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AbstractThis paper describes one objective function for — at a time, two of them of the same class and a third one of
learning semantically coherent feature embeddings in multi- g different class. By imposing larger distances between the
output classi cation problems, i.e., when the response variables elements of thenegativethan of thepositive pair, the intra-

have dimension higher than one. Such coherent embeddings can . . . .
be used simultaneously for different tasks, such as identity re- class compactness and inter-class discrepancy in the destiny

trieval and soft biometrics labelling. We propose a generalization SPpace are enforced. This strategy was successfully applied to
of the triplet loss [34] that: 1) de nes a metric that considers various problems, upon the mining of teemi-hardnegative
the number of agreeing labels between pairs of elements; 2) input pairs, i.e., cases where the negative element is farther to

introduces the concept ofsimilar classes, according to the values e gnchor than the positive, but still provides a positive loss
provided by the metric; and 3) disregards the notion ofanchor, due to an imposed margin ’

sampling four arbitrary elements at each time, from where two
pairs are de ned. The distances between elements in each pair are
imposed according to their semantic similarity(i.e., the number
of agreeing labels). Likewise the triplet loss, our proposal also
privileges small distances betweerpositive pairs. However, the
key novelty is to additionally enforce that the distance between
elements of any other pair corresponds inversely to their semantic
similarity. The proposed loss yields embeddings with a strong
correspondence between the classes centroids and their semantic
descriptions. In practice, it is a natural choice to jointly infer
coarse (soft biometrics) + ne (ID) labels, using simple rules such
ask-neighbours. Also, in opposition to its triplet counterpart, the

proposed loss appears to be agnostic with regard to demanding ID: A @ D: A 9 D: B D C
criteria for mining learning instances (such as the semi-hard 'male’ 'male’ male’ female’
pairs). Our experiments were carried out in ve different datasets ‘adult’ "adult ‘adult’ 'young’
(BIODI, LFW, 1JB-A, Megaface and PETA) and validate our ‘bald’ ‘bald’ ‘bald’ blond’

assumptions, showing results that are comparable to the state-of- ,--------------------"-"---~-~-~-~-~-"-"-"------

s

the-art in both the identity retrieval and soft biometrics labelling : — ./.7
1

tasks. ! Learning

Index Terms Feature embedding, Soft biometrics, Identity R e il
retrieval, Convolutional neural networks, Triplet loss.

_—————

Fig. 1. Likewise the triplet loss [34], the proposedadruplet formulation
minimizes the distances between elementspositive pairs fA 1, Azg.
However, the key novelty is to additionally consider the semantic similarity
|. INTRODUCTION between classes (8B andC). In this example, assuming thAt andB are

Haracterizing pedestrians in crowds has been attracti antically similar, our proposal privileges embeddings where the distances
C ] ttenti ith ft bi tri d een (A, B) elements are smaller than the distances betwegnGpand
growing attention, with soft biometrics (e.gg,en_ €l, between (B, C) elements.
ethnicityor age) being particularly important to determine the
identities in a scene. This kind of labels is closely related _ o _ .
to human perception and describes the visual appearance ofhis paper describes one objective function that is a gen-
subjects, with applications in identity retrieval [40][36] anceralization of the triplet loss. Instead of dividing the learning
person re-identi cation [15][27]. pairs into positive/negative, we de ne a metric to perceive
Deep learning frameworks have been repeatedly improviffee semantic similarity between two classes (IDs). In learning
the state-of-the-art in many computer vision tasks, such @%e, four elements are considered at a time and the margins
object detection and classi cation [25][41], action recogniPetween the pairwise distances yield from the number of
tion [19][6], semantic segmentation [24][44] and soft biome®greeing labels in each pair (Fig). Under this formulation,
rics inference [32]. In this context, the triplet loss [34] is #lements ofsimilar classes (e.g., two young, black, bald,
popular concept, where three learning elements are consideftale subjects) are projected into adjacent regions of the
destiny space. Also, as we impose different margins between
Authors are with the IT: Instituto de Telecomunioas, Department of (almost) all negative pairs, we leverage the dif culties in
Computer Science, University of Beira Interior, CodjhPortugal, E-mail: . . o . .
hugomcp@di.ubi.ptfD2401, D2389g@di.ubi.pt. mining appropriate learning instances, which is one of the
Manuscript received: January, 2020. main dif culties in the triplet loss formulation.
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The proposed loss function is particularly suitable foclothes’ color, and gender labels, with a segmentation module
coarse-to- ne classi cation problems, where some labelsised to remove clutter. Similarly, Cipcigan and Nixon [3]
are easier to infer than others and the global problem cabtained semantically segmented regions of the body that fed
be decomposed into more tractable sub-components. Tti® CNN-based feature extraction and inference modules.
hierarchical paradigm is known to be an efcient way of Finally, speci cally designed for handheld devices, Saman-
organizing object recognition, not only to accommodatgouei and Chellappa [32] extracted various facial soft bio-
a large number of hypotheses, but also to systematicathetric features, while Neal and Woodard [26] developed
exploit the shared attributes. Under this paradigm, the identdy human retrieval scheme based on thirteen demographic
retrieval problem is of particular interest, where the nesand behavioural attributes from mobile phones data, such as
labels (IDs) are seen as the leaves of hierarchical structuceding, SMS and application data, having authors positively
with roots such as thgenderor ethnicity features. However, concluded about the feasibility of this kind of recognition.
note that the proposed formulation does not appropriatelyA comprehensive summary of the most relevant research in
handle soft labels that vary among different images of soft biometrics is given in [38].
subject (e.g.hairstyle). Also, it does not take into account the
varying dif culty of estimating the different labels, allowing . .
further improvements based in metric learning concepts. B. Feature Embeddings and Loss Functions

Triplet loss functions were motivated by the conceptof-

The remainder of this paper is organized as follows: Seftastiveloss [14], where the rationale is to penalize distances
tion I summarizes the most relevant research in the scdpetween positive pairs, while favouring distances between
of our work. Sectionlll describes the proposed objectivanegative pairs. Kanget al. [21] used a deep ensemble of
function. In SectionlVV we discuss the obtained results anthulti-scale CNNs, each one based on triplet loss functions.

the conclusions are given in Sectidh Song et al. [37] learned semantic feature embeddings that
lift the vector of pairwise distances within the batch to the
1. RELATED WORK matrix of pairwise distances, and described a structured loss

n the lifted problem. Liu and Huan [28] proposed a triplet
ss learning architecture composed of four CNNs, each one
arning features from different body parts that are fused at

Deep learning methods for biometrics can be rough
divided into two major groups: 1) methods that directl)(
learn multi-class classiers used in identity retrieval an
soft biometrics inference; and 2) methods that learn low € Score level.

dimensional feature embeddings, where inference yields fromA posterior concept was theenterloss [ ]'_Wh'Ch nds
nearest neighbour search. a center for each class and penalizes the distances between

the projections and their corresponding class center. dian
al. [20] combined additive margisoftmaxwith center loss to
A. Soft Biometrics and Identity Retrieval increase the inter-classes distances and avoid overcon dence
Bekele et al. [2] proposed a residual network for multi-on classi cations. Ranjaet al.’s crystalloss [30] restricts the
output inference that handles classes-imbalance directly fgatures to lie on a hypersphere of a xed radius, adding
the cost function, without depending of data augmentati@n constraint on the features projections such that their
technigues. Almudhahkat al. [1] explored the concept of norm is constant. Cheet al. [4] used deep representations to
comparative soft biometrics and assessed the impact of &ed a Bayesian metrics learning module that maximizes the
tomatic estimations on face retrieval performance. @Gio log-likelihood ratio between intra- and inter-classes distances.
al. [12] studied the in uence of distance in the effectivenesdeng et al’s Sphereface[8] proposes an additive angular
of body and facial soft biometrics, introducing a joint denmargin loss, with a clear geometric interpretation due to the
sity distribution based rank-score fusion strategy [13]. Veraorrespondence to the geodesic distance on the hypersphere.
Rodriguezet al. [31] used hand-crafted features extracted Observing that CNN-based methods tend to over t in person
from the distances between key points in body silhouettas-identi cation tasks, Shet al. [36] used siamese architec-
Martinho-Corbishleyet al. [29] introduced the idea afuper- tures to provide a joint description to a metric learning module,
ne soft attributes, describing multiple concepts of one traiegularizing the learning process and improving the general-
as multi-dimensional perceptual coordinates. Also, using joiiziation ability. Also, to cope with large intra-class variations,
attribute regression and deep residual CNNs, they obsentkdy suggested the idea wfoderate positive mining, again to
substantially better retrieval performance in comparison fwevent over tting. Motivated by the dif culties in generate
conventional labels. Schumann and Specker used an enserddening instances for triplet loss frameworks, &ual. [39]
of classi ers for robust attributes inference [35], extended toerformed adaptive CNN ne-tuning, along with an adaptive
full body search by combining it with a human silhouettéoss function that relates the maximum distance among the
detector. Heet al. [17] proposed a weighted multi-task CNNpositive pairs to the margin demanded for sepagaisitive
with a loss term that dynamically updates the weight for eadtom negativepairs. Huet al. [18] proposed an objective func-
task during the learning phase. tion that generalizes the Maximum Mean Discrepancy [33]
Several works regarded the semantic segmentation as a toetric, with a weighting scheme that favours good quality
to support labels inference: Galiyawadaal. [10] described a data. Duaret al. [9] proposed theniform loss to learn deep
deep learning framework for person retrieval using the heigletjui-distributed representations for face recognition. Finally,
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observing the typical unbalance between positive and negatélements are semantically closer to each other tharithe

pairs, Wanget al. [41] described an adaptive margin list-wiselements (y p;yq) < (Y i;Yj) , we want to ensure that

loss, in which learning data are provided with a set of negatiké, fq)k3 < kf; f;k3.

pairs divided into three classes (easypderate, anchard), The accumulated loss in the batch is given by the truncated

depending of the distance rank with respect to the query. mean of a sample (of siz® randomly taken from the subset
Finally, we note the differences between our loss functiaf the 2 individual loss values whergy i;y;) 6=(y p;Yq):

and the (alsaquadruple} loss described by Cheet al. [5].

These authors attempt to augment the inter-classes margins 1 X hi
and the intra-class compactness without explicitly using any L= S ‘2 +; 3)
semantical constraint. As in the original triplet loss formula- z=1

tion, the concept ofimilar class doesn't exist in [5], and thereyherez 2 1;:::;s g* denotes the ® composition of four

is no rule to explicitly enforce the projection of identities thagjements in the batch arjd. is themax(;; 0) function. Even
share most of the labels into neighbour regions of the latef§nsidering that a large fraction of the combinations in the
space. In opposition, our method concerns essentially abgydich will be invalid (i.e., with(:;: ) = 0), large values ofb
such kind of semantical coherence, i.e., assures that Simiiafi result in an intractable number of combinations at each
classes are projected into adjacent regions of the embeddiggration. In practical terms, after ltering out those invalid

Also, even the idea behind the loss formulation is radicalgompinations, we randomly sample a subset of the remaining
different in both methods, in the sense that [°] still considefgstances, which is designated as thimi-batch.

the concept ofanchor (as the triplet-loss), which is also in

opposition to our proposal. B. Quadruplet Loss: Training

Consider four indicedi; j; p; q g of elements in the mini-
batch, with (y i;yj) > (Y p:Yq)- Let denote the differ-
ence between the number of disagreeing labels offitheg

Consider a supervised classi cation problem, whergethe andfp;qg pairs:
dimensionality of the response variahte associated to the
input elementx; 2 [0;255]'. Let f (:) be one embedding _ ) L
function that mapsx; into a d-dimensional space with = 0y O eYa) “)
fi = f(Xxi)2 being the projected vector. Lét 1;:::; X0 Also, let ; be the distance between the elements of the
be a batch ofb images from the learning set. We de nemost alike pair minus the distance between the elements of
(yi;yj) 2 N; 8i;j 2 fl;:::;bg as the function that the least alike pair in the destiny space (plus the margin):
measures the semantic similarity betwegnandx; :

[1l. PROPOSEDMETHOD
A. Quadruplet Loss: De nition

) ) f = kfp foki kb fiki+ (5)
Oy =y yido: @) Upon basic algebraic manipulation, the gradients ofith
with jj:jj o being the' o-norm operator. respect to the quadruplet terms are given by:
In practice, (:;: ) counts the number of disagreeing labels
between thefx ;x; g pair, i.e., (y i;y;) = t when the 1 @ X 20 fi) if >0M ¢ 0
and [ elements have fully disjoint classes membership (e.g., @ . IO " otherwise (6)
one black, adult, male and another white, young, female ' z ’

subjects), while(y 1;y2) =0 when they have the exact same X ]
label (class) across all dimensions, i.e., when they constitute@ = 2(fi fy) i > 0" ¢ O @)
a positive pair. Q; , 0 , otherwise

Let fi;j; p;q g be the indices of four images in the batch.

The corresponding quadruplet loss valug,q is given by: Q _ X 2(fp fq) if >0 ¢ O 8
@, , 0 , otherwise (8)
“igpg = SON (Y isYi) (Y piYa)
ipa Y] mYaq | a _X 2(fq fp) ,if >0~ ¢ O ©
kfp fo)k3 kf i fjk3 + (2) @q B , 0 , otherwise
where sgn() is the sign functionjjxjj 3 denotes the square In practice terms, the model weights are adjusted only
of the ‘,-norm of x  jixjj 2 = (x2 + :::xﬁ)%, i.e., jjxjj 3 = when pairs have different number of agreeing labels (i.e.,
x2+ :::x2 and is the desired margin (= 0:1 was used > 0) and when the distance in the destiny space between

in our experiments). Evidently, the loss value will be zerthe elements of the most similar pair is higher than the distance
when both image pairs have the same number of agreelgtween the elements of the least similar pair (plus the margin,
labels (assgn(0) = 0 in these cases). In any other case, the 0). According to this idea, using (6)-(9), the deep
sign function will determine the pair which distance in théearning frameworks supervised by the proposed quadruplet
embedding should be minimized. As an example, if@ey) loss are trainable in a way similar to its counterpart triplet
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| | | rkf(x1)  fix2)k3+ < K (xi) f(y;)K3
1 1 1 1 1
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1

Fig. 2. Key difference between the triplet loss [34] formulation and the solution proposed in this paper. Using a loss function that analyzes the semantic
similarity (in terms of soft biometrics) between the different identities, we enforce embeddingshat are semantically coherent, i.e., where: 1) elements

of the same class appear near each other; but additionally 2) elements of similar classes appear closer to each other than elements with no labels in commor
This is in opposition to the original formulation of the triplet loss, that relies mostly in image appearance to de ne the geometry of the destiny space, obtaining

- in case of noisy image features - semantically incoherent embeddings (e.qi, amd 2, classes are compact and discriminative, butxhe centroids

are too close to each other).

loss and can be optimized according to the standard Stocha@tgingt = 2 : fID’; 'Gender'g labels). This plot yielded
Gradient Descend (SGD) algorithm, which was done in all ofnom the projection of a 128-dimensional embedding down to
experiments. two dimensions, according to the Neighbourhood Component
For clarity purposes, Algorithni gives a pseudocode de-Analysis (NCA) [11] algorithm.

scription of the learning phase and of the batch/mini-batchlt can be seen that the triplet loss provided an embedding
de nition processes. where the positions of elements are exclusively determined by
their appearance, where 'females’ appear nearby 'male tennis
Algorithm 1 Pseudocode description of the learning phase apghyers’ (upper left corner). In opposition, the quadruplet

of the batch/mini-batch de nition processes. loss established a large margin between both genders, while
Precondition: M : CNN, te: Tot. epochss: mini-batch size, keeping the compactness per ID. This kind of embedding
b: batch sizel : Learning setn images is interesting: 1) for identity retrieval, to guarantee that all
for 1tote do retrieved elements have soft labels equal to the query; 2) upon
for 1to b%edo a semantic description of the query (e.g., nd adult white
b  randomly samplé out of n images froml males similar to this image ), to guarantee that all retrieved
c create 2 guadruplet combinations froin elements meet the semantic criteria; and 3) to use the same
c Iter out invalid elements fromc embedding to directly infer ne (ID) + coarse (soft) labels, in
s randomly samples elements fronc a simplek-neighboursfashion.
M update weights(M s) (egs. (6-9))
end for IV. RESULTS ANDDISCUSSION
end for A. Experimental Setting and Preprocessing
return M Our empirical validation was conducted in one proprietary

(BIODI) and four freely available datasets (LFW, PETA,
IJB-A and Megaface) well known in the biometrics and re-
C. Quadruplet Loss: Insight and Example identi cation literature.
The BIODI* dataset is proprietary dfomiworld® 2, being
de ning a metric that analyses the similarity between tw§OMPOSed of 849,932 images from 13,876 subjects, taken
classes, we create the conceptseantically similarclass from 216 indoor/outdoor video surveillance sequences. All
This enables to explicitly enforce that elements of teast IMages were manually annotated for 14 labels: gender, age,
similar classes (with no common labels) are at the farthedgi9nt, body volume, ethnicity, hair color and style, beard,
ustache, glasses and clothing (x4). The Labeled Faces in

distances in the embedding. During the learning phase, ‘ . )
sample the image pairs in a stochastic way and enford Wild (LFW) [16] dataset contains 13,233 images from

projections in a way that resembles the human perception50?49 identities, collected from the web, with large variations
semantic similarity in pose, expression and lighting conditions. PETA [7] is a com-

As an example, Fig3 compares the bidimensional embedpma‘uon of 10 pedestrian re-identi cation datasets, composed

dings resulting from the triplet and the quadruplet losses, foryy://di.ubi.pt/ hugomep/BIODI/
the LFW identities with more than 15 images in the datasethttps://tomiworld.com/

Fig. 2 illustrates our rationale in the proposed loss. B
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BIODI

PETA

IJB-A Megaface LFW

Fig. 4. Datasets used in the empirical validation of the method proposed
in this paper. From top to bottom rows, images of the BIODI, PETA, LFW,
Megaface and IJB-A sets are shown.

implementation of both architectures is availablé at
Quadruplet Loss All the models were initialized with random weights, from
zero-mean Gaussian distributions with standard deviation 0.01
Fig. 3. Comparison between the 2D embeddings resulting from the tripend bias 0.5. Images were resized to 25856, adding lateral
e b e e oo ot conned White bands when needed to keep constant raios. A batch size
with at least 15 images (89 elements). of 64 was de ned, which results in too many combinations
of pairs for the triplet/quadruplet losses. At each iteration,
we ltered out the invalid triplets/quadruplets instances and
] ] randomly selected the mini-batch elements, composed of 64
of 19,000 images from 8,705 subjects, each one annotajgdiances in all cases. For every baseline, 64 pairs were also
with 61 binary and 4 multi-output atributes. The IB-A [23}ysed as a batch. The learning rate started from 0.01, with
dataset contains 5,397 images plus 20,412 video frames frg{8mentum 0.9 and weight decaBe® . In the learning-
590 individuals, with large variations in pose and ilIuminatiorﬁom-scratchparadigm, we stopped the learning process when
Finally, the Megaface [22] set was released to evaluate fag@ yajidation loss didn't decrease for 10 iterations (i.e.,
recognition performance at the million scale, and consists Obﬁtiencezlo).
gallery set and a probe set. The gallery set is a subset of Flickye initially varied the dimensionality of the embedding (d)
photos from Yahoo (more than 1,000,000 images from 690,0Q0heceive the sensitivity of the proposed method with respect
subjects). The probe dataset includes FaceScrub and FGghis parameter. Considering the LFW set, the average AUC
sets. FaceSc_rub has 190,000 images from 530 individuals 3af,es with respect td are provided in Fig6 (the shadowed
FGNet contains 1,002 images of 82 identities. Some examplg§ions denote the standard deviation performance, after
of the images in each dataset are given in Pig. 10 trials). As expected, higher values fdrwere directly
correlated to performance, even though results stabilised for
dimensions higher than 128. In this regard, we assumed that
B. Convolutional Neural Networks using higher dimensions would require much more training

h idered: th q data, having resorted from this moment ¢128 in all
Two CNN architectures were considered: thR6&G an subsequent experiments.

ResNemodels (Figs). Here, the idea was not only to compare e restingly, the absolute performance observed for very

the performance of the quadruplet loss with respect to thg, q yajues was not too far of the obtained for much higher
baselines, but also to perceive the variations in performance

with respect to different CNN architectures. FensorFlow  3https:/github.com/hugomep/quadruplets
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VGG-like ResNet-like 1

_o0--0-©0--0
- 8- —0--%

0.95
3 3,64 0
! 2 09 —— VGG
3 f 64 085 _o  ResNet
\
Comax2 2 | i T
dropott.0.75 E DimensionalityEmbedding
1
3 i 128 Fig. 6. Variations in the mean AUC values (the standard deviations after
! 10 trials, given as shadowed regions) with respect to the dimensionality of
the embedding. Results are shown for the LFW validation set, when using
< j 20 the VGG-like (solid line) and ResNet-like (dashed line) CNN architectures.
omax2 2 ?
! :
3 3,256 ! C. Single- vs. Multi-Output Embeddings Learning: Semantical
! ' Coherence
3 j 2%6 To compare the semantical coherence of the embeddings
3 3,256 resulting from single-output (triplet and Chex al's losses)
! ‘ and multi-output (ours) learning formulations, we measured
3 3 256 | the distances ¢-norm) between each element in an embedding
l : and all the others, grouping values into two sets:iritja-
(omax2 2 : label observations, when two elements share a speci ¢ label
1 ' (e.g., 'male’’'male’ or ’asian’/’asian’); and 2)nter-labels
dropout,0.75 observations, in case of different labels in the pair (e.g.,
. i - 'male’/'female’ or 'asian’/’black’). In practice, we measured
l’ the distances between elements of the same/different ID,
3 3 256 \ gender, ethnicity and joint gender+ethnicity labels. Note that,
! : in all cases, a uniqgue embedding was obtained for each
3 3,256 : method, using thdlDg as feature for the triplet and Chen
! ! et al. methods, and théD, Gender, Ethnicityg(t = 3)
SEC Y00 for the proposed method, with the annotations for the 1IB-
| ——— A set prO\_/ide_d by the Face_++ algqrithm and subjec_ted to
—l | " human validation. The VGG-like architecture was considered,
dropout,0.75 4,096 as described in Sectioiv-B.
1 The results are given in Fig. (LFW, Megaface and 1JB-A
4,096 d sets). The green color represents the statistics dhtree-label
l values, while the red color represents thter-labelsvalues.
4,096 Box plots show the median of the distance values (horizontal
1 solid lines) and the rst and third quartiles (top and bottom of
i the box marks). The upper and lower whiskers are denoted by

! . . . the horizontal lines outside each box. All outliers are omitted,
Fig. 5. Architectures of the CNNs used in the experiments. The yellow box

S . L
represent convolutional layers, and the blue and green boxes represent pofﬁ?{gv'sual'saﬂon pUI’DOS?S. .
and dropout (keeping probability 0.75) layers. Finally, the red boxes denote The leftmost group in each dataset is the root for the

fully connected Iay_ers. Int_he Re_sNet archi_tec;ure, the dash(_ad skip connectis retrieval performance, and compares the distances in the

represent convolutions with stride 2 2, yielding outputs with half of the . .

spatial input size. The '/2' symbol denotes stride 22 (the remaining layers €mbeddings between elements that have the samel/different

use stride 1 1). IDs. The remaining cases are the most important for our
purposes, and provide the distances between elements that
share (or not) some label: the second group compares the
'male’’'male and 'female’/'female’ distances (green boxes) to
'male’/'female’ values (red boxes). The third group provides
the corresponding results for thethnicity label, while the
rightmost group provides the distances when jointly consider-

dimensions, which raises the possibility of using the positiang the genderand ethnicity features, i.e., when two elements

of the elements in the destiny space directly for classi catiotonstitute anintra-label pair iff they have the same gender

and visualization, without the need of any dimensionalitsgnd ethnicity labels.

reduction algorithm (MDS, LLE or PCA algorithms are fre- These results turn evident the different properties of the

guently seen in the literature for this purpose). embeddings yielding from the proposed loss with respect to
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Fig. 7. Box plots of the distances between each element in the embedding with respect to others that share the same (green color) or different (red color)
labels. We compare the multi-output learning solution proposed in this paper (Quadruplet), with respect to the single-output learning methods (Triplet [34]
and Cheret al. [5]). Values regard the LFW (top plot), Megaface (center plot) and IJB-A (bottom plot) sets, measuriti2gthéGenderg, fEthnicityg and

fGender, Ethnicitygsame/different label distances.

the baselines. If we consider exclusively the ID to measutiee performance of the quadruplet loss with respect to the
the distances between elements, the results almost do Ibaselines in this task. As in the previous experiment, note that
vary among all methods. However, a different conclusiaall the baselines (triplet loss, center lossftmaxand Cheret
can be drawn when measuring the distances between #he[5]) considered exclusively the ID to infer the embeddings,
same/differentgender, ethnicity and gender/ethnicitylabels. while the proposed loss used all the available labels for that
Here, the proposed quadruplet loss was the unique metimdpose.
where the intra-label/inter-labels whiskers provided disjoint Fig. 8 provides the Cumulative Match curves (CMC, outer
intersections, by a solid margin in all cases, i.e., the differenpots) and the Detection and Identi cation rates at rank-1
between the intra-label/inter-labels distances was far lard&lIR, inner plots). The results are also summarized in Table
than in the remaining losses. Of course, such differences agporting the rank-1, top-10% values and the mean average
due to the fact that the triplet and Cheh al.methods have precision (mAP) scores, given by:
not considered additional soft labels to de ne the topology of
the embeddings, having exclusively resorted to the ID labels Pn P(q)
and images appearance for such purpose. mAP= — %L %, (20)

In practice, these experiments turn evident that single-label P
learning formulation yield embeddings that are semanticatyheren is the number of querie®(q) = ¢, P(k)r (k),
incoherent from other labels’ perspectives, in the sense tifak) is the precision at cut-ofk and r (k) is the change in
'males’ are often nearby 'females’, or 'white’ nearby ’asianrecall fromk 1 to k.
elements. In this setting, using such embeddings for simul-For the LFW set experiment, the BLUFRvaluation pro-
taneously ID retrieval and soft biometrics labelling is riskyiocol was chosen. In the verication (1:1) setting, the test
and errors will often occur. In opposition, the proposed log$t contained 9,708 face images of 4,249 subjects, which
guarantees large margins between groups of intra-label/intéiglded over 47 million matching scores. For the open-set
labels observations, '[yp|ca||y Corresponding ttusters in identi cation problem, the genuine probe set contained 4,350
the embeddings with respect to the set of learning labdfce images of 1,000 subjects, the impostor probe set had
considered. 4,357 images of 3,249 subjects, and the gallery set had 1,000
images. This evaluation protocol was the basis to design, for
the other sets, as close as possible experiments, in terms of

the number of matching scores, gallery and probe sets.
Even considering that the goals of our proposal are beyond

the ID retrieval performance, it is important to compare “nttp://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/

D. Identity Retrieval
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Fig. 8. Identity retrieval results. The outer plots provide the closed-set identi cation (CMC) curves for the LFW, Megaface and 1JB-A sets, using the VGG
and ResNet architectures. Inside each plot, the inner regions show the corresponding detection and identi cation rate (DIR) values at rank-1. Results are
shown for the quadruplet loss function (purple color), and four baselinesoftr@ax(red color), center loss (green color), triplet loss (blue color) and Chen

et al. [5]'s (black color) method.

Generally, we observed that the proposed quadruplet |dSs Soft Biometrics Inference

outperforms t_he other Ioss_ _functiqns, Whi_ch might be_ the As stated above, the proposed loss can also be used for
result of having used additional information for leamingearning a soft biometrics estimator. In test time, the position to
These improvements in performance were observed in Mgg{ere one element is projected is used to infer the soft labels,
cases by a consistent margin for both the verication and 5 gimple nearest neighbour fashion. In these experiments,
identi cation tasks, not only for the VGG but also for they e considered only 1-NN, i.e., the label inferred for each query
ResNet architecture. _ was given by the closest gallery element. Better results would
_In terms of the errors per CNN architecture, the ResNefg qsibly attained if more neighbours had been considered,
like error rates were roughly 0.9 (90%) of the observed gen though the computational cost of classi cation will also
for the VGG-like networks (higher margins were observel raase. Al experiments were conducted according to a

for the softmaxioss). Not surprisingly, the Cheet al. [S' pgostrapping-like strategy: having test images available,
method outperformed the remaining competitors, followed Qo bootstrap randomly selected (with replacemé@®) n

the triplet loss function, which is consistent with most Ofmages, obtaining samples composed of 90% of the whole

the results reported in the literature. Theftmaxloss got ya1a Ten test samples were created and the experiments were
repeatedly the worst performance among the ve functiongnqcted independently on each trail, which enabled to obtain

considered. the mean and the standard deviation at each performance
Regarding the performance per dataset, the values obser\yglgje_

for Megaface were far worse for all objective functions than ¢ paselines we used two commercial off-the-shelf (COTS)

the values for LFW and 1JB-A. I.n.the Megaface set, W‘raechniques, considered to represent the state-of-the-art [38]:

followed the protocol of thesmall training set, using 490,000 the Matlab SDK forFace++° and theMicrosoft Cognitive

images from 17,189 subjects (images overlapping with Facgs;q)it commercidl. Face++ is a commercial face recognition

- tem, with good performance reported for the LFW face

scrub dataset were discarded). Also, note that the relat%g)S
performance between the loss functions was roughly the sagigqnition competition (second best rate). Microsoft Cogni-

in all sets. Degradations in performance were slight from the
LFW to the 1JB-A set and much more visible in case of the
Megaface set. In this context, te®ftmaxloss produced the  snip: /. faceplusplus.com/

most evident degradations, followed by the center loss. Shttps://www.microsoft.com/cognitive-services/

e Toolkit is a deep learning framework that provides useful
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TABLE |
IDENTITY RETRIEVAL PERFORMANCE OF THE PROPOSED LOSS WITH
RESPECT TO THE BASELINESSoftmax CENTER AND TRIPLET LOSSESAND
CHEN et al. [5]'S METHOD. THE AVERAGE PERFORMANCE ~ STANDARD
DEVIATION VALUES ARE GIVEN, AFTER 10 TRIALS. INSIDE EACH CELL,
VALUES REGARD (FROM TOP TO BOTTOM THE LFW, MEGAFACE AND
I1JB-A DATASETS. THE BOLD FONT HIGHLIGHTS THE BEST RESULT PER
DATASET AMONG ALL METHODS.

Method ‘ mAP ‘ rank-1 ‘ top-10% ‘
VGG
0.958 3e® 0.951 0.020 | 0.979 6e®
Quadruplet loss | 0.877 0.011 | 0.812 0.053 | 0.960 9e®
0.953 5ed 0.939 0.037 | 0.958 6e®
0.897 4e® 0.842 0.034 | 0.953 0.011
Softmax loss 0.727 0.014 | 0.615 0.060 | 0.863 0.017
0.849 0.010 | 0.823 0.039 | 0.941 0.014
0.934 4e® 0.929 0.033 | 0.964 8e®
Triplet loss [34] | 0.854 9e® 0.758 0.059 | 0.946 0.017
0.917 5ed 0.901 0.040 | 0.950 0.011
0.918 3e® 0.863 0.020 | 0.962 6e®
Center loss [43]| 0.850 0.013 | 0.773 0.052 | 0.939 0.012
0.862 0.010 | 0.867 0.041 | 0.944 0.012
0.961 2e° 0.945 0.022 | 0.976 6e°
Chenetal. [5] | 0.864 0.012 | 0.772 0.061 | 0.947 9e°
0.948 6e° 0.936 0.055 | 0.970 4e®
ResNet
0.968 2e° 0.966 0.012 | 0.981 4e®
Quadruplet loss | 0.902 9e® 0.906 0.048 | 0.972 8e®
0.959 3e® 0.947 0.021 | 0.980 4e®
0912 4e® 0.861 0.029 | 0.960 8e®
Softmax loss 0.730 0.010 | 0.745 0.051 | 0.899 0.011
0.841 9e® 0.860 0.030 | 0.958 8e®
0.947 4e® 0.948 0.026 | 0.968 9e®
Triplet loss [34] | 0.872 8e® 0.839 0.052 | 0.957 9e?
0.919 5ed 0.937 0.031 | 0.961 0.011
0.939 3ed 0.898 0.016 | 0.967 6e®
Center loss [43]| 0.847 9e° 0.845 0.048 | 0.945 9e?
0.877 7e° 0.893 0.035 | 0.963 9e®
0.966 2e° 0.959 0.015 | 0.983 4e®
Chenetal. [5] | 0.916 8e? 0.880 0.050 | 0.975 8e®
0.952 4e® 0.960 0.022 | 0.986 6e°

information based on vision, speech and language. Also, in
order to highlight the distinct properties of the embeddings
generated by our proposal with respect to the state-of-thg;"*
art, we also measured the soft labelling effectiveness thgtoss
can be attained by the Triplet loss [34] and Chenet al. [ 3‘50_94
embeddings if a simple 1-NN rule is used to infer soft

biometrics labels.

Overall, the results achieved by the quadruplet loss can
be favourably compared to the baseline techniques for most
labels, particularly for the BIODI and LFW datasets. Regard-
ing the PETA set, Face++ invariably outperformed the other
techniques, even if at a reduced margin in most cases. This
was justi ed by the extreme heterogeneity of image features
in this set, in result of being the concatenation of different
databases. This should had reduced the representativity of the
learning data with respect the test set, being the Face++ model
apparently the least sensitive to this covariate. Note that the
'Ethnicity’ label is only provided by the Face++ framework.
Regarding the Triplet [34] and Chest al. [43] baselines, it
is important to note that the reported values were obtained
in embeddings that were inferred exclusively based in ID
information. Under such circumstances, we conrmed that
both solutions produce semantically inconsistent embeddings,
in which elements with similar appearance but different soft
labels are frequently projected to adjacent regions.

Globally, these experiments supported the possibility of
using such the proposed method to estimate soft labels in
a single-shotparadigm, which is interesting to reduce the
computational cost of using specialized third-party solutions
for soft labelling.

Finally, we analysed the variations in performance with
respect to the number of labels considered, i.e., the value of
thet parameter. At rst, to perceive how the identity retrieval
performance depends of the number of soft labels, we used the
annotations provided by the ATVS group [38] for the LFW set,
and measured the rank-1 variations for t 4, starting by
the ’'ID’ label alone and then adding iteratively the 'Gender’

I ’Ethnicity’ ! 'Age’ labels. The results are shown in the
left plot of Fig. 9. In a complementary way, to perceive the
overall labelling effectiveness for large valuestofhe BIODI
dataset was used (the one with the largest number of annotated

casesd = 128 was kept, with the average labelling error in
the test seX given by:

X
e(X)=i

n:t i1 (11)

jipi  diios

with p; denoting thet labels predicted for thé" image and
gi being the ground-truthj jj o denotes thég-norm.

1

0.92

1

We considered exclusively the 'Gender’, 'Ethnicity’ and

'Age’ labels (t =

3), quantised respectively into two

Fig. 9. At left: rank-1 identi cation accuracy in the LFW dataset, for t

classes for Gender (fmale’, 'female’g), three classes for Age at right: soft biometrics performance in the BIODI test set,Zor t 14,
(Fyoung’, adult’, 'senior'g), and three classes for Ethnicityfor the VGG (solid line) and ResNet (dashed line) architectures.
(Pwhite’, 'black’, 'asian’g). The average and standard devia-

tion performance values are reported in Tdblr the BIODI,

PETA and LFW sets.

It is interesting to observe the apparently contradictory
results in both plots: at rst, a positive correlation between
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TABLE Il
SOFT BIOMETRICS LABELLING PERFORMANCE(MAP) ATTAINED BY THE
PROPOSED METHORWITH RESPECT TO TWO
COMMERCIAL-OFF-THE-SHELF SYSTEMS(FACE++ AND MICROSOFT
COGNITIVE) AND TWO OTHER BASELINES THE AVERAGE PERFORMANCE
STANDARD DEVIATION VALUES ARE GIVEN, AFTER 10 TRIALS. INSIDE
EACH CELL, THE TOP VALUE REGARDS THEVGG-LIKE PERFORMANCE,
AND THE BOTTOM VALUE CORRESPONDS TO THERESNET-LIKE VALUES.

I Find this female, Fig.10). In this setting, it is assumed
that the ground-truth soft labels of the gallery IDs are known,
even though the same does not apply for the queries.

We considered the hardest identity retrieval dataset
(Megaface) and compared our results to Cletnal's (the
most frequent runner-up in previous experiments). The soft
label 'Gendet (provided by the Microsoft Cognitive Toolkit
for the queries) was used as additional semantic data, to lter

Method Gender Age Ethnicity ‘ X . o i i
Eon] the retrieved identities. The bottom plot in Fi) provides the
. results in terms of the hit/penetration rates, being notorious the
Quadiuplet loss | Coro 8¢ | 0603 00141 0.777 00 similar levels of performance of both methods in this setting
0834 Se” | 0649 0011 0786 9e ('semantic’ data series), with Cheet al’s method slightly
Triplet loss [24] | o4 00221 0.581 0034 0.599 0028 outperforming up to the top-20 identities, and getting worse
0690 0019 | 0584 0.025 | 0.600 0017 results than our solution for the remaining penetration values.
Chenet al. [42] 0.693 0.020 | 0602 0032 0613 0019 It can be concluded that - when coarse labels are available -
0997 000 | 0%%4 02 0018 OO our method and Cheet al.'s attain similar quality embeddings
Face++ 0.760 8e3 0588 0019 | 0788 0017 in terms of compactness and discriminability. However, the
Microsoft Cognitive | 0.738 7e 0852 0.026 - key point is that the baseline version of the proposed loss
PETA is a way to approximate the results attained by state-of-the-
Quadruplet loss | 002 00241 0.649 00611 0.797 0053 art methods when using semantic information to Iter the
0.882 0.018 | 0.658 0.057 0.810 0.036 retrieved identities.
, 0720 0036 | 0.611 0038 | 0612 0.038
Triplet loss [34]
0.722 0.024 | 0.625 0.022 0.628 0.026 . . . i
4 Find this person
0.723 0.034 | 0.613 0.037 0.636 0.025 .
Chenet al. [43] <’
0731 0027 | 0.630 0.030 | 0.668 0.021 .
Face++ 0870 0.028 | 0.653 0.062 | 0.812 0.054 4 Find this female
Microsoft Cognitive | 0.885 0.020 | 0.660 0.057 -
LFW —
0.939 0.021 | 0.702 0.059 0.801 0.044
Quadruplet loss
0944 0017 | 0709 0.049 | 0.817 0.041
0794 0028 | 0631 0032 | 0652 0.022
Triplet loss [34]
0.799 0.022 | 0.636 0.020 | 0.670 0.017
Chenet al. (] 0.794 0030 | 0.639 0.030 | 0728 0.027
enet al. .
0.801 0.021 | 0.659 0.018 | 0.747 0.022 Quadruplet (baseline)
' = = Chen et al. (baseline)
Face++ 0928 0041 | 0527 0063 | 0.842 0.061 Quadruplet (semantic)
Microsoft Cognitive | 0.931 0.037 | 0.710 0.051 - 05| . . | [==—Chen et al. (semantic)
T 0.1 0.2 0.3 0.4 0.5

Penetration

.the _Iabe”mg errors and t.he va_llues fs evident, which was Fig. 10. Comparison between the hit/penetration rates of the proposed loss and
justi ed by the dif culty of inferring some of the hardest labelschenet al. [5]'s method, when disregarding (baseline) or considering semantic
in the BIODI set (e.g., theype of shoes). However, the averag@dditional information to Iter the retrieved results. Values are given for the

. . . . sNetarchitecture and Megaface dataset. The 'Gehdas the semantic
rank-1 identi cation accuracy also increased whgn more S(ﬁﬁerium in each query and n is the number of enrolled identities.
labels were used, even if the results were obtained only for
small values oft (i.e., not considering the particularly hard
labels, in result of no available ground truth). Overall, we
concluded that the proposed loss obtaicceptableperfor-
mance (i.e., close to the state-of-the-art) when a small numbe\r

of soft labels is available ( 2), but also when a few more

V. CONCLUSIONS ANDFURTHER WORK

n this paper we proposed a loss function for multi-output
labels should be inferred (up to  8). In this regard, we c!a53| cgtlon problems, where the response vanableg hqve
dimension greater than one. Our function is a generalization

presume that even higher values foft  8) would require . : i, :
substantially more amounts of learning data and also higrﬁefrthe well known triplet loss, replacing thositive/negative

. . ; inary division of pairs and the notion @hchor, by: i) a
values ford (dimension of the embedding). metric that considers thgemantic similaritypetween any two

classes; and ii) a quadruplet term that imposes different dis-

F. Semantic Identity Retrieval tances between pairs of elements according to that similarity.

Finally, we considered theemantic identity retrievgbrob- In particular, we considered the identity retrieval and soft

lem, where - along with the query image - semantic criteria abdometrics problems, using the ID and three soft labels (Gen-
used to Iter the retrieved elements (i.e., Find this personder’, ’Age’ and 'Ethnicity’) to obtain semantically coherent
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embeddings. In such spaces, not only the intra-class cor® J. Deng, J. Guo, N. Xue and S. Zafeiriou. ArcFace: Additive Angular
pactness is guaranteed, but also the broad families of classesMargin Loss for Deep Face Recognitionhttps://arxiv.org/abs/1801.
(e.g., white young males or black senior females) appear g

in adjacent regions. This enables a direct correspondence

between the ID centroids and their semantic descriptions
; . o [%0]
allowing that simple rules such as k-neighbours are used'to
jointly infer the identity/soft label information. The insight
of the proposed loss is in opposition to single-label lod!l
formulations, where elements are projected into the destiny

space based uniquely in ID information and image appearance,
being assumed that semantical coherence yields naturally up&h

the similarity of image features.

As future directions for this work, we are exploring the
possibility of fusing the concept described in this paper 3!
the original triplet and Cheet al.formulations. In this line of
research, the concept afchorwill still be disregarded and all
images in a triplet will regard different classes (IDs), with th&4!
margins imposed according to the soft biometrics similarity
between pairs of elements. Also, two other possibilities args]
1) to differently weight the contribution of each soft label
in de ning the embedding topology; and 2) to consider the
conceptual distance inside each label (e.g., 'young'’ is closer to
"adult’ than to 'senior’). Both possibilities should also imprové!®!
the overall ID+soft biometrics labelling performance.
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