing considerable time differences
in real-world conditions. In conclusion, we may abusively
state that Θ(LogSim) = Θ(LogSimX) ≤ Θ(Edit) ≤
Θ(Ngram).

E. Beyond LogSim - A Set of Convenient Mathematical
Functions

We are specially interested in asymmetrical paraphrases
as previously mentioned, since they complain better with
the key idea of compactness which is rather relevant
in Automatic Sentence Compression. Such a collection
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enables, for instance, a machine learning based system to
automatically induce sentence simplification rules. How-
ever, as expressed previously in section I, the known
functions used so far for paraphrases identification fail
to correctly identify asymmetrical pairs. Therefore, at a
first step a new function was specially designed (LogSim
and LogSimX) to overcome the difficulties revealed by
the existing functions.

However, despite the superior performance achieved
by LogSimX (see the VI section), both in symmetrical
and asymmetrical corpora, the function seems a bit tricky
and difficult to explain and even not very mathematically
sound, having an inelegant discontinuity point that is well
noticed in the graph of figure 2.

Figure 2. The LogSim(x) function in the [0, 1] interval.

Therefore we thought about other functions that could
well model our problem yet being more mathematically
sound. We started by looking at the main characteristics
that are encoded inside LogSimX and try to find out
other, and more simple, mathematical functions which
contains these characteristics, hoping that such functions
will behave as well as LogSimX . As a result we found
a set of well known functions that models very well (see
the obtained results, in section VI) this phenomena.

Such a function, lets say paraph(Sa, Sb), should take
two sentences as input and return a number in the [0, 1]
interval, meaning paraphrase relatedness among these
sentences, or in a more probabilistic interpretation the
probability for those sentences to form an asymmetrical
paraphrase pair. The paraph(., .) function should return
low values, whether the two sentences are too different
or almost equal, like in the following example:

Sa: The stock has gained 9.6 percent this year..

Sb: The stock has gained 9.6% this year.

Having this example in mind, it seems clear that a much
greater value should be returned (possibly near 1.0) for
the ”control panel” example shown in section I. Given
these insights, we devised for paraph(., .) a mathematical
function with a curve similar to one of those shown in
figure 5.
These kind of ”hill curves” share all the same prop-
erty of zero approximation, on their boundaries, i.e:
limx→0 f(x) = 0 and limx→1 f(x) = 0, and also there

Figure 3. Candidate models for paraph(., .) function.

exist an xmax ∈ [0, 1] such that the function reach
its maximum. Ideally we seek functions satisfying the
condition f(xmax) = 1.0. In our problem, the x value
will be a ratio representing some combinations of features,
among sentences, for example the number of common
words divided by the number of words in each sentence.

We experimented at least 4 different types of math-
ematical functions that satisfy the previous conditions,
for convenience we named this four types as: parabolic,
trigonometric, gaussian and entropic functions. The re-
mainder of this section will explain the details of each
one and what particular form6, from each type, do we use.
The comparative results shown in section VI evidences
high performance achievement for almost all these new
functions, when compared with the already existing SP
functions, specially for asymmetrical paraphrase identifi-
cation task.

F. Parabolic and Trigonometric Functions

A parabolic function is defined by a second order
polynom, i.e: f(x) = ax2 + bx + c, which depends upon
parameters a, b and c. These parameters determines the
function zeros and the concavity direction - upward or
downward. For our problem, we took a = −4, b = 4 and
c = 0: f(x) = 4x − 4x2, where p was taken equal to

λ
|Sa| ∗ λ

|Sb| , and |Sa| and |Sb| are the number of words in
the sentences.

Among the trigonometric functions we experimented
a transformation of the sin(x) function which have a
maximum value equal to 1 in the interval [0, π] for exactly
x = π

2 . Since our domain lays in the [0, 1] interval, a
linear transformation of the function domain was taken
and our trigonometric function become equal to sin(πx).
Once again we calculate x by multiplying the two ratios:

λ
|Sa| ∗ λ

|Sb| .

G. Gaussian Functions

Gaussian functions are widely known and used in
many scientific and engineering domains, for instance the

6The form depends on a set of parameters chosen and bounded to
some values.
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Normal Distribution used in Probability and Statistic is a
particular case of a Gaussian function. Such a function is
defined as follows:

f(x) = ae−
(x−b)2

2c2 (12)

The parameters a, b and c shapes different functions but
with the same symmetric ”bell shape” aspect, as it can
be seen in equation 12, where three different Gaussian
functions are drawn for three different c values (c =
0.16, 0.20, 0.25). In order to have f(xmax) = 1.0, we
must take a = 1, and also another property inherent to
gaussian functions is that the maximum value is reached at
point b (xmax = b), in our experiments we fixed b = 0.5.

Figure 4. Three Gaussian functions for three different c parameters.

The c parameter governs the function values on the
boundaries (0, 1), greater values outputs bigger boundary
values, meaning less penalization for the dissimilarity (0)
or too high-similarity (1.0) between the sentence pair.
For example, by drawing the graphic with c = 0.23, in
figure 4, we obtain f(0) = 0.1, meaning that the function
will output a relatedness of 0.1, even for a sentence pair
without any overlapping feature.

H. Entropic Functions

The entropy is a key concept in Thermodynamics,
Quantum Physics and in particular in Information Theory
it is known as the Shannon Entropy. This, also called
information entropy, is a measure of the uncertainty
associated with a random variable and it also quantifies
information in a piece of data. Entropy is also the shortest
average message length, in bits, that can be sent to
communicate the true value of the random variable to
a recipient. Considering our sentence pair (Sa, Sb) and
the number of exclusive links in between λ, we have the
two already mentioned ratios λ

|Sa| and λ
|Sb| and combine

them like: p = λ
|Sa| ∗ λ

|Sb| . We obtain p as the value of
a random variable in the [0, 1] interval, which may be
interpreted as two random variables. For a given binary
random variable with probability p, for a given outcome7,
the entropy function computes as follows:

7Which is our case, since the sentence pair is classified as paraphrase
or not.

E(X) = −p ∗ log2(p)− (1− p) ∗ log2(1− p) (13)

This function reach the maximum value of 1.0 for p = 0.5
meaning that the uncertainty is maximum and if p is near
0 or 1 then E(X) → 0, meaning that we are almost
certain about the outcome.

Figure 5. The Entropy Function.

This function contains all the desired properties, given
in subsection IV-E and in our sentence comparison task
the extreme values contains different meanings. In our
problem, ”maximum uncertainty” at 0.5 mean ”desired
relatedness” among sentences and the low values for 0 and
1, mean precisely ”undesirable relatedness” - sentences
almost equal (p = 1.0) or sentences too dissimilar (p =
0.0).

V. THE CORPORA SET

Two standard corpora were used for comparative tests
between metrics: The Microsoft Research Paraphrase Cor-
pus [7] and a corpus supplied by Daniel Marcu that has
been used in the Sentence Compression research field, like
[2], [5]. By adapting these corpora we created three new
corpora to serve as a benchmark for our specific purpose.
We will explain the details of each corpus in the next
subsections, so that the reader may have a more clear
compression about the comparative experimentations that
we have done and the subsequent results obtained and
reported in section VI

A. The Microsoft Paraphrase Corpus

In 2005, Microsoft researchers [7] published the first
freely available paraphrase corpus containing a total of
5801 pairs of sentences, where 3900 was annotated as
”semantically equivalent” or true paraphrases and the
remaining 1901 with the contrary. In this article, we will
refer to this corpus as {MSRPC}.

To identify and extract paraphrases from news texts,
two techniques were used: the String Edit Distance (see
section III-A) and an heuristic that pairs initial sentences
from different news stories as paraphrases. Thus for
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this corpus construction, sentences were extracted from
massive parallel news sources and tagged by 3 human
raters according to certain guidelines described in [7].
The tagging guidelines established a set of definitions
to help human judges to identify which pairs should be
considered ”equivalent” (paraphrases) or ”not equivalent”
pairs. To identify sentence pairs with ”different” contents,
these guidelines tackled issues like:

1) Different content: prototypical example,
2) Shared content of the same event, but lacking

details,
3) Cannot determine if sentences refer to the same

event,
4) Shared content but different rhetorical structure,
5) Same event but details different emphasis.

These definitions and guidelines where oriented toward
the extraction of symmetrical paraphrase pairs and there-
fore does not absolutely comply with our broader view of
the kinds of paraphrases that may exist. We are specially
interested in asymmetrical paraphrases and some of the
guidelines, for example the number 5 from the previous
list, followed for the {MSRPC} corpus construction,
conflict out special paraphrase search. In fact, sentence
pairs satisfying this condition, are generally very inter-
esting in Sentence Compression, because they carry some
sentence reduction information. For example, sentences
(5) and (6) are clearly interesting paraphrases to our
research, although they were not classified as such by
regarding the guidelines, but as a negative example. A
negative example is a pair of sentences, from an anno-
tated paraphrase corpus, that is marked with some label
meaning: ”These two sentences are not paraphrases from
each other”.

(5) Researchers have identified a genetic pilot light
for puberty in both mice and humans.

(6) The discovery of a gene that appears to
be a key regulator of puberty in humans and
mice could lead to new infertility treatments and
contraceptives.

Hence, we expect that our proposed AP functions, reach
a certain amount of disagreement over some {MSRPC}
negative examples, by identifying these examples as pos-
itive (asymmetrical paraphrases). In terms of evaluation,
this will increase the number of false positives, classified
by our AP functions, as it is experimentally confirmed
(see the results, especially table II in section VI-B.

B. The Knight and Marcu Corpus.

The corpus used by [2] in their sentence compression
research work, contains 1087 sentence pairs, where one
sentence is a compressed or summarized version of the
other one. Here, we labeled this corpus as {KMC}. It
was created in a completely manual way, from pairs of
texts and respective summaries and it is well tailored for

sentence compression research, for example to train su-
pervised learning algorithms. However, constructing such
a corpus could be very laborious and time consuming and
may even be insufficient in terms of linguistic diversity. In
fact, these were the main reasons that lead us to propose
new methodologies for automatically paraphrase corpus
construction.

C. The Corpora Used for Evaluation

One major limitation with the {KMC} corpus is
that it only contains positive examples and therefore it
should not be taken as such to perform any evaluation.
Indeed, it is necessary to add an equal number of negative
examples to obtain fair evaluations, among the paraphrase
detection functions. Even the {MSRPC} corpus is fairly
unbalanced, having only 1901 negative examples against
the 3900 positives. To perform an equitable evaluation,
we decided to expand both corpora by adding negative
examples, randomly selected from Web News Texts, in
a sufficient number to balance the corpora, so that they
have the same number of positive and negative examples.
Finally we also decided to create a third corpus, which is
a mixture of {MSRPC} and {KMC} corpora. These
three adapted corpora are briefly described next but before
we show an illustrations of what a ”random selected
negative pair” could be, to clarify a bit more the reader:

(7) Running back Julius Jones is expected to return
after missing the last three games with a sprained
left ankle.

(8) Economists closely watch the performance
of consumer spending since it accounts for
two-thirds of total economic activity.

As we can see, the two sentences are complectly different
from each other. However, as the sentence repetition rate
is high among related news texts, it is also probable to
insert as a negative example a sentence pair equal or
almost equal, like the one shown in the next example:

(9) ”I don’t think my age matters during
competitions”, said Nadal.

(10) I don’t think my age matters during the
competitions, said Nadal.

In subsection VI-D, we present a discussion and some
evaluation about this issue of adding random pairs as
negative examples, where some of them are quasi-equal
sentences, yet they are inserted as negative pairs. We
may see there that this do not compromise the evaluation
method and that the difference among SP and AP type
functions is absolutely independent from these negative
random pairs.

1) The {MSRPC∪X−
1999} Corpus: This new derived

corpus contains the original {MSRPC} collection of
5801 pairs (3900 positives and 1901 negatives) plus 1999
extra negative examples (symbolized by X−

1999), selected
from web news stories. So we end with 3900 positive
pairs and 3900 negative ones.
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2) The {KMC∪X−
1087} Corpus: From the {KMC},

we derived a new corpus that contains its 1087 positive
pairs plus a set of negative pairs, in equal number,
selected from web news stories. We named this new
corpus {KMC∪X−

1087}, where the X−
1087 stands for extra

negative paraphrase examples (1087 in this case).
3) The {MSRPC+∪KMC∪X−

4987} Corpus: Finally
we decided to build a bigger corpus that gathers the
positive {MSRPC} part, with its 3900 positive exam-
ples, and the 1087 positive pairs of sentences from the
{KMC} corpus, giving a total of 4987 positive pairs. To
balance the corpus an equal number of negative pairs were
added, obtained in a same fashion as described previously
for the other corpora. We labeled this wider corpus with
the label {MSRPC+ ∪KMC ∪X−

4987}. In this corpus
we exclude the {MSRPC} negative pairs, due to what
were discussed in the previous subsection V-A.

These corpora are available on our web site8, without
the {MSRPC} corpus neither the {KMC}, since the
first one is already available online9, and the second one
is not publicly available, but was directly provided to us
by the [2] authorsh. Thus, we only provide the negative
examples that we used: the {X−

1999}, the {X−
1087}, and

the {X−
4987}, enabling every one to exactly reconstruct

each corpus and make comparative experiments.

VI. RESULTS

In this work we made a meticulous investigation
about paraphrase identification functions. A set of already
known functions were tested and new functions are pro-
posed. Subsequently an experimental comparative study
was accomplished, between all the 9 functions, on the
3 corpora described in section V. The results obtained
will are presented here, in the next subsections and main
commentaries and conclusions are kept for section VII.

A. How to Classify a Paraphrase?

Before presenting the results, it is is necessary to
talk about a classical difficulty that is inherent to ev-
ery classification problem - thresholds. Usually, for a
given classification problem, a system takes decisions
upon some parameters, which are called thresholds and
are somehow previously set by someone: the user, the
programmer or others. In our paraphrase identification or
classification problem, every function evaluation is depen-
dent from a given predefined threshold θ - the ”frontier
value” upon which is taken the classification decision of
”paraphrase” or ”not paraphrase”. For example, assuming
that we are evaluating function paraph(., .), that returns
the likelihood for any two sentences Sa and Sb, from
then corpus, being paraphrases, and also presuming that
we chose θ = 0.6, then the pair 〈Sa, Sb〉 will be classified
as ”paraphrase” if paraph(Sa, Sb) > 0.6 or else as ”not
paraphrase”.

8http://competence.di.ubi.pt/
9http://research.microsoft.com/nlp/

Thresholds are parameters that unease the process of
fairly evaluation. Indeed, the best parameter should be
determined for each function, however this is not always
the case and wrong evaluations are often proposed. In our
evaluation process, we do not pre-define any threshold
for any function but let the evaluator to automatically
compute the best threshold for each function, i.e the
threshold that maximizes the function performance in the
corpora.

This computation is a classical problem of function
maximization or optimization [22]. In particular, we use
the bisection strategy as it computes fast, and well ap-
proximates the global maximum of the smooth function
performance curve. As a result, we are optimizing the
value of the threshold for each metric in the same way
and do not introduce any subjectivity in the choice of the
parameters.

In Table I, we present the obtained thresholds for the
nine compared metrics using a 10-fold cross validation
scheme. The results show that the bisection strategy
performs well for our task as the standard deviation for
each function and corpus is almost negligible.

In this section we renamed {MSRPC ∪X−
1999} as A,

{KMC∪X−
1087} as B and {MSRPC+∪KMC∪X−

4987}
as C in order to ease the representation and reading, in
the tables.

B. Experiments and Results

In order to evaluate and compare the results of each
function over each corpus, we calculate the known F-
Measure and Accuracy values, according equations 14
and 15, and with β = 1 (precision and recall are equally
weighted).

Every result shown in tables II and III was calculated by
averaging the 10 F-Measure and Accuracy values obtained
from a 10-fold cross validation test, performed over the
data. For every fold, the best threshold was found on
the 9

10 training data, as described previously, and then
it is used on the 1

10 test fold to calculate its F-Measure
and Accuracy performance, as usual with the following
formulae10:

Fβ =
(1 + β2) ∗ precision ∗ recall

β2 ∗ precision + recall
(14)

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

In the tables we relabeled some function names in
order to have a better and compact representation, thus
Edit, Bleu, Trignom, and Entropy are respectively the
Levenshtein Distance, the Bleuadapted, the trigonometric
sin(xπ), and the entropy E(p) function. For details see
sections III and IV.

The results shown in Table II evidences that, in gen-
eral, SP-functions outperforms the AP-functions over all

10With precision = TP
TP+FP

and recall = TP
TP+FN

, and TP ,
TN , FP , FN meaning respectively True Positives, True Negatives,
False Positives and False Negatives.
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TABLE I.
THRESHOLDS MEAN AND STANDARD DEVIATION

thresholds A B C

Edit 17.222± 0.1109 20.167± 1.3751 17.312± 0.0000

Simo 0.2030± 0.0068 0.2604± 0.0026 0.2537± 0.0000

Simexo 0.5006± 0.0000 0.7250± 0.0130 0.5005± 0.0000

Bleu 0.5024± 0.0003 0.0083± 0.0071 0.5025± 0.0000

LogSimX 0.0765± 0.0035 0.0053± 0.0006 0.0069± 0.0000

Trignom 0.0610± 0.0200 0.2845± 0.0012 0.3470± 0.0000

Parabolic 0.4934± 0.0035 0.3000± 0.0012 0.3770± 0.0095

Entropy 0.4895± 0.0061 0.4060± 0.0070 0.4685± 0.0047

Gaussian 0.4781± 0.0155 0.3795± 0.0043 0.4102± 0.0000

TABLE II.
Fmeasure OBTAINED.

type A B C
Edit 74.39% 71.04% 80.98%

AP Simo 78.79% 94.45% 91.14%
Simexo 77.87% 90.91% 87.17%

Bleu 76.62% 69.32% 84.68%
LogSimX 80.94% 98.46% 98.54%
Trignom 79.69% 61.52% 88.86%

SP Parabolic 80.24% 97.56% 98.49%
Entropy 80.12% 97.46% 98.52%
Gaussian 80.17% 97.51% 98.56%

TABLE III.
Accuracy OBTAINED.

type A B C
Edit 67.68% 68.61% 79.02%

AP Simo 73.40% 95.20% 91.07%
Simexo 72.37% 90.37% 86.00%

Bleu 69.51% 57.05% 83.63%
LogSimX 78.20% 98.43% 98.53%
Trignom 66.36% 69.44% 89.54%

SP Parabolic 75.78% 97.58% 98.50%
Entropy 75.38% 97.51% 98.53%
Gaussian 75.59% 97.51% 98.57%

corpora, except for the trigonometric sin(xπ) function,
which do not behaves very well and even worse than AP-
functions, on symmetrical corpora B and C. For instance,
on the biggest corpus (C), the SF-functions (excluding
the trigonometric case) correctly classified, on average,
98.53% from all (9974) sentence pairs, whether positive
or negative, remark the accuracy table III, where correct
positive and negative classifications are counted.

As we expected, the SP-functions performed better on
corpora containing symmetrical pairs, like B and C, re-
vealing an Accuracy difference of 13.05%, by considering
the average performance of each type (AP and SP) on
both corpora and a correspondent Fmeasure difference of
9.84%. However, even for the symmetrical corpus A, the
SP-functions performance are slightly better than the AP-
functions, revealing an average differential of 3.31% in
terms of Fmeasure and about 3.52% in terms of Accuracy.

Inside the AP functions set, the simple word n-gram
overlap (simo) and the exclusive lcp n-gram overlap
(simexo) metrics always get first and second places,
respectively and the BLEU metric and the Edit Distance
obtain the worst results over all corpora. For the SP

functions, and in general, our earlier proposed LogSimX
function obtains better results, however the Gaussian
function has a very close performance, surpassing the
former in corpus C. Another remark for this SP type
functions is that the performance difference among the
functions is very small, except for the trigonometric
function.

C. The (AP type) Bleu Functions - A Special Case

By looking at the BLEU function, on subsection III-
B.3, it is clear that this function should indeed be inter-
preted as a set of functions that depends from the sum
maximum limit (N ) chosen, which were equal to 4 in
our case, following some literature indications, as for
example [4], which proposes to use N = 4 for overlap
n-grams, i.e. they consider n-grams with length 1, 2, 3
and 4. By choosing different values for the N limit, one
may questioning if there exist significant performance
difference. We experienced that for values greater than
4, the performance starts to decay rapidly, and the reason
for this is that, as we have a product of N factors (see
equation 7), it is enough to have only one factor with
low performance to affect the whole result. And when
N → 1.0 the performance tend to improve as shown in
table IV.

TABLE IV.
THE BLEU RESULTS, AS N → 1.0

Fβ A B C
N=4 76.62% 69.32% 84.68%
N=3 77.82% 69.33% 87.86%
N=2 78.77% 68.88% 90.18%
N=1 79.39% 77.45% 91.15%

The most efficient BLUE function will be the simplest
one, when N = 1, i.e only simple unigram lexical links
are counted, like in our proposed SP functions that relies
only on the number of words from each sentence and the
number of exclusive lexical links, as it was illustrated in
figure 1.

D. The Influence of Random Negative Pairs

In section V-C we described a method to artificially
add sentence pairs, randomly picked from Web News
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Texts as negative paraphrase pairs, to balance 11 the
corpora. We also mentioned that it is likely that quasi-
equal pairs could be inserted too, as negative examples.
Certainly that this option may be criticized, at least due to
these ”quasi-equal” pairs, since they may be interpreted
as asymmetrical negative pairs, precisely where the SP
functions succeed and AP functions fail. This particular
type of examples tend to be counted as false positives for
AP functions and as TN for the SP functions. Therefore
one may say that the evaluation is biased toward SP
functions, however, this is not the case as we will see
here. Indeed, to acknowledge this situation, we performed
another experiment with a corpus similar to the C corpus
(the biggest one) but without any quasi-equal or equal
pair. We named this new corpus as C’. The performance
obtained over the C’ is illustrated in Table VI and clearly
shows that our SP functions continue to outperforms AP-
function in all evaluation situations.

TABLE V.
AP-FUNCTIONS ON A CORPUS WITHOUT QUASI-EQUAL OR EQUAL

PAIRS

Accuracy % edit simo simexo bleu
C’ 84.31 96.36 90.19 87.57

TABLE VI.
SP-FUNCTIONS ON A CORPUS WITHOUT QUASI-EQUAL OR EQUAL

PAIRS (ACCURACY %)

LogsimX Trignom Parabolic Entropy Gauss
99.58 89.30 99.24 99.10 99.21

In this case, we only show the Accuracy measure as
the F-measure evidences similar results. This give us at
least 99% statistical confidence12 (1% significance) that
Accuracy(SP−functions) > Accuracy(AP−functions).

VII. CONCLUSIONS

In this paper, we proposed a new set of functions,
specially thought to identify asymmetrical13 paraphrases
in text - the AP functions. In terms of overlapping fea-
tures, these functions reject all pairs that are whether too
dissimilar or too similar. Beyond an earlier AP function
proposition - the LogSimX - we also investigated a
set of well defined mathematical functions, having the
desired properties (see section IV) for symmetrical pairs
identification, and performed a comparative study among
all functions, on three different corpora. The first corpus
(A) contains almost asymmetrical pairs, in the second
one (B) only symmetrical pairs are present, as positive
examples, and in the third corpus (C) we have a mix of
symmetrical and asymmetrical pairs14.

11Equal number of positive and negative examples.
12By making a proportion statistical test for the accuracies: H0 :

p1 = p2 against H1 : p1 > p2.
13When only one sentence entails the other one.
14This corpora labeling (A,B,C) is related to section VI

The experimental results obtained confirm our initial
intuition that these new functions, oriented toward asym-
metrical pair identification, achieves better results than
previous already known and used functions for paraphrase
identification, named here as SP functions, like the Word
n-gram Overlap, and BLEU functions. It is even more
interesting that the difference is also noticed when testing
on a corpus with almost symmetrical examples, like
corpus A, being the difference at least 3% on average.
Therefore we conclude that our proposed SP functions
are also suitable for symmetrical paraphrase identification.
We would like also to remark here that the Word Edit
Distance is the worst function for doing this job and we
think that the reason for that is related with the many ways
that a given information could be represented through a
sentence, for example by choosing different syntactical
structures, passive forms, alternations, etc. This phenom-
ena is also related with the low performance achieved by
the BLEU function for greater N (maximum number of n-
grams considered) values, as discussed and demonstrated
in subsection VI-C. It seems that considering as features
long (≥ 2) n-grams tend to degrade the performance, and
so it seems better to only consider lexical connections (by
counting unigrams), which were counted exclusively, in
our experiments. For instance this will be immune to the
alternation possibilities among paraphrases, and even it
will be more easily computed and so more efficient.

In the future we will try to include tf.idf [23] and Part of
Speech Tagging information (POS), as input features for
our functions, as we believe that word links between sen-
tences should have distinct weights. Indeed, it is different
to have a match between determinants or between verbs or
names. Verbs and Determinants obviously convey relevant
information about the sentence while it is not the case for
determinants. We may also integrate the notion of content
n-grams that can be extracted from monolingual corpora
as in [21]. Finally, [4] propose a clustering methodology
to group similar sentences (i.e. paraphrases) into clusters.
We will use our metric to perform a similar task and
compare the results.
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[16] J. Sjöbergh and K. Araki, “Extraction based summarization
usinga shortest path algorithm,” In Proceedings of 12th
Annual Language Processing Conference (NLP 2006),
2006.

[17] A. L. L.V. Lita, M. Rogati.
[18] M. M. A. Stent and M. Singhai.
[19] T. W. W.-J. Z. K. Papineni, S. Roukos, “Bleu: a method

for automatic evaluation of machine translation,” IBM
Research Report RC22176, 2001.

[20] M. Yamamoto and K. Church, “Using suffix arrays to
compute term frequency and document frequency for all
substrings in a corpus,” Computational Linguistics, pp.
27(1):1–30, 2001.

[21] S. G. G. Dias and J. Lopes, “Extraction automatique
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