
1556-6013 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.3023304, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ??, NO. ??, ?? 2020 1

A Quadruplet Loss for Enforcing Semantically
Coherent Embeddings in Multi-output Classi�cation

Problems
Hugo Proenc‚a,Senior Member, IEEE, Ehsan Yaghoubi and Pendar Alirezazadeh

Abstract�This paper describes one objective function for
learning semantically coherent feature embeddings in multi-
output classi�cation problems, i.e., when the response variables
have dimension higher than one. Such coherent embeddings can
be used simultaneously for different tasks, such as identity re-
trieval and soft biometrics labelling. We propose a generalization
of the triplet loss [34] that: 1) de�nes a metric that considers
the number of agreeing labels between pairs of elements; 2)
introduces the concept ofsimilar classes, according to the values
provided by the metric; and 3) disregards the notion ofanchor,
sampling four arbitrary elements at each time, from where two
pairs are de�ned. The distances between elements in each pair are
imposed according to their semantic similarity(i.e., the number
of agreeing labels). Likewise the triplet loss, our proposal also
privileges small distances betweenpositive pairs. However, the
key novelty is to additionally enforce that the distance between
elements of any other pair corresponds inversely to their semantic
similarity. The proposed loss yields embeddings with a strong
correspondence between the classes centroids and their semantic
descriptions. In practice, it is a natural choice to jointly infer
coarse (soft biometrics) + �ne (ID) labels, using simple rules such
as k-neighbours. Also, in opposition to its triplet counterpart, the
proposed loss appears to be agnostic with regard to demanding
criteria for mining learning instances (such as the semi-hard
pairs). Our experiments were carried out in �ve different datasets
(BIODI, LFW, IJB-A, Megaface and PETA) and validate our
assumptions, showing results that are comparable to the state-of-
the-art in both the identity retrieval and soft biometrics labelling
tasks.

Index Terms�Feature embedding, Soft biometrics, Identity
retrieval, Convolutional neural networks, Triplet loss.

I. I NTRODUCTION

CHaracterizing pedestrians in crowds has been attracting
growing attention, with soft biometrics (e.g.,gender,

ethnicityor age) being particularly important to determine the
identities in a scene. This kind of labels is closely related
to human perception and describes the visual appearance of
subjects, with applications in identity retrieval [40][36] and
person re-identi�cation [15][27].

Deep learning frameworks have been repeatedly improving
the state-of-the-art in many computer vision tasks, such as
object detection and classi�cation [25][41], action recogni-
tion [19][6], semantic segmentation [24][44] and soft biomet-
rics inference [32]. In this context, the triplet loss [34] is a
popular concept, where three learning elements are considered
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at a time, two of them of the same class and a third one of
a different class. By imposing larger distances between the
elements of thenegativethan of thepositive pair, the intra-
class compactness and inter-class discrepancy in the destiny
space are enforced. This strategy was successfully applied to
various problems, upon the mining of thesemi-hardnegative
input pairs, i.e., cases where the negative element is farther to
the anchor than the positive, but still provides a positive loss
due to an imposed margin.

A1 ’ID: A’
’male’
’adult’
’bald’

A2 ’ID: A’
’male’
’adult’
’bald’

B ’ID: B’
’male’
’adult’
’bald’

C ’ID: C’
’female’
’young’
’blond’

Learning

Fig. 1. Likewise the triplet loss [34], the proposedquadruplet formulation
minimizes the distances between elements ofpositive pairs fA 1 , A 2g.
However, the key novelty is to additionally consider the semantic similarity
between classes (A,B andC ). In this example, assuming thatA andB are
semantically similar, our proposal privileges embeddings where the distances
between (A: , B) elements are smaller than the distances between (A: , C) and
between (B, C) elements.

This paper describes one objective function that is a gen-
eralization of the triplet loss. Instead of dividing the learning
pairs into positive/negative, we de�ne a metric to perceive
the semantic similarity between two classes (IDs). In learning
time, four elements are considered at a time and the margins
between the pairwise distances yield from the number of
agreeing labels in each pair (Fig.1). Under this formulation,
elements ofsimilar classes (e.g., two �young, black, bald,
male� subjects) are projected into adjacent regions of the
destiny space. Also, as we impose different margins between
(almost) all negative pairs, we leverage the dif�culties in
mining appropriate learning instances, which is one of the
main dif�culties in the triplet loss formulation.
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The proposed loss function is particularly suitable for
coarse-to-�ne classi�cation problems, where some labels
are easier to infer than others and the global problem can
be decomposed into more tractable sub-components. This
hierarchical paradigm is known to be an ef�cient way of
organizing object recognition, not only to accommodate
a large number of hypotheses, but also to systematically
exploit the shared attributes. Under this paradigm, the identity
retrieval problem is of particular interest, where the �nest
labels (IDs) are seen as the leaves of hierarchical structures
with roots such as thegenderor ethnicity features. However,
note that the proposed formulation does not appropriately
handle soft labels that vary among different images of a
subject (e.g.,hairstyle). Also, it does not take into account the
varying dif�culty of estimating the different labels, allowing
further improvements based in metric learning concepts.

The remainder of this paper is organized as follows: Sec-
tion II summarizes the most relevant research in the scope
of our work. SectionIII describes the proposed objective
function. In SectionIV we discuss the obtained results and
the conclusions are given in SectionV.

II. RELATED WORK

Deep learning methods for biometrics can be roughly
divided into two major groups: 1) methods that directly
learn multi-class classi�ers used in identity retrieval and
soft biometrics inference; and 2) methods that learn low-
dimensional feature embeddings, where inference yields from
nearest neighbour search.

A. Soft Biometrics and Identity Retrieval
Bekele et al. [2] proposed a residual network for multi-

output inference that handles classes-imbalance directly in
the cost function, without depending of data augmentation
techniques. Almudhahkaet al. [1] explored the concept of
comparative soft biometrics and assessed the impact of au-
tomatic estimations on face retrieval performance. Guoet
al. [12] studied the in�uence of distance in the effectiveness
of body and facial soft biometrics, introducing a joint den-
sity distribution based rank-score fusion strategy [13]. Vera-
Rodriguez et al. [31] used hand-crafted features extracted
from the distances between key points in body silhouettes.
Martinho-Corbishleyet al. [29] introduced the idea ofsuper-
�ne soft attributes, describing multiple concepts of one trait
as multi-dimensional perceptual coordinates. Also, using joint
attribute regression and deep residual CNNs, they observed
substantially better retrieval performance in comparison to
conventional labels. Schumann and Specker used an ensemble
of classi�ers for robust attributes inference [35], extended to
full body search by combining it with a human silhouette
detector. Heet al. [17] proposed a weighted multi-task CNN
with a loss term that dynamically updates the weight for each
task during the learning phase.

Several works regarded the semantic segmentation as a tool
to support labels inference: Galiyawalaet al. [10] described a
deep learning framework for person retrieval using the height,

clothes’ color, and gender labels, with a segmentation module
used to remove clutter. Similarly, Cipcigan and Nixon [3]
obtained semantically segmented regions of the body that fed
two CNN-based feature extraction and inference modules.

Finally, speci�cally designed for handheld devices, Saman-
gouei and Chellappa [32] extracted various facial soft bio-
metric features, while Neal and Woodard [26] developed
a human retrieval scheme based on thirteen demographic
and behavioural attributes from mobile phones data, such as
calling, SMS and application data, having authors positively
concluded about the feasibility of this kind of recognition.

A comprehensive summary of the most relevant research in
soft biometrics is given in [38].

B. Feature Embeddings and Loss Functions

Triplet loss functions were motivated by the concept ofcon-
trastive loss [14], where the rationale is to penalize distances
betweenpositive pairs, while favouring distances between
negativepairs. Kanget al. [21] used a deep ensemble of
multi-scale CNNs, each one based on triplet loss functions.
Song et al. [37] learned semantic feature embeddings that
lift the vector of pairwise distances within the batch to the
matrix of pairwise distances, and described a structured loss
on the lifted problem. Liu and Huan [28] proposed a triplet
loss learning architecture composed of four CNNs, each one
learning features from different body parts that are fused at
the score level.

A posterior concept was thecenter loss [42], which �nds
a center for each class and penalizes the distances between
the projections and their corresponding class center. Jianet
al. [20] combined additive marginsoftmaxwith center loss to
increase the inter-classes distances and avoid overcon�dence
on classi�cations. Ranjanet al.’s crystal loss [30] restricts the
features to lie on a hypersphere of a �xed radius, adding
a constraint on the features projections such that their‘ 2-
norm is constant. Chenet al. [4] used deep representations to
feed a Bayesian metrics learning module that maximizes the
log-likelihood ratio between intra- and inter-classes distances.
Deng et al.’s Sphereface[8] proposes an additive angular
margin loss, with a clear geometric interpretation due to the
correspondence to the geodesic distance on the hypersphere.

Observing that CNN-based methods tend to over�t in person
re-identi�cation tasks, Shiet al. [36] used siamese architec-
tures to provide a joint description to a metric learning module,
regularizing the learning process and improving the general-
ization ability. Also, to cope with large intra-class variations,
they suggested the idea ofmoderate positive mining, again to
prevent over�tting. Motivated by the dif�culties in generate
learning instances for triplet loss frameworks, Suet al. [39]
performed adaptive CNN �ne-tuning, along with an adaptive
loss function that relates the maximum distance among the
positive pairs to the margin demanded for separatepositive
from negativepairs. Huet al. [18] proposed an objective func-
tion that generalizes the Maximum Mean Discrepancy [33]
metric, with a weighting scheme that favours good quality
data. Duanet al. [9] proposed theuniform loss to learn deep
equi-distributed representations for face recognition. Finally,
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observing the typical unbalance between positive and negative
pairs, Wanget al. [41] described an adaptive margin list-wise
loss, in which learning data are provided with a set of negative
pairs divided into three classes (easy,moderate, andhard),
depending of the distance rank with respect to the query.

Finally, we note the differences between our loss function
and the (alsoquadruplet) loss described by Chenet al. [5].
These authors attempt to augment the inter-classes margins
and the intra-class compactness without explicitly using any
semantical constraint. As in the original triplet loss formula-
tion, the concept ofsimilar class doesn’t exist in [5], and there
is no rule to explicitly enforce the projection of identities that
share most of the labels into neighbour regions of the latent
space. In opposition, our method concerns essentially about
such kind of semantical coherence, i.e., assures that similar
classes are projected into adjacent regions of the embedding.
Also, even the idea behind the loss formulation is radically
different in both methods, in the sense that [5] still considers
the concept ofanchor (as the triplet-loss), which is also in
opposition to our proposal.

III. PROPOSEDMETHOD

A. Quadruplet Loss: De�nition
Consider a supervised classi�cation problem, wheret is the

dimensionality of the response variabley i associated to the
input elementx i 2 [0;255]n . Let f (:) be one embedding
function that mapsx i into a d-dimensional space	, with
f i = f (x i ) 2 	 being the projected vector. Letfx 1; : : : ; x bg
be a batch ofb images from the learning set. We de�ne
�(y i ; y j ) 2 N; 8i; j 2 f1; : : : ; b g as the function that
measures the semantic similarity betweenx i andx j :

�(y i ; y j ) = jjy i � y j jj0; (1)

with jj:jj 0 being the‘ 0-norm operator.
In practice,�(:; : ) counts the number of disagreeing labels

between thefx i ; x j g pair, i.e., �(y i ; y j ) = t when the ith
and jth elements have fully disjoint classes membership (e.g.,
one �black, adult, male� and another �white, young, female�
subjects), while�(y 1; y2) = 0 when they have the exact same
label (class) across all dimensions, i.e., when they constitute
a positivepair.

Let fi; j; p; q g be the indices of four images in the batch.
The corresponding quadruplet loss value‘ i;j;p;q is given by:

‘ i;j;p;q = sgn
�

�(y i ; y j ) � �(y p; yq)
�

h�
kf p � f q)k2

2 � kf i � f j k2
2
�

+ �
i
; (2)

where sgn() is the sign function,jjxjj 2
2 denotes the square

of the ‘ 2-norm of x
�
jjxjj 2 = ( x2

1 + : : : x2
n ) 1

2 , i.e., jjxjj 2
2 =

x2
1 + : : : x2

n
�

and � is the desired margin (�= 0:1 was used
in our experiments). Evidently, the loss value will be zero
when both image pairs have the same number of agreeing
labels (assgn(0) = 0 in these cases). In any other case, the
sign function will determine the pair which distance in the
embedding should be minimized. As an example, if the(p; q)

elements are semantically closer to each other than the(i; j )
elements

�
�(y p; yq) < �(y i ; y j )

�
, we want to ensure that

kf p � f q)k2
2 < kf i � f j k2

2.
The accumulated loss in the batch is given by the truncated

mean of a sample (of sizes) randomly taken from the subset
of the

� b
4

�
individual loss values where�(y i ; y j ) 6=�(y p; yq):

L =
1
s

sX

z =1

h
‘ z

i

+
; (3)

where z 2 f1; : : : ; s g4 denotes the zth composition of four
elements in the batch and[:]+ is themax(:; 0) function. Even
considering that a large fraction of the combinations in the
batch will be invalid (i.e., with�(:; : ) = 0), large values ofb
will result in an intractable number of combinations at each
iteration. In practical terms, after �ltering out those invalid
combinations, we randomly sample a subset of the remaining
instances, which is designated as themini-batch.

B. Quadruplet Loss: Training
Consider four indicesfi; j; p; q g of elements in the mini-

batch, with�(y i ; y j ) > �(y p; yq). Let � � denote the differ-
ence between the number of disagreeing labels of thefi; j g
and fp; qg pairs:

� � = �(y i ; y j ) � �(y p; yq): (4)

Also, let � f be the distance between the elements of the
most alike pair minus the distance between the elements of
the least alike pair in the destiny space (plus the margin):

� f = kf p � f q)k2
2 � kf i � f j k2

2 + �: (5)

Upon basic algebraic manipulation, the gradients ofL with
respect to the quadruplet terms are given by:

@L
@f i

=
X

z

�
2(f j � f i ) , if � � > 0 ^ � f � 0

0 , otherwise (6)

@L
@f j

=
X

z

�
2(f i � f j ) , if � � > 0 ^ � f � 0

0 , otherwise (7)

@L
@f p

=
X

z

�
2(f p � f q) , if � � > 0 ^ � f � 0

0 , otherwise (8)

@L
@f q

=
X

z

�
2(f q � f p) , if � � > 0 ^ � f � 0

0 , otherwise (9)

In practice terms, the model weights are adjusted only
when pairs have different number of agreeing labels (i.e.,
� � > 0) and when the distance in the destiny space between
the elements of the most similar pair is higher than the distance
between the elements of the least similar pair (plus the margin,
� f � 0). According to this idea, using (6)-(9), the deep
learning frameworks supervised by the proposed quadruplet
loss are trainable in a way similar to its counterpart triplet
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ID Gender Ethnicity Elements

x - �

y - �

z - �

Female

Female

Male

Black

White

White

x 1 x 2

y 1 y 2

z 1 z 2

	 1

�x 1

�x 2 � z 1

� z 2 � y 1

� y 2

	 2

�y 1

�y 2 � x 1

� x 2 � z 1

� z 2

	 3

�x 1

�x 2 � y 1

� y 2 � z 1

� z 2

Triplet Loss

)

Embeddings	 1 ; 	 2 ; 	 3 arepossible

kf (x 1 ) � f (x 2 )k2
2 + � < kf (x i ) � f (y j )k2

2

8i; j 2 f1 ; 2g...

Positive pairs <

...

Negative pairs

1

2

3

kf (y i ) � f (y j )k 2
2 + � < kf (y k ) � f (z l )k 2

2

kf (z i ) � f (z j )k 2
2 + � < kf (x k ) � f (y l )k 2

2

kf (x i ) � f (y j )k 2
2 + � < kf (x k ) � f (z l )k2

2

Proposed Quadruplet Loss

1 Positive pairs < Negative pairs

2 Positive pairs � More Negative pairs

3 Negative pairs < More Negative pairs

Embedding	 3 is enforced

)

Fig. 2. Key difference between the triplet loss [34] formulation and the solution proposed in this paper. Using a loss function that analyzes the semantic
similarity (in terms of soft biometrics) between the different identities, we enforce embeddings (	3 ) that are semantically coherent, i.e., where: 1) elements
of the same class appear near each other; but additionally 2) elements of similar classes appear closer to each other than elements with no labels in common.
This is in opposition to the original formulation of the triplet loss, that relies mostly in image appearance to de�ne the geometry of the destiny space, obtaining
- in case of noisy image features - semantically incoherent embeddings (e.g., in	 1 and 	 2 , classes are compact and discriminative, but thex=z centroids
are too close to each other).

loss and can be optimized according to the standard Stochastic
Gradient Descend (SGD) algorithm, which was done in all our
experiments.

For clarity purposes, Algorithm1 gives a pseudocode de-
scription of the learning phase and of the batch/mini-batch
de�nition processes.

Algorithm 1 Pseudocode description of the learning phase and
of the batch/mini-batch de�nition processes.
Precondition: M : CNN, te: Tot. epochs,s: mini-batch size,

b: batch size,I : Learning set,n images
for 1 to te do

for 1 to bn
s e do

b  randomly sampleb out of n images fromI
c  create

� b
4

�
quadruplet combinations fromb

c�  �lter out invalid elements fromc
s  randomly samples elements fromc�

M  update weights(M; s) (eqs. (6-9))
end for

end for
return M

C. Quadruplet Loss: Insight and Example
Fig. 2 illustrates our rationale in the proposed loss. By

de�ning a metric that analyses the similarity between two
classes, we create the concept ofsemantically similarclass.
This enables to explicitly enforce that elements of theleast
similar classes (with no common labels) are at the farthest
distances in the embedding. During the learning phase, we
sample the image pairs in a stochastic way and enforce
projections in a way that resembles the human perception of
semantic similarity.

As an example, Fig.3 compares the bidimensional embed-
dings resulting from the triplet and the quadruplet losses, for
the LFW identities with more than 15 images in the dataset

(using t = 2 : f’ID’; ’Gender’g labels). This plot yielded
from the projection of a 128-dimensional embedding down to
two dimensions, according to the Neighbourhood Component
Analysis (NCA) [11] algorithm.

It can be seen that the triplet loss provided an embedding
where the positions of elements are exclusively determined by
their appearance, where ’females’ appear nearby ’male tennis
players’ (upper left corner). In opposition, the quadruplet
loss established a large margin between both genders, while
keeping the compactness per ID. This kind of embedding
is interesting: 1) for identity retrieval, to guarantee that all
retrieved elements have soft labels equal to the query; 2) upon
a semantic description of the query (e.g., ��nd adult white
males similar to this image�), to guarantee that all retrieved
elements meet the semantic criteria; and 3) to use the same
embedding to directly infer �ne (ID) + coarse (soft) labels, in
a simplek-neighboursfashion.

IV. RESULTS AND DISCUSSION

A. Experimental Setting and Preprocessing
Our empirical validation was conducted in one proprietary

(BIODI) and four freely available datasets (LFW, PETA,
IJB-A and Megaface) well known in the biometrics and re-
identi�cation literature.

The BIODI1 dataset is proprietary ofTomiworldR
 2, being
composed of 849,932 images from 13,876 subjects, taken
from 216 indoor/outdoor video surveillance sequences. All
images were manually annotated for 14 labels: gender, age,
height, body volume, ethnicity, hair color and style, beard,
moustache, glasses and clothing (x4). The Labeled Faces in
the Wild (LFW) [16] dataset contains 13,233 images from
5,749 identities, collected from the web, with large variations
in pose, expression and lighting conditions. PETA [7] is a com-
bination of 10 pedestrian re-identi�cation datasets, composed

1http://di.ubi.pt/� hugomcp/BIODI/
2https://tomiworld.com/
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Triplet Loss

Quadruplet Loss

Fig. 3. Comparison between the 2D embeddings resulting from the triplet
loss [34] (top plot), and from the proposed quadruplet loss (bottom plot).
Results are given fort = 2 featuresf’ID’, ’Gender’g for the LFW identities
with at least 15 images (89 elements).

of 19,000 images from 8,705 subjects, each one annotated
with 61 binary and 4 multi-output atributes. The IIJB-A [23]
dataset contains 5,397 images plus 20,412 video frames from
500 individuals, with large variations in pose and illumination.
Finally, the Megaface [22] set was released to evaluate face
recognition performance at the million scale, and consists of a
gallery set and a probe set. The gallery set is a subset of Flickr
photos from Yahoo (more than 1,000,000 images from 690,000
subjects). The probe dataset includes FaceScrub and FGNet
sets. FaceScrub has 100,000 images from 530 individuals and
FGNet contains 1,002 images of 82 identities. Some examples
of the images in each dataset are given in Fig.4.

B. Convolutional Neural Networks

Two CNN architectures were considered: theVGG and
ResNetmodels (Fig.5). Here, the idea was not only to compare
the performance of the quadruplet loss with respect to the
baselines, but also to perceive the variations in performance
with respect to different CNN architectures. ATensorFlow

B
IO

D
I

P
E

TA
LF

W
M

eg
af

ac
e

IJ
B

-A

Fig. 4. Datasets used in the empirical validation of the method proposed
in this paper. From top to bottom rows, images of the BIODI, PETA, LFW,
Megaface and IJB-A sets are shown.

implementation of both architectures is available at3.
All the models were initialized with random weights, from

zero-mean Gaussian distributions with standard deviation 0.01
and bias 0.5. Images were resized to 256� 256, adding lateral
white bands when needed to keep constant ratios. A batch size
of 64 was de�ned, which results in too many combinations
of pairs for the triplet/quadruplet losses. At each iteration,
we �ltered out the invalid triplets/quadruplets instances and
randomly selected the mini-batch elements, composed of 64
instances in all cases. For every baseline, 64 pairs were also
used as a batch. The learning rate started from 0.01, with
momentum 0.9 and weight decay5e�4 . In the learning-
from-scratchparadigm, we stopped the learning process when
the validation loss didn’t decrease for 10 iterations (i.e.,
patience=10).

We initially varied the dimensionality of the embedding (d)
to perceive the sensitivity of the proposed method with respect
to this parameter. Considering the LFW set, the average AUC
values with respect tod are provided in Fig.6 (the shadowed
regions denote the� standard deviation performance, after
10 trials). As expected, higher values ford were directly
correlated to performance, even though results stabilised for
dimensions higher than 128. In this regard, we assumed that
using higher dimensions would require much more training
data, having resorted from this moment tod=128 in all
subsequent experiments.

Interestingly, the absolute performance observed for very
low d values was not too far of the obtained for much higher

3https://github.com/hugomcp/quadruplets
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VGG-like

3 � 3, 64

3 � 3, 64

max, 2 � 2

dropout,0.75

3 � 3, 128
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Fig. 5. Architectures of the CNNs used in the experiments. The yellow boxes
represent convolutional layers, and the blue and green boxes represent pooling
and dropout (keeping probability 0.75) layers. Finally, the red boxes denote
fully connected layers. In the ResNet architecture, the dashed skip connections
represent convolutions with stride 2� 2, yielding outputs with half of the
spatial input size. The ’/2’ symbol denotes stride 2� 2 (the remaining layers
use stride 1� 1).

dimensions, which raises the possibility of using the position
of the elements in the destiny space directly for classi�cation
and visualization, without the need of any dimensionality
reduction algorithm (MDS, LLE or PCA algorithms are fre-
quently seen in the literature for this purpose).

A
U

C

DimensionalityEmbedding

VGG

ResNet

Fig. 6. Variations in the mean AUC values (�the standard deviations after
10 trials, given as shadowed regions) with respect to the dimensionality of
the embedding. Results are shown for the LFW validation set, when using
the VGG-like (solid line) and ResNet-like (dashed line) CNN architectures.

C. Single- vs. Multi-Output Embeddings Learning: Semantical
Coherence

To compare the semantical coherence of the embeddings
resulting from single-output (triplet and Chenet al.’s losses)
and multi-output (ours) learning formulations, we measured
the distances (‘2-norm) between each element in an embedding
and all the others, grouping values into two sets: 1)intra-
label observations, when two elements share a speci�c label
(e.g., ’male’/’male’ or ’asian’/’asian’); and 2)inter-labels
observations, in case of different labels in the pair (e.g.,
’male’/’female’ or ’asian’/’black’). In practice, we measured
the distances between elements of the same/different ID,
gender, ethnicity and joint gender+ethnicity labels. Note that,
in all cases, a unique embedding was obtained for each
method, using thefIDg as feature for the triplet and Chen
et al. methods, and thefID, Gender, Ethnicityg (t = 3)
for the proposed method, with the annotations for the IJB-
A set provided by the Face++ algorithm and subjected to
human validation. The VGG-like architecture was considered,
as described in SectionIV-B.

The results are given in Fig.7 (LFW, Megaface and IJB-A
sets). The green color represents the statistics of theintra-label
values, while the red color represents theinter-labelsvalues.
Box plots show the median of the distance values (horizontal
solid lines) and the �rst and third quartiles (top and bottom of
the box marks). The upper and lower whiskers are denoted by
the horizontal lines outside each box. All outliers are omitted,
for visualisation purposes.

The leftmost group in each dataset is the root for the
ID retrieval performance, and compares the distances in the
embeddings between elements that have the same/different
IDs. The remaining cases are the most important for our
purposes, and provide the distances between elements that
share (or not) some label: the second group compares the
’male’/’male and ’female’/’female’ distances (green boxes) to
’male’/’female’ values (red boxes). The third group provides
the corresponding results for theethnicity label, while the
rightmost group provides the distances when jointly consider-
ing thegenderandethnicity features, i.e., when two elements
constitute anintra-label pair iff they have the same gender
and ethnicity labels.

These results turn evident the different properties of the
embeddings yielding from the proposed loss with respect to
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Fig. 7. Box plots of the distances between each element in the embedding with respect to others that share the same (green color) or different (red color)
labels. We compare the multi-output learning solution proposed in this paper (Quadruplet), with respect to the single-output learning methods (Triplet [34]
and Chenet al. [5]). Values regard the LFW (top plot), Megaface (center plot) and IJB-A (bottom plot) sets, measuring thefIDg, fGenderg, fEthnicityg and
fGender, Ethnicitygsame/different label distances.

the baselines. If we consider exclusively the ID to measure
the distances between elements, the results almost do not
vary among all methods. However, a different conclusion
can be drawn when measuring the distances between the
same/differentgender,ethnicity and gender/ethnicitylabels.
Here, the proposed quadruplet loss was the unique method
where the intra-label/inter-labels whiskers provided disjoint
intersections, by a solid margin in all cases, i.e., the difference
between the intra-label/inter-labels distances was far larger
than in the remaining losses. Of course, such differences are
due to the fact that the triplet and Chenet al.methods have
not considered additional soft labels to de�ne the topology of
the embeddings, having exclusively resorted to the ID labels
and images appearance for such purpose.

In practice, these experiments turn evident that single-label
learning formulation yield embeddings that are semantically
incoherent from other labels’ perspectives, in the sense that
’males’ are often nearby ’females’, or ’white’ nearby ’asian’
elements. In this setting, using such embeddings for simul-
taneously ID retrieval and soft biometrics labelling is risky,
and errors will often occur. In opposition, the proposed loss
guarantees large margins between groups of intra-label/inter-
labels observations, typically corresponding toclusters in
the embeddings with respect to the set of learning labels
considered.

D. Identity Retrieval
Even considering that the goals of our proposal are beyond

the ID retrieval performance, it is important to compare

the performance of the quadruplet loss with respect to the
baselines in this task. As in the previous experiment, note that
all the baselines (triplet loss, center loss,softmaxand Chenet
al. [5]) considered exclusively the ID to infer the embeddings,
while the proposed loss used all the available labels for that
purpose.

Fig. 8 provides the Cumulative Match curves (CMC, outer
plots) and the Detection and Identi�cation rates at rank-1
(DIR, inner plots). The results are also summarized in TableI,
reporting the rank-1, top-10% values and the mean average
precision (mAP) scores, given by:

mAP =
P n

q=1
�P (q)

n
; (10)

wheren is the number of queries,�P (q) =
P n

k=1 P (k )�r (k ),
P (k ) is the precision at cut-offk and �r (k ) is the change in
recall fromk � 1 to k.

For the LFW set experiment, the BLUFR4 evaluation pro-
tocol was chosen. In the veri�cation (1:1) setting, the test
set contained 9,708 face images of 4,249 subjects, which
yielded over 47 million matching scores. For the open-set
identi�cation problem, the genuine probe set contained 4,350
face images of 1,000 subjects, the impostor probe set had
4,357 images of 3,249 subjects, and the gallery set had 1,000
images. This evaluation protocol was the basis to design, for
the other sets, as close as possible experiments, in terms of
the number of matching scores, gallery and probe sets.

4http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/

Authorized licensed use limited to: b-on: UNIVERSIDADE DA BEIRA INTERIOR. Downloaded on September 12,2020 at 09:13:15 UTC from IEEE Xplore.  Restrictions apply. 

http://www.cbsr.ia.ac.cn/users/scliao/projects/blufr/


1556-6013 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIFS.2020.3023304, IEEE
Transactions on Information Forensics and Security

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. ??, NO. ??, ?? 2020 8

VGG
LFW

Id
en

ti�
ca

tio
n

R
at

e

Rank

Megaface

Id
en

ti�
ca

tio
n

R
at

e

Rank

IJB-A

Id
en

ti�
ca

tio
n

R
at

e

Rank

ResNet
LFW

Id
en

ti�
ca

tio
n

R
at

e

Rank

Megaface

Id
en

ti�
ca

tio
n

R
at

e

Rank

IJB-A

Id
en

ti�
ca

tio
n

R
at

e

Rank

Fig. 8. Identity retrieval results. The outer plots provide the closed-set identi�cation (CMC) curves for the LFW, Megaface and IJB-A sets, using the VGG
and ResNet architectures. Inside each plot, the inner regions show the corresponding detection and identi�cation rate (DIR) values at rank-1. Results are
shown for the quadruplet loss function (purple color), and four baselines: thesoftmax(red color), center loss (green color), triplet loss (blue color) and Chen
et al. [5]’s (black color) method.

Generally, we observed that the proposed quadruplet loss
outperforms the other loss functions, which might be the
result of having used additional information for learning.
These improvements in performance were observed in most
cases by a consistent margin for both the veri�cation and
identi�cation tasks, not only for the VGG but also for the
ResNet architecture.

In terms of the errors per CNN architecture, the ResNet-
like error rates were roughly 0.9� (90%) of the observed
for the VGG-like networks (higher margins were observed
for the softmaxloss). Not surprisingly, the Chenet al. [5]’
method outperformed the remaining competitors, followed by
the triplet loss function, which is consistent with most of
the results reported in the literature. Thesoftmax loss got
repeatedly the worst performance among the �ve functions
considered.

Regarding the performance per dataset, the values observed
for Megaface were far worse for all objective functions than
the values for LFW and IJB-A. In the Megaface set, we
followed the protocol of thesmall training set, using 490,000
images from 17,189 subjects (images overlapping with Face-
scrub dataset were discarded). Also, note that the relative
performance between the loss functions was roughly the same
in all sets. Degradations in performance were slight from the
LFW to the IJB-A set and much more visible in case of the
Megaface set. In this context, thesoftmaxloss produced the
most evident degradations, followed by the center loss.

E. Soft Biometrics Inference

As stated above, the proposed loss can also be used for
learning a soft biometrics estimator. In test time, the position to
where one element is projected is used to infer the soft labels,
in a simple nearest neighbour fashion. In these experiments,
we considered only 1-NN, i.e., the label inferred for each query
was given by the closest gallery element. Better results would
be possibly attained if more neighbours had been considered,
even though the computational cost of classi�cation will also
increase. All experiments were conducted according to a
bootstrapping-like strategy: havingn test images available,
the bootstrap randomly selected (with replacement)0:9 � n
images, obtaining samples composed of 90% of the whole
data. Ten test samples were created and the experiments were
conducted independently on each trail, which enabled to obtain
the mean and the standard deviation at each performance
value.

As baselines we used two commercial off-the-shelf (COTS)
techniques, considered to represent the state-of-the-art [38]:
the Matlab SDK forFace++5 and theMicrosoft Cognitive
Toolkit Commercial6. Face++ is a commercial face recognition
system, with good performance reported for the LFW face
recognition competition (second best rate). Microsoft Cogni-
tive Toolkit is a deep learning framework that provides useful

5http://www.faceplusplus.com/
6https://www.microsoft.com/cognitive-services/
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TABLE I
IDENTITY RETRIEVAL PERFORMANCE OF THE PROPOSED LOSS WITH

RESPECT TO THE BASELINES: softmax, CENTER AND TRIPLET LOSSES, AND
CHEN et al. [5]’ S METHOD. THE AVERAGE PERFORMANCE� STANDARD
DEVIATION VALUES ARE GIVEN , AFTER 10 TRIALS. INSIDE EACH CELL,
VALUES REGARD (FROM TOP TO BOTTOM) THE LFW, MEGAFACE AND
IJB-A DATASETS. THE BOLD FONT HIGHLIGHTS THE BEST RESULT PER

DATASET AMONG ALL METHODS.

Method mAP rank-1 top-10%

VGG

Quadruplet loss

0.958 � 3e�3 0.951 � 0.020 0.979 � 6e�3

0.877 � 0.011 0.812 � 0.053 0.960 � 9e�3

0.953 � 5e�3 0.939 � 0.037 0.958 � 6e�3

Softmax loss

0.897 � 4e�3 0.842 � 0.034 0.953 � 0.011

0.727 � 0.014 0.615 � 0.060 0.863 � 0.017

0.849 � 0.010 0.823 � 0.039 0.941 � 0.014

Triplet loss [34]

0.934 � 4e�3 0.929 � 0.033 0.964 � 8e�3

0.854 � 9e�3 0.758 � 0.059 0.946 � 0.017

0.917 � 5e�3 0.901 � 0.040 0.950 � 0.011

Center loss [43]

0.918 � 3e�3 0.863 � 0.020 0.962 � 6e�3

0.850 � 0.013 0.773 � 0.052 0.939 � 0.012

0.862 � 0.010 0.867 � 0.041 0.944 � 0.012

Chenet al. [5]

0.961 � 2e�3 0.945 � 0.022 0.976 � 6e�3

0.864 � 0.012 0.772 � 0.061 0.947 � 9e�3

0.948 � 6e�3 0.936 � 0.055 0.970 � 4e�3

ResNet

Quadruplet loss

0.968 � 2e�3 0.966 � 0.012 0.981 � 4e�3

0.902 � 9e�3 0.906 � 0.048 0.972 � 8e�3

0.959 � 3e�3 0.947 � 0.021 0.980 � 4e�3

Softmax loss

0.912 � 4e�3 0.861 � 0.029 0.960 � 8e�3

0.730 � 0.010 0.745 � 0.051 0.899 � 0.011

0.841 � 9e�3 0.860 � 0.030 0.958 � 8e�3

Triplet loss [34]

0.947 � 4e�3 0.948 � 0.026 0.968 � 9e�3

0.872 � 8e�3 0.839 � 0.052 0.957 � 9e�3

0.919 � 5e�3 0.937 � 0.031 0.961 � 0.011

Center loss [43]

0.939 � 3e�3 0.898 � 0.016 0.967 � 6e�3

0.847 � 9e�3 0.845 � 0.048 0.945 � 9e�3

0.877 � 7e�3 0.893 � 0.035 0.963 � 9e�3

Chenet al. [5]

0.966 � 2e�3 0.959 � 0.015 0.983 � 4e�3

0.916 � 8e�2 0.880 � 0.050 0.975 � 8e�3

0.952 � 4e�3 0.960 � 0.022 0.986 � 6e�3

information based on vision, speech and language. Also, in
order to highlight the distinct properties of the embeddings
generated by our proposal with respect to the state-of-the-
art, we also measured the soft labelling effectiveness that
can be attained by the Triplet loss [34] and Chenet al. [43]
embeddings if a simple 1-NN rule is used to infer soft
biometrics labels.

We considered exclusively the ’Gender’, ’Ethnicity’ and
’Age’ labels (t = 3), quantised respectively into two
classes for Gender (f’male’, ’female’g), three classes for Age
(f’young’, ’adult’, ’senior’g), and three classes for Ethnicity
(f’white’, ’black’, ’asian’g). The average and standard devia-
tion performance values are reported in TableII for the BIODI,
PETA and LFW sets.

Overall, the results achieved by the quadruplet loss can
be favourably compared to the baseline techniques for most
labels, particularly for the BIODI and LFW datasets. Regard-
ing the PETA set, Face++ invariably outperformed the other
techniques, even if at a reduced margin in most cases. This
was justi�ed by the extreme heterogeneity of image features
in this set, in result of being the concatenation of different
databases. This should had reduced the representativity of the
learning data with respect the test set, being the Face++ model
apparently the least sensitive to this covariate. Note that the
’Ethnicity’ label is only provided by the Face++ framework.
Regarding the Triplet [34] and Chenet al. [43] baselines, it
is important to note that the reported values were obtained
in embeddings that were inferred exclusively based in ID
information. Under such circumstances, we con�rmed that
both solutions produce semantically inconsistent embeddings,
in which elements with similar appearance but different soft
labels are frequently projected to adjacent regions.

Globally, these experiments supported the possibility of
using such the proposed method to estimate soft labels in
a single-shotparadigm, which is interesting to reduce the
computational cost of using specialized third-party solutions
for soft labelling.

Finally, we analysed the variations in performance with
respect to the number of labels considered, i.e., the value of
the t parameter. At �rst, to perceive how the identity retrieval
performance depends of the number of soft labels, we used the
annotations provided by the ATVS group [38] for the LFW set,
and measured the rank-1 variations for1 � t � 4, starting by
the ’ID’ label alone and then adding iteratively the ’Gender’
! ’Ethnicity’ ! ’Age’ labels. The results are shown in the
left plot of Fig. 9. In a complementary way, to perceive the
overall labelling effectiveness for large values oft, the BIODI
dataset was used (the one with the largest number of annotated
labels), and the values obtained fort 2 f2; : : : ; 14g. In all
cases,d = 128 was kept, with the average labelling error in
the test setX given by:

e(X ) =
1

n:t

nX

i=1

jjp i � gi jj0; (11)

with pi denoting thet labels predicted for thei th image and
gi being the ground-truth.jj jj 0 denotes the‘ 0-norm.

ra
nk

-1

t

e(
)

t

Fig. 9. At left: rank-1 identi�cation accuracy in the LFW dataset, for1 � t �
4. At right: soft biometrics performance in the BIODI test set, for2 � t � 14,
for the VGG (solid line) and ResNet (dashed line) architectures.

It is interesting to observe the apparently contradictory
results in both plots: at �rst, a positive correlation between
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TABLE II
SOFT BIOMETRICS LABELLING PERFORMANCE(MAP) ATTAINED BY THE

PROPOSED METHOD, WITH RESPECT TO TWO
COMMERCIAL-OFF-THE-SHELF SYSTEMS(FACE++ AND M ICROSOFT

COGNITIVE) AND TWO OTHER BASELINES. THE AVERAGE PERFORMANCE
� STANDARD DEVIATION VALUES ARE GIVEN, AFTER 10 TRIALS. INSIDE
EACH CELL, THE TOP VALUE REGARDS THEVGG-LIKE PERFORMANCE,

AND THE BOTTOM VALUE CORRESPONDS TO THERESNET-LIKE VALUES .

Method Gender Age Ethnicity

BIODI

Quadruplet loss
0.816 � 6e�3 0.603 � 0.014 0.777 � 0.011

0.834 � 5e�3 0.649 � 0.011 0.786 � 9e�3

Triplet loss [34]
0.684 � 0.022 0.581 � 0.034 0.599 � 0.028

0.690 � 0.019 0.584 � 0.025 0.600 � 0.017

Chenet al. [43]
0.693 � 0.020 0.602 � 0.032 0.613 � 0.019

0.697 � 0.015 0.604 � 0.012 0.618 � 0.018

Face++ 0.760 � 8e�3 0.588 � 0.019 0.788 � 0.017

Microsoft Cognitive 0.738 � 7e�3 0.552 � 0.026 -

PETA

Quadruplet loss
0.862 � 0.024 0.649 � 0.061 0.797 � 0.053

0.882 � 0.018 0.658 � 0.057 0.810 � 0.036

Triplet loss [34]
0.720 � 0.036 0.611 � 0.038 0.612 � 0.038

0.722 � 0.024 0.625 � 0.022 0.628 � 0.026

Chenet al. [43]
0.723 � 0.034 0.613 � 0.037 0.636 � 0.025

0.731 � 0.027 0.630 � 0.030 0.668 � 0.021

Face++ 0.870 � 0.028 0.653 � 0.062 0.812 � 0.054

Microsoft Cognitive 0.885 � 0.020 0.660 � 0.057 -

LFW

Quadruplet loss
0.939 � 0.021 0.702 � 0.059 0.801 � 0.044

0.944 � 0.017 0.709 � 0.049 0.817 � 0.041

Triplet loss [34]
0.794 � 0.028 0.631 � 0.032 0.652 � 0.022

0.799 � 0.022 0.636 � 0.020 0.670 � 0.017

Chenet al. [43]
0.794 � 0.030 0.639 � 0.030 0.728 � 0.027

0.801 � 0.021 0.659 � 0.018 0.747 � 0.022

Face++ 0.928 � 0.041 0.527 � 0.063 0.842 � 0.061

Microsoft Cognitive 0.931 � 0.037 0.710 � 0.051 -

the labelling errors and the values oft is evident, which was
justi�ed by the dif�culty of inferring some of the hardest labels
in the BIODI set (e.g., thetype of shoes). However, the average
rank-1 identi�cation accuracy also increased when more soft
labels were used, even if the results were obtained only for
small values oft (i.e., not considering the particularly hard
labels, in result of no available ground truth). Overall, we
concluded that the proposed loss obtainacceptableperfor-
mance (i.e., close to the state-of-the-art) when a small number
of soft labels is available (� 2), but also when a few more
labels should be inferred (up tot � 8). In this regard, we
presume that even higher values fort (t � 8) would require
substantially more amounts of learning data and also higher
values ford (dimension of the embedding).

F. Semantic Identity Retrieval
Finally, we considered thesemantic identity retrievalprob-

lem, where - along with the query image - semantic criteria are
used to �lter the retrieved elements (i.e., �Find this person�

! �Find this female�, Fig. 10). In this setting, it is assumed
that the ground-truth soft labels of the gallery IDs are known,
even though the same does not apply for the queries.

We considered the hardest identity retrieval dataset
(Megaface) and compared our results to Chenet al.’s (the
most frequent runner-up in previous experiments). The soft
label ’Gender’ (provided by the Microsoft Cognitive Toolkit
for the queries) was used as additional semantic data, to �lter
the retrieved identities. The bottom plot in Fig.10 provides the
results in terms of the hit/penetration rates, being notorious the
similar levels of performance of both methods in this setting
(’semantic’ data series), with Chenet al.’s method slightly
outperforming up to the top-20 identities, and getting worse
results than our solution for the remaining penetration values.

It can be concluded that - when coarse labels are available -
our method and Chenet al.’s attain similar quality embeddings
in terms of compactness and discriminability. However, the
key point is that the baseline version of the proposed loss
is a way to approximate the results attained by state-of-the-
art methods when using semantic information to �lter the
retrieved identities.

�F ind this person�

�Find this female�

Identity Retrieval

Semant. Ident. Retrieval

H
it

Penetration

Fig. 10. Comparison between the hit/penetration rates of the proposed loss and
Chenet al. [5]’s method, when disregarding (baseline) or considering semantic
additional information to �lter the retrieved results. Values are given for the
ResNetarchitecture and Megaface dataset. The ’Gender’ was the semantic
criterium in each query and �n� is the number of enrolled identities.

V. CONCLUSIONS ANDFURTHER WORK

In this paper we proposed a loss function for multi-output
classi�cation problems, where the response variables have
dimension greater than one. Our function is a generalization
of the well known triplet loss, replacing thepositive/negative
binary division of pairs and the notion ofanchor, by: i) a
metric that considers thesemantic similaritybetween any two
classes; and ii) a quadruplet term that imposes different dis-
tances between pairs of elements according to that similarity.

In particular, we considered the identity retrieval and soft
biometrics problems, using the ID and three soft labels (’Gen-
der’, ’Age’ and ’Ethnicity’) to obtain semantically coherent
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embeddings. In such spaces, not only the intra-class com-
pactness is guaranteed, but also the broad families of classes
(e.g., �white young males� or �black senior females�) appear
in adjacent regions. This enables a direct correspondence
between the ID centroids and their semantic descriptions,
allowing that simple rules such as k-neighbours are used to
jointly infer the identity/soft label information. The insight
of the proposed loss is in opposition to single-label loss
formulations, where elements are projected into the destiny
space based uniquely in ID information and image appearance,
being assumed that semantical coherence yields naturally upon
the similarity of image features.

As future directions for this work, we are exploring the
possibility of fusing the concept described in this paper to
the original triplet and Chenet al.formulations. In this line of
research, the concept ofanchorwill still be disregarded and all
images in a triplet will regard different classes (IDs), with the
margins imposed according to the soft biometrics similarity
between pairs of elements. Also, two other possibilities are:
1) to differently weight the contribution of each soft label
in de�ning the embedding topology; and 2) to consider the
conceptual distance inside each label (e.g., ’young’ is closer to
’adult’ than to ’senior’). Both possibilities should also improve
the overall ID+soft biometrics labelling performance.
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