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� Abstract
Life scientists often must count cells in microscopy images, which is a tedious and
time-consuming task. Automatic approaches present a solution to this problem. Several
procedures have been devised for this task, but the majority suffer from performance
degradation in the case of cell overlap. In this article, we propose a method to deter-
mine the positions of macrophages and parasites in fluorescence images of Leishmania-
infected macrophages. The proposed strategy is primarily based on blob detection,
clustering, and separation using concave regions of the cells’ contours. In comparison
with the approaches of Nogueira (Master’s thesis, Department of University of Porto
Computer Science, 2011) and Leal et al. (Proceedings of the 9th international confer-
ence on Image Analysis and Recognition, Vol. II, ICIAR’12. Berlin, Heidelberg:
Springer-Verlag; 2012. pp. 432–439), which also addressed this type of image, we con-
clude that the proposed methodology achieves better performance in the automatic
annotation of Leishmania infections. VC 2014 International Society for Advancement of Cytometry

� Key terms
annotation; Leishmania; image analysis; pattern recognition

INTRODUCTION

Leishmania are unicellular parasites that infect mammals and are responsible for a

set of diseases known as leishmaniases. Within their vertebrate hosts, Leishmania

reside inside macrophages. Accordingly, one model for studying these parasites

involves infecting in vitro cultures of macrophages. The capacity of Leishmania to

survive/replicate under these artificial conditions can then be evaluated by parame-

ters such as the percentage of infected macrophages, the average number of parasites

per infected macrophage and the infection index.

These metrics are usually determined by counting macrophages and para-

sites under the microscope or by the annotation of images obtained from the

microscope. Researchers identify the different cells based on their sizes and spe-

cific affinities for different dyes, as illustrated in Figure 1. This figure shows a

micrograph composed of three single-color images acquired in the blue, red,

and green channels of a fluorescence microscope. In this case, the blue channel

shows the nuclei of the macrophages, whereas the green channel highlights the

parasites. In the red channel, both the nuclei of the macrophages (high inten-

sity) and their cytoplasm (low intensity) are visible. Notably, the macrophage

cytoplasm may also be visible in the green channel, albeit with low intensity.

Although annotation provides a more interactive way of assessing Leishmania

infections, both techniques are performed manually, and they are, therefore,

tedious, time consuming, and prone to human error. Furthermore, in this

application, manual approaches are very susceptible to subjectivity.

1Department of Computer Science, IT-
Instituto de Telecomunicaç~oes, Univer-
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Considering the drawbacks associated with manual anno-

tation, the primary goal of this article is to propose an auto-

mated approach to annotating Leishmania infections,that is,

to determining the locations of macrophages and parasites as

well as their association.

In the literature, cell detection/counting has been

approached in several works (1). In the majority of cases, the

authors devised new methods to segment and split overlapped

cells, which represents the main factor for performance degra-

dation. In cell segmentation approaches, the seeded watershed

transformation is a common choice (2). Held et al. (3) com-

pared the maximum-intensity linking (MIL) method with the

watershed transformation and reported better results with

MIL for the segmentation of HeLa cells. Level sets are also a

robust alternative to cell segmentation (4,5); however, like the

watershed transformation and MIL, they exploit the fact that

the intensity of fluorescence-stained cells usually decreases

from the core to the boundary, presenting a unimodal distri-

bution. In the type of images, we are considering, cells can

contain several nuclei; therefore, this property does not hold,

and these techniques do not address our problem.

Contour analysis is also a common strategy in cell detec-

tion/segmentation approaches. Fok et al. (6) counted the

number of axons in nerve cells based on active contours. Due

to the circular shape of the axons, the elliptical Hough trans-

formation was used to provide an initial guess of the bound-

ary of each axon. Active contours were fed with this initial

guess to obtain finer descriptions of the boundaries of the

membrane surrounding each axon (myelin). Kharma et al.’s

(7) method was divided into two main phases: first, the cells

were separated from the background by combining an adapt-

ive threshold with morphological operators. Next, overlapping

cells were separated by assuming an elliptical shape for all

cells. A genetic algorithm was used to find the parameters that

define the best fitting ellipsis that corresponds to the cell

boundaries. Ellipse fitting was also used by Kothari et al. (8),

who combined contour concavity analysis with ellipse fitting

to count tissue cells. An adaptive active physical model was

proposed by Plissiti and Nikou (9) to separate and delineate

the boundaries of overlapping nuclei.

Faustino et al. (10) proposed a method to detect and

count stem cells in fluorescence images. An adaptive threshold

separated the cells from the background, and histogram analy-

sis was used to create several classes inside the regions of inter-

est (ROI). The set of regions and its classes were mapped to

the nodes of a graph and mined using expert-based rules to

separate the overlapping cells.

Although these methods achieved good performance,

they were not designed to address the specific details of Leish-

mania infections, as they focus on nuclei. As explained above,

for this application, the existence of multinucleate cells sub-

stantially degrades system performance.

To the best of our knowledge, the automatic annotation

of Leishmania infections in fluorescence microscopy has only

been addressed by two approaches. (1) Nogueira (11) detected

macrophages and parasites using adaptive threshold techni-

ques (12). Each region was regarded as a cluster of k nuclei or

parasites due to the overlapping of objects. Statistical features

such as the area and the center of mass were extracted from

the region and fed into a machine learning approach to pre-

dict the value of k for each region. A support vector machine

was trained for this task along with an expert system classifier.

A voting system was used to reconcile the predictions of the

classifiers. Finally, each region was declustered with Gaussian

mixture models (13) using k mixtures. (2) Leal et al. (14) used

the difference of Gaussians (DoG) filter to enhance objects at

the desired scale before detecting the macrophage nuclei and

the parasites. An iterative process combined with an adaptive

threshold method was used to tune the standard deviation of

the DoG filter to the scales of the macrophage nuclei and par-

asites in the image. Next, the blue and green channels were fil-

tered using the tuned DoG to obtain the locations of the

macrophage nuclei and parasites. These locations were used

not only as the results of the automatic annotation but also as

seeds of the watershed algorithm. This algorithm segmented

the cytoplasm of the macrophages to obtain a finer association

between macrophages and parasites. Both approaches have

drawbacks, and their performances are not high enough to be

considered reliable by parasitologists. Our work seeks to

improve these performances using contour analysis.

The rest of this article is organized as follows: Methods

section describes the proposed methodology. Results and Dis-

cussion section describes the optimization procedure of our

approach and compares its performance to related techniques.

Finally, conclusions are drawn in Conclusions section.

METHODS

Blob Detection

Let X be a bounded open set of R2. A gray scale image is

defined by I : �X�!R. The scale space theory, proposed by

Lindeberg (15), states that the Laplacian of Gaussian (LoG)

can be used to detect bright or dark circular shapes in I,

known as blobs. Lindeberg proved that local extrema of the

filter response to I correspond to the blobs centers with radius

Figure 1. Part of a fluorescence image, illustrating the most

important structures involved in the annotation of Leishmania

infections. The fluorescence technique highlights macrophage

nuclei in pink (the combination of the blue and red channels), the

parasites in green and the cytoplasm of macrophages in shades

of red. [Color figure can be viewed in the online issue, which is

available at wileyonlinelibrary.com.]
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r. The relation between r and r is determined by solving

LoG ðx; y; rÞ50 and yields r5
ffiffiffi
2
p

r.

To achieve an initial guess of cells locations, we used the

blob detection theory with some modifications. The detection

of blobs with radii r 2 frmin ; . . . ; rmaxg is carried out by

searching the local extrema of SS ðx; y; rÞ:

SS ðx; y; rÞ5LoG nðx; y;
rffiffiffi
2
p Þ � Iðx; yÞ ; r 2 rmin ; . . . ; rmaxf g;

(1)

where “�” denotes the convolution operation. The search of

local extrema along space and scale axes justifies using the

scale normalized LoG filter (LoGn). Instead of using a neigh-

borhood of constant radii (e.g., ½x; y; r�5½3; 3; 3�) to deter-

mine the local minima, we used a Heaviside function

Hðx; y; rÞ to determine the local minima:

Hðx; y; rÞ

5
1 if SS ðx; y; rÞ > SS ða; b; cÞ; 8fa; b; cg 2 fða; b; cÞ

0 otherwise
;

(

where fða; b; cÞ gives the discrete neighborhood, that is,

a 2 fx21; . . . ; x11gnfxg, b 2 fy21; . . . ; y11gnfyg, and

c 2 frmin ; . . . ; rmax gnfrg, and “n” denotes exception.

The search for local maxima is carried out over all possi-

ble radii, so that multiple detections at the same location are

avoided. In our procedure, blob detection was performed in

the blue and green channels, as they evidence the macrophages

nuclei and parasites body, respectively. Usually, the nuclei and

the parasites are brighter than the background, and their loca-

tions correspond to local minima of SS. To discriminate

between genuine and spurious minima, we used the image

background and a threshold e (refer to Performance Optimi-

zation section where the criteria used to estimate this parame-

ter is explained). Due to the bimodal distribution of channel

luminance, background detection was accomplished by an

adaptive threshold algorithm (12), yielding a function

B : X�!f0; 1g, where zero denotes the background. The min-

ima that do not lie in the background are normalized using

the min-max rule. The final set of detections is given by

M5fp5ðx; y; rÞ 2 R3 : Hðx; y; rÞ51;

BðSS ðpÞÞ 6¼ 0 � SS �ðpÞ < 2eg
; (2)

where SS� denotes the normalized value according to the min-

max rule. Figure 2a illustrates the blob detection results in a

fluorescence image of Leishmania-infected macrophages.

Cytoplasm Segmentation

Let Xi be a subset of X. For each blob in M a ROI is

extracted from the green channel with center at ðxi; yiÞ. The ROI

of the ith element of M is denoted by Ri : Xi�!R. To segment

the cytoplasm in Ri, a clustering algorithm maps each pixel to

one of k clusters. Therefore, the clustered ROI is given by

Ricðx; yÞ5arg min j jRiðx; yÞ2cj j: (3)

where cj are the centers given by the clustering algorithm. In

our experiments, the K-means (k 5 3) was used (refer to

Figure 2. Illustration of the main phases of the proposed method: (a) blob detection phase; (b) clustered region, R1c; (c) binary image B1c

obtained from R1c; (d) in green the cs(t) smoothed boundary and, in red, the set of concave regions; (e) separation of the cytoplasmic area;

and (f) final segmentation of the first blob. [Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Performance Optimization section for the proper justifica-

tion). The set of cytoplasmic areas are obtained with a binar-

ization step. Among the several cytoplasmic regions contained

in Ric, only the region associated with ith blob, that is, the

region that encloses ðxi; yiÞ, is maintained. Figure 2b depicts

the ROI extracted for the first blob and Figure 2c illustrates

the binarized ROI containing the region associated with the

first blob.

Contour Smoothing

The next step is the separation of overlapping cyto-

plasms, which is achieved based on the concave points of the

contour. The contour of the cytoplasmic region is given by

cðtÞ5ðxðtÞ; yðtÞÞ; t 2 f0; 1; :::; Lg; (4)

where L is the length of the contour. Due to the discrete

nature of c(t), it contains a substantial amount of high-

frequency information that cannot be misunderstood as con-

cave points. Therefore, elliptic Fourier descriptors (16) ðað:Þx ;

að:Þy Þ are used to parameterize the contour:

xsðtÞ5a0
x1
XN

n51

a2n21
x cos

�
2pnt

L

�
1a2n

x sin

�
2pnt

L

�

ysðtÞ5a0
y 1
XN

n51

a2n21
y cos

�
2pnt

L

�
1a2n

y sin

�
2pnt

L

�
:

(5)

To smooth the contour, only coefficients corresponding

to the lowest frequency components are used in the recon-

struction. We use N5L=f to obtain the smoothed contour

csðtÞ5ðxsðtÞ; ysðtÞÞ, where f is the number of contour points

used per frequency (refer to Performance Optimization sec-

tion). Small details are more evident on short length contours,

and the number of frequencies considered, therefore, increases

with respect to the contour length. Based on the smoothed

version, the concave points satisfy the following inequality:

jjc2
s ðkÞcsðkÞ
������!

3c2
s ðkÞc1

s ðkÞ
�������!

jj < 0; (6)

where c1 and c2 denote the contour points immediately

before and after c(k). Each set of connected concave points

defines a concave region. In the next phase, concave regions

should be paired to partition the cytoplasmic region.

The results of the contour smoothing phase are illus-

trated in Figure 2d, where the smoothed contour appears in

green. The original contour is presented in blue in Figure 2c.

Matching Process

In the majority of cases, the boundary of two overlapping

cytoplasms has a pair of concave regions which are hereinafter

referred to as true concavities. Oppositely, the concave regions

due to contour irregularities or noise are designated as false

concavities. Under visual observation, we noted that true con-

cavities often present a sharp concavity, justifying the follow-

ing measure:

wðnÞ5/Pn1Pn2Pn3; (7)

where Pn1, Pn2, and Pn3 are the initial point, the point with

highest curvature, and the final point of the nth region,

respectively, and / is the angle defined by the three points.

Regions with wðnÞ > W are considered as false concavities

and discarded from the matching step, where W is a predeter-

mined parameter in the range ½0; 2p� (refer to Performance

Optimization section). Regions with wðnÞ < W need to be

matched with the correct pair or left unmatched if they repre-

sent false concavities. We propose the use of concavities align-

ment to perform the region matching. The alignment of the

nth region to the mth region is given by:

aðn;mÞ5/vðnÞ
��!

Pn2Pm2
����!

; (8)

where / denotes the angle value in radians and vðnÞ
��!

is the

direction vector of the concavity defined as vðnÞ
��!

5Pn1Pn2
����!

1

Pn3Pn2
����!

. Pairs of overlapping regions are most times aligned,

that is, aðn;mÞ and aðm; nÞ � 0. Let A be a set of concave

regions. The cost of linking the nth region to the mth

region is proportional to aðn;mÞ and wðnÞ. Hence, we

defined the normalized cost of matching the nth and the

mth regions by:

MAðn;mÞ5w1

aðn;mÞ
p

1w2

wðnÞ
p

1w3

dAðn;mÞ
sup ðdAÞ

; (9)

and the cost of the full match by

jAðn;mÞ5
MAðn;mÞ1MAðm; nÞ

2
; (10)

where dA is the set of all distances between two regions in A

and w are the feature weights. We have defined w5½0:6 0:3

0:1� (refer to Performance Optimization section for the proper

justification). The regions are matched in a set of pairs

p5fða1; b1Þ; ða2; b2Þ:::; ðan; bnÞg, being ai and bi concave

regions contained in A. We determine p using the constraint

min ðjAnBÞ5jðai; biÞ; 8i 2 1; 2; . . .;

�
jAj
2

�� 	
; (11)

where B5fa1; b1; a2; b2; :::; ai21; bi21g and n denotes excep-

tion. Each pair is determined sequentially corresponding to

the match with minimum cost. This constraint yields the most

likely pairs in the first matches and the less likely in the last.

As kAðn;mÞ 2 ½0; 1�, pairs with costs higher than c (refer to

Performance Optimization section) are, therefore, removed

from p. Once p is determined, a set of frontiers is defined by

the regions ai and bi. Again, cytoplasmic regions not contain-

ing ðxi; yiÞ are discarded, yielding the final segmentation of

the cytoplasm associated with the blob detected at ðxi; yiÞ, des-

ignated hereinafter as Si. In Figure 2d, the concave regions of

the smoothed contour are marked as red, whereas the three

points that define the features gathered for each region are
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marked as yellow. The separation achieved by concave region

matching is illustrated in Figure 2e.

Figure 3 depicts a typical case of cytoplasm overlapping

and provides a visual justification for choosing aðn;mÞ and w
ðnÞ as it can be observed why these features are indeed dis-

criminant features in region matching.

Refinement and Association Process

The idea that true concavities of contour suggest the exis-

tence of multiple cells is the primary foundation of our

approach. Therefore, the contour must be convex to be

accepted as containing a single cell. We consider a contour

convex when wðnÞ > W for all the concave regions. This con-

straint decides if the region Si is ready to be associated with

ith blob or if a refinement process is required.

Macrophages refinement. In this phase, the region is reana-

lyzed by our matching process using adjusted values of W and

c. The value of W is decreased enabling a more flexible defini-

tion of convex shape. The value of c is increased enabling a

more flexible matching between the concave regions. These

adjustments ensure that region separation is completed or, in

other cases, ensure that no further separation is required con-

sidering the region convex.

Parasites refinement. The segmentation of parasites cyto-

plasm is improved by nuclei detection. Although the reduced

size of parasites nuclei hampers their visibility, we use them

whenever possible, as they guarantee the existence of a parasite.

Forced separation. In some particular cases cytoplasms

intersection originates a single concavity. To correctly handle

these cases, we have devised a separation method for regions

containing only one concavity. In this process, we use vð1Þ
��!

to

define the separation line.

Association process. When Si is considered convex, the

association process assigns the ith blob to the region Si. The

remaining blobs contained in Si are discarded, preventing false

detections. When the contour cannot be considered convex

after the refinement process, Si is also discarded.

RESULTS AND DISCUSSION

Materials

MATLAB was used in the development of the proposed

methods and in the assessment of our system performance on

a set of Leishamnia-infected images. In the performance evalu-

ation, we utilized a set of ground-truth data manually anno-

tated by parasitologists in the CellNote software (17). The

images were collected using an Axio Imager Z1 microscope

with a 203 magnification objective. Twenty-four images were

used as test data. It should be noted that all of these images

are separate from the data used during the development and

optimization of the proposed method. Although the number

of images used might initially appear small, it should be

stressed that these images contain approximately 6,500 macro-

phages and almost 7,000 parasites. Additionally, cells too close

to the boundaries of images were discarded, as we observed

that they were a frequent source of error.

An association between the automatic and the manual

annotations must be performed to correctly evaluate the sys-

tem performance, and we, therefore, devised an association

method based on the Hungarian algorithm (18). Let the

ground-truth annotations be denoted by Mg ðiÞ (macro-

phages) and Pg ðiÞ (parasites). Let the output of the automated

methods be denoted by MaðiÞ and PaðiÞ. The performance

was assessed by counting the number of automatic annota-

tions that were correctly assigned. As it is almost impossible

for the manual and automatic annotations for a given instance

to be placed at the exact same location, a more flexible per-

formance evaluation rule was devised. The cost of assigning

an annotation Pi to Pj was considered to be the Euclidean dis-

tance between Pi and Pj, such that C : Pa3Pg�!R. The goal

was to determine h such that
P

n2A Cðn; hðnÞÞ and jBj was

minimized, constrained by Cðn; hðnÞÞ < r; 8n 2 A. A and B

were partitions of Pa such that A5fa 2 Pa : f ðaÞ 6¼1g and

B5fb 2 Paut : f ðbÞ51g. This question was regarded as a lin-

ear assignment problem, and the Hungarian algorithm (18)

was used to solve it. The true positives, false positives (FP),

and false negatives were given by TP5jAj, FP5jBj,
FN5jPmannImgðhÞj, where j:j was the cardinality of a set.

To make our system available to the scientific commu-

nity, the MATLAB code of our method has been made avail-

able. The code can be accessed in our website (http://penhas.

di.ubi.pt/�jcneves/AutAnnot) or in the Supporting Informa-

tion of this article.

Performance Optimization

During the performance optimization phase, 15 images

(containing more than 4,000 macrophages and almost 4,500

Figure 3. Typical case of cytoplasm overlapping. The several fea-

tures involved in the matching process are illustrated in the con-

cave regions of the contour. [Color figure can be viewed in the

online issue, which is available at wileyonlinelibrary.com.]
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parasites) were used as the training set. The system perform-

ance was measured using the harmonic mean between preci-

sion and recall, usually denoted as the F-measure. Figure 4

depicts the system performance with respect to the value of

each parameter in macrophage and parasite detection. More-

over, the tests were conducted using two clustering algo-

rithms, the K-means algorithm (green lines) and a multilevel

threshold algorithm (19) (red lines). The results were

observed to be highly similar, but the K-means algorithm was

selected for its slightly better performance. The evolution of

the F-measure allowed us to determine the set of values that

maximized the performance of our approach. Table 1 contains

the values chosen based on the obtained results (Fig. 4).

To evaluate the effect of w in the system performance, we

tested some valid values of w, that is, w11w21w351, and rep-

resented them in a three-dimensional cube as illustrated in

Figure 5. The visual inspection of Figure 5 reveals the exis-

tence of three clusters, where the points A, E, H, I, and L

belong to the cluster with the highest performance. No signifi-

cant differences were found between the performances of these

points, but it is apparent that a has a greater impact on system

performance than do the other two features and that w has a

higher impact than dA. Based on these results, we chose

w5½0:6 0:3 0:1�.

Discussion

In this work, we proposed an automated pipeline for

locating macrophages and parasites in Leishmania-infected

images. Although the segmentation of the cytoplasm is not

required, we found it to be very useful to corroborate the

results obtained from the blob detection phase and to find the

association between macrophages and parasites more accu-

rately. Three illustrative cases are shown in Figures 6a, 6f, and

6g. The examination of Figure 6a1 suggests the presence of

only one cytoplasm and consequently only one cell. An

approach based only on blob detection would have failed, as

two nuclei are visible. However, cytoplasm segmentation can

overcome this issue, as shown by the results of our approach

in Figures 6a2, 6a3, and 6a4. The shape of the cytoplasm that

was obtained after the clustering phase confirms the existence

of only one cell, as there are no strong concavities to indicate

overlap. Therefore, the concavities in the smoothed contour

are indeed false concavities. Our matching process was able to

correctly classify these concavities, and no separation was per-

formed. The cytoplasm boundaries associated with the first

blob are presented in Figure 6a4. As explained above, our

association process discards the second and third blobs, as

they lie inside the region S1. Thus, our approach detects only

one cell. For comparison, Figures 6a5 and 6a6 present the

results obtained using the approaches of Leal et al. and

Nogueira, respectively. These approaches were unable to solve

this case correctly, as their detections were based only on the

nuclei.

Despite the advantages of segmenting the cytoplasm, the

procedure might provide incorrect segmentation and thus

incorrect detection in specific cases. Figure 6b illustrates one

Figure 4. Results obtained for macrophages detection and parasites detection using different configuration parameters. Results are given

for two different clustering algorithms (green lines correspond to k-means and red lines to a multilevel–multilevel threshold algorithm).

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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of these cases: noise between the two nuclei misled the cluster-

ing phase, and both macrophages were segmented as a single

cell, Figure 6b4. The methodologies of Leal et al. and

Nogueira, presented in Figures 6b5 and 6b6, respectively, were

able to solve this case correctly.

The cytoplasm is also useful in identifying the association

between macrophages and parasites. Figures 6f2 and 6g2 illus-

trate the associations obtained when the parasites are associ-

ated with the nearest macrophage, whereas in Figures 6f1 and

6g1, the cytoplasm of the macrophage is used to determine

which parasites are contained and to then perform the

associations.

The matching process is fundamental to our approach. It

performs better when the overlap is not very severe. When the

objects are very close, then separation may not be possible as

some important concave regions will be absent. Therefore, the

concave regions in the holes of Bic were also considered. Fig-

ure 6c illustrates an example, with a hole in Bic. The concave

regions of the hole are essential for the correct segmentation

of the cytoplasm associated with the 18th blob.

As explained in Forced Separation section, cytoplasm

intersection can produce only one concavity. Figure 6d illus-

trates one of these cases. Because pairing is not possible, our

matching process would perform no separation, yielding an

incorrect detection result. However, this problem is addressed

by the forced separation phase in our refinement process. Fig-

ure 6d4 illustrates the results obtained by the forced separa-

tion using the only true concave region of the contour.

Regarding the parasite nuclei detection described in Para-

sites Refinement section, Figure 6e shows one case where the

detection would have failed if the parasite nucleus were not

used. Our approach was only able to detect one blob in a

region where two parasites exist, as shown in Figure 6e1. Fur-

thermore, the separation phase treated the parasites as a single

cytoplasm. The blob detection performed after the cytoplasm

segmentation allowed us to rectify this case, as shown in Fig-

ure 6e4.

Table 2 summarizes the cases discussed in this section,

presenting the advantages and drawbacks of the compared

approaches.

Performance Comparison

The methods of Leal et al. and Nogueira were selected for

comparison because they specialized in the particular type of

images we were addressing. For both cases, the implementa-

tions were supplied by the original authors.

The three approaches were tested on 44 images, and their

performances were assessed as explained in Materials section.

Table 3 presents the precision, recall, and F-measure, with

their corresponding 95% confidence intervals. Concerning the

detection of macrophages, the results offer broad evidence for

the advantages of cytoplasm segmentation. Cells with multiple

nuclei are a source of FP, and this issue was not fully addressed

in the other approaches, which explains why our system

attained the highest precision. However, cytoplasm segmenta-

tion can be misleading in some cases, as explained in Discus-

sion section, leading the method to ignore certain nuclei that

in fact correspond to macrophages. This problem explains

why our approach presents a lower recall than Leal et al.’s

method. However, this deficiency is offset by the improvement

achieved in precision, as evidenced by the F-measure of our

system. Concerning parasite detection, no statistically signifi-

cant differences were observed in precision, as the true preci-

sions of the three approaches lie in very similar intervals with

Table 1. Optimal values for each one of the predefined parame-

ters of our approach, according to a training dataset of 15 images

e F KC W c

Macrophages 0.15 14 3 11
12

p 0.55

Parasites 0.2 12 3 11
12

p 0.65

Figure 5. The performance of our system with different values of w. Each configuration of w is represented by a point and its F-measure

is represented by the point color. Red tones denote a higher F-measure whereas green tones denote a lower F-measure. [Color figure can

be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 6. Most notorious cases, illustrating the advantages and drawbacks of our approach when compared with the other methods.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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a confidence of 95%. However, we outperformed the recall of

the other approaches due to the blob detection performed

after cytoplasm segmentation, as explained in Discussion sec-

tion. The system performance can be summarized by the F-

measure. Based on this metric, we conclude that our method-

ology presented a slight improvement in macrophage detec-

tion compared with the Leal et al. method, and we achieved a

substantial improvement in parasite detection.

Another important analysis is the level of correlation of

the results of the three tested algorithms. Because any eventual

correlation would be at most linear, the Pearson correlation

score was used. Regarding the detection of macrophages, cor-

relation scores of 0.07 and 0.04 of our method with the results

of Leal et al. and Nogueira were obtained, which were consid-

ered low. Regarding the detection of parasites, the observed

levels of correlation were stronger: 0.14 and 0.23 with the Leal

et al. and Nogueira methods, respectively. To determine

whether fusion is beneficial, we have evaluated the perform-

ance of the three approaches combined at the decision level.

Table 3 presents the results. The performance of the three

approaches combined is poorer than the results of our

method alone. The shortcomings of the other two approaches

explain the reduction in fusion performance.

Computational Cost

Regarding time complexity, our approach can be divided

into two main phases: (1) blob detection and (2) region

analysis.

The blob detection phase entails filter convolution and

the search for local maxima. The complexity of these opera-

tions is OðN log NÞ and O(N), where N represents the num-

ber of pixels in the image.

The region analysis phase refers to the set of proposed

methods that use blob detection to analyze the cytoplasmic

regions. For each region, the K-means algorithm (solved in

time Oðp7log pÞ (20), where p is the number of pixels to be

clustered) is used with our matching process, whose complex-

ity depends on the number of concave regions of the contour.

Therefore, the region analysis time complexity is

Oðmðp7log pÞÞ, where m is the number of blob detections.

To assess the average time required to analyze an image,

we used 100 different images. On average, our approach took

45 s to analyze an image, whereas Leal et al.’s approach

required 23 s, and Nogueira’s approach required 76 s.

CONCLUSIONS

In this article, we have presented an automated method

of counting macrophages and parasites in microscopy images

of Leishmania-infected macrophages. The foundations of our

approach are general enough to address several types of cellu-

lar images where the detection or separation of cells is

required. Twenty-four images were used to validate our meth-

odology. We achieved F-measures of 97.7 and 84.5% in mac-

rophage and parasite detection, respectively. The true system

performance lies in the interval ½97:6% ; 97:8%� for macro-

phage detection and in the interval ½83:9% ; 85:1%� for

Table 2. Summary of the principal cases where the compared approaches present advantages and disadvantages

METHOD ADVANTAGES DRAWBACKS

Nogueira’s approach Robust to irregular shapes of nuclei and

parasites

Unable to deal with multinucleate cells

Parasite detection does not take in account

nuclei

Association between macrophages and para-

sites based on simple distance

Leal et al.’s approach Association between macrophages and para-

sites based on cytoplasm

Unable to deal with multinucleate cells

Parasite detection does not take in account

nuclei

Our approach Robust to multinucleate cells Influenced by irregular cytoplasm shape

Association between macrophages and para-

sites based on cytoplasm

Parasite detection uses nuclei information

Table 3. Comparison between the results obtained by our approach, the two previously published methods and the fusion of the three

approaches

MACROPHAGES PARASITES

METHOD PRECISION (%) RECALL (%) F-MEASURE (%) PRECISION (%) RECALL (%) F-MEASURE (%)

Leal et al.’s approach 94.30 6 0.61 99.63 6 0.04 96.89 6 0.37 79.66 6 1.61 82.45 6 1.02 81.03 6 1.17

Nogueira’s approach 93.25 6 0.34 88.52 6 1.41 90.82 6 1.04 78.79 6 1.51 77.75 6 1.26 78.27 6 1.12

Our approach 98.16 6 0.18 97.23 6 0.11 97.69 6 0.09 81.55 6 1.09 87.62 6 0.93 84.48 6 0.60

Fusion 94.64 6 0.27 99.34 6 0.8 96.93 6 0.12 80.25 6 0.89 85.72 6 0.7 82.89 6 0.78

Precision, recall, and F-measure values are given with the corresponding 95% confidence intervals
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parasite detection, with a confidence of 95%. The achievement

of improved performance, especially in parasite detection,

allows us to conclude that the proposed method constitutes

an asset. In the future, we aim to add the concept of adaptabil-

ity to our approach, allowing it to learn how a subject per-

forms the annotation of a set of images and use this

information to corroborate the output of our system.
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