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a b s t r a c t 

The detection of abnormal events in surveillance footage remains a challenge and has been the scope of 

various research works. Having observed that the state-of-the-art performance is still unsatisfactory, this 

paper provides a novel solution to the problem, with four-fold contributions: 1) upon the work of Sultani 

et al., we introduce one iterative learning framework composed of two experts working in the weak and 

self-supervised paradigms and providing additional amounts of learning data to each other, where the 

novel instances at each iteration are filtered by a Bayesian framework that supports the iterative data 

augmentation task; 2) we describe a novel term that is added to the baseline loss to spread the scores in 

the unit interval, which is crucial for the performance of the iterative framework; 3) we propose a Ran- 

dom Forest ensemble that fuses at the score level the top performing methods and reduces the EER values 

about 20% over the state-of-the-art; and 4) we announce the availability of the ”UBI-Fights” dataset, fully 

annotated at the frame level, that can be freely used by the research community. The code, details of the 

experimental protocols and the dataset are publicly available at http://github.com/DegardinBruno/ . 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

The automatic detection of abnormal events in surveillance 

ootage is still a tough challenge for various reasons. Not only the 

ata acquisition environments are extremely diverse, with subjects 

maged from varying distances, under multiple poses and partially 

ccluded, but there is also a high complexity in resembling pat- 

erns among the different types of abnormalities . 

Considering the difficulties in obtaining sufficient amounts of 

abelled positive data (i.e., with abnormal events), the majority 

f the existing approaches tackle the problem with the simple 

ssumption of the existential of only one-class . This perspective, 

oined by Moya and Hush [12] , requires modeling exclusively the 

rdinary dynamics present in the normal scenarios and consider- 

ng any instance from distinct distributions (i.e., outliers) as an ab- 

ormality. In the generative model paradigm, [14] and [20] em- 

loyed generative adversarial networks (GANs [5] ) to learn gener- 

ting solely normal events and assuming its incapability of gen- 

rating non-analogous data since its reconstruction error will be 

igher than when normal events are used as input. Following this 

dea, [15] also applied GANs, but this time aiming to perceive nor- 

al pedestrian trajectories. Recently, [17] approached the problem 
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rom a weakly-supervision perspective: considering the exhaus- 

ive task of annotating at the frame level large video sequences, 

hey proposed one method under the multiple instance learning 

aradigm, handling data annotated at the bag (video) level, achiev- 

ng state-of-the-art performance. 

This paper describes an iterative learning framework based 

n the weakly and self-supervised paradigms ( Fig. 1 ), that con- 

istently advances the state-of-the-art performance in abnormal 

vents detection. We note that the proposed framework depends 

n one readily satisfiable condition: apart from having access to 

he weakly supervised set, an additional unlabelled set of videos 

hould also be available (e.g., taken from YouTube ). 1) Upon the 

ork of [17] , we use a weakly supervised dataset to infer a model 

hat distinguishes between normal/abnormal segments ( weakly su- 

ervised (WS) model). A novel term was added to the original loss 

unction to enforce the spread of response scores in the unit in- 

erval. This term is the key that enables the discrimination be- 

ween the most/less confidently classified instances; 2) we apply a 

ayesian classifier responsible for filtering out the instances, com- 

ng from an unlabelled dataset, that are deemed to be the most re- 

iably classified; 3) we consider that the high-belief instances are 

ost likely to be correctly classified and employed these as the 

nput of a second expert operating under the segment level ( self- 

upervised (SS) network); 4) with the responses resulting from the 

S, enable us to select the highly reliable videos that extend the 

earning set of the second iteration of our WS model. 

https://doi.org/10.1016/j.patrec.2021.01.031
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.patrec.2021.01.031&domain=pdf
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Fig. 1. Key insight the proposed method: we start from a weakly supervised clas- 

sifier working at the video level (slightly changed with respect to [17] ) that feeds a 

Bayesian classification module, responsible to select the most confidently correctly 

classified instances. These elements constitute the input of a self-supervised clas- 

sifier (working at the block/segment level) that provides the instances used in the 

next iteration of the weakly supervised model. 
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The rationale is to repeatedly augment (based on unlabelled 

ata) the learning sets used by the WS and SS experts. This way, 

he iterative process autonomously selects the novel instances to 

e added to the learning sets of both experts, being repeated while 

mprovements in performance (in a validation set) are observed. A 

ohesive pictorial view of the whole framework is given in Fig. 2 . 

The remainder of this paper is divided into four sections as fol- 

ows: Section 2 presents an overview of the most relevant works in 

he scope of abnormal event detection. Details and specifications 

f the proposed approach are provided in Section 3 . In discuss in 

ection 4 the obtained results of our experiments and the conclu- 

ions are given in Section 5 . 

. Related work 

As in many other computer vision tasks that evolve spatiotem- 

oral analysis, the use of three-dimensional convolutional net- 

orks has become state-of-the-art. Various works (e.g., [8,9,18] ) 

eport that 3D convolutions provide output volumes that simul- 

aneously preserve the temporal and spatial information of the in- 

ut. For video classification purposes, [9] trained several networks 

ith large-scale datasets, reporting the advantages yielding from 

using both kinds of information at different stages of the process- 

ng pipeline. Tran et al. [18] proposed a video encoding scheme 

ased on 3D ConvNets, coming out with a highly effective descrip- 

or that has been used as the main source for several abnormal 

etection techniques (e.g., [4] and [17] ). 

For abnormal events detection purposes, [3] trained a spatial 

eature extractor followed by a temporal auto-encoder that is ex- 

lusively fed with normal events. Using the spatial features of ev- 

ry ten consecutive frames to feed the temporal encoder, they used 

onlinear activation functions to minimize the reconstruction error 

n normal videos. The rationale is that, upon an abnormal scenario, 

he auto-encoder should not be capable to reconstruct the scene, at 

east in an effective way considering that it has never seen abnor- 
51 
al situations during the learning phase. Subsequently, following a 

imilar strategy, [15] employed GANs to better train the discrimi- 

ator expert. [6] considered improved trajectory features from the 

ork of [19] , that were fused to histograms of oriented gradients 

HOG) and histograms of optical flows (HOF) features and used 

s input to an auto-encoder. Based on the concept of conditional 

ANs [7] (cGANs), [14] extracted the optical-flow from subsequent 

rames and trained two networks, both composed of a conditional 

enerator and discriminator, with the purpose of generating frames 

rom optical-flow and generating optical-flow from frames. 

Considered the state-of-the-art, [17] proposed a method to 

earn anomalies through leveraging weakly labeled normal and ab- 

ormal videos under a multiple instance learning (MIL) paradigm. 

ividing each video into non-overlapping temporal segments, each 

ideo represents a bag , where the temporal segments are used as 

nstances. Since the specific information of a video containing an 

nomaly (positive bag) is not provided, the implemented loss func- 

ion uses the maximum score in each bag to learn a ranking model, 

roducing low scores and high scores for negative and positive 

nstances, respectively, and improving the state-of-the-art perfor- 

ance significantly. 

. Proposed method 

In a consistent manner, the notation adopted is as similar as 

ossible to the used by Sultani et al. [17] . V i 
k 

denotes the i th seg-

ent of a bag (video) B k , where k ∈ { ′ a ′ , ′ n ′ } refers respectively

ideos with abnormal and normal events. B 

(t) = {B 1 , . . . , B n w } de-

otes a learning set of n w 

videos at iteration t (used as learning 

ata by the WS expert), and V (t) = {V 1 , . . . , V n s } is the learning set

omposed of n s segments, used by the SS expert. 

.1. Weakly-supervised network 

The proposed WS model is based on [17] . Under the MIL 

aradigm [1] , the idea is to consider the input videos as bags , an-

otated in a binary way: positive bags are videos that at some point 

ave an abnormal segment, while negative bags assuredly contain 

nly normal events. Considering that: 1) anomalies typically occur 

nly for a short time; and 2) videos are sequences of segments, the 

cores should vary smoothly between consecutive segments, Sul- 

ani et al. proposed the following MIL ranking loss function: 

 ( B a , B n ) = max 

(
0 , 1 − max 

i ∈B a 
f 
(
V i a 

)
+ max 

i ∈B n 
f 
(
V i n 

))

+ λ1 

1 ©︷ ︸︸ ︷ 
(n −1) ∑ 

i 

(
f 
(
V i a 

)
− f 

(
V i +1 

a 

))2 + λ2 

2 ©︷ ︸︸ ︷ 
n ∑ 

i 

f 
(
V i a 

)
, (1) 

here f 
(
V i a 

)
and f 

(
V i n 

)
denote the prediction scores of abnormal 

nd normal segments, respectively, and max takes into account all 

ideo segments in each bag. In this formulation, with terms 1 ©
nd 2 ©, the temporal smoothness and sparsity are enforced, re- 

pectively. 

Throughout our experiments, we immediately noticed that the 

oss function defined in (1) produced extremely peaked distribu- 

ions either for normal / abnormal scores, turning hard to discrimi- 

ate the most reliable correctly classified instances. Being heavily 

ata-driven, these kinds of (neural-based) models are known to of- 

en produce output distributions peaked around the ground-truth 

alues, which for classic classification tasks is even positively re- 

arded. Second, it was also imperative to ensure that the scores 

or the most evidently normal / abnormal segments were the clos- 

st to the extremes of the unit interval, and spread as much as 

ossible among intermediary values all the doubtful observations. 
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Fig. 2. Cohesive pictorial view of the iterative learning framework introduced in this paper. Two kinds of components are used, represented by the blue and red colors: 

firstly, [17] ’s method was adapted in order to spread its output scores over the unit interval, which will facilitate the filtering by the Bayesian framework regarding the most 

reliably classified elements from the unlabelled data set and feed those to a self-supervised learning network operating under the segment level. Then, performing a cycle, 

the prediction scores by this expert are employed by a second Bayesian framework responsible for filtering the videos to be used in the following generation of the first 

framework. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Histograms comparison between the spread of f (V i u ) over the unit interval, with respect to the applicability of the novel term in the loss function. Sultani et al.’s 

loss is illustrated in the left plot, while the right plot regards the values provided from the loss function proposed in this work. The vertical axis is plotted in log scale for 

visualization purposes. 
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herefore, to achieve a better distribution score, an entropy-based 

erm was added to the basis loss function, given by: 

(B u ) = −
t ∑ 

i =1 

P 
(

f (V i u ) 
)

log 

(
P 
(

f (V i u ) 
))

, (2) 

here B u 
def = {B a ∪ B n } describes all the videos in the batch, and the

ensity of the f (V i u ) scores are estimated by P 
(

f (V i u ) 
)
. The unit

nterval was divided into a fixed number of bins with equal width, 

ounting the number of values in each bin: 

 i = 

n ∑ 

j=1 

� { i −1 
n ≤ f (V j u ) ≤ i 

n } , ∀ i ∈ { 1 , . . . , t} , (3)

here � . represents the indicator function. Values were normal- 

zed to have its summation equal to one, after obtaining the b i 

tatistic, i.e., estimating a distribution probability: b ∗
i 

= 

b i ∑ 

j b j 
. In 

ractical terms, P 
(

f (V i u ) 
)

was approximated by making use of the 

 

∗
i 

values. The major impact of the novel entropy term is demon- 

trated in Fig. 3 , with the vertical axis denoting the b ∗
i 

values per

in and the horizontal axis providing the codomain of the classi- 

er. 

Incorporating (2) to the loss function (1) and also taking 

nto account the regularization terms that minimizes the model 
52 
eights, our final objective function becomes: 

 (W) = l ( B a , B n ) − λ3 

3 ©︷ ︸︸ ︷ 
H(B u )) + λ4 ‖W‖ F , (4) 

here W denotes the model weights and 3 © avoids peaked den- 

ity values near the extremes of the unit interval for both nor- 

al / abnormal events. 

As noted earlier, the rationale of (4) is that more dispersed and 

ess peaked distributions of prediction scores will result in higher 

ntropy values. Despite being less frequent to obtain scores close 

o 0 and 1, the crucial issue is to assure that only the most un-

oubtedly normal / abnormal instances reach those values close to 

he extremes, being the key feature in the selection of instances, 

hich are iteratively inserted into the next generation of learning 

ets, as a result of the Bayesian framework. 

.2. Self-supervised network 

Following a standard classification paradigm, the SS network 

perates under the segment level, which receives C3D [18] fea- 

ure vectors of 4,096 components representing segments of a video 

16 frames/each), predicting the abnormality , i.e., the likelihood of a 

egment containing an abnormal event. As demonstrated in Fig. 4 , 

ith a 3-layer fully connected architecture, this expert is com- 

osed of 512 units in the first layer, 32 units in the second one, 

nd 1 unit as the output layer. Employing ReLU [13] as the acti- 
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Fig. 4. Structure of the self-supervised (SS) network that discriminates between 

normal / abnormal segments. The C3D [18] descriptor is used as feature encoder, that 

feeds a three layer fully connected model. 
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ation function for the first two layers and a sigmoid activation in 

he output neuron, the learning process of the model is driven by 

 binary cross-entropy loss. 

.3. Bayesian classifiers 

For each classified instance, among the unsupervised data, the 

ayesian classifiers allow obtaining its degree of belief. The foun- 

ation of this approach is that only the extremely high believed 

nstances should be included in the next generation of the learning 

et, in a self-supervised fashion for either the WS and SS networks. 

wo Bayesian classifiers are embedded in our method’s framework 

n order to achieve self-supervision: 1) the weak one ( P w 

) respon- 

ible for filtering out the segments that should be used in the SS 

raining, based upon the received scores produced by the WS ex- 

ert; and 2) the strong counterpart ( P s ) in charge of selecting the

ideos that should be used in the WS expert’s next-generation, ac- 

ordingly to the received scores produced by the SS model. 

 w 

(
y | f (V i ) ) = 

P 
(

f (V i ) | y ) P (y ) 

P 
(

f (V i ) 
) (5) 

here y ∈ { ′ a ′ , ′ n ′ } represent the abnormal / normal classes. We ap-

lied a Gaussian kernel density estimator, with Scott’s rule [16] for 

andwidth selection, with the aim of approximate more accurately 

he conditional densities P 
(

f (V i ) | y ). Due to the existence of a sig-

ificant imbalance regarding the number of abnormal instances 

ompared to normal ones, the priors were empirically adjusted to 

 ( ′ a ′ ) = P ( ′ n ′ ) = 0 . 5 . 

Fig. 5 illustrates the comparison of the posteriors per class, 

ccording to the histograms in Fig. 3 , which regards the Sultani 

t al.’s loss and ours when the entropy term was also considered. 

he abnormality scores are represented by the red lines, and the 

ormal ones by the blue lines. The immediate impact of our ap- 

roach is to attain a more evident dispersion near the extremes 

f the unit interval between the degrees of belief for both classes, 

articularly in the upper extremity. 

Formally, the next generation of the SS learning set will include 

he i th segment according to the rule: 

 

(t+1) def = {V i ⇐⇒ P w 

(
y | f (V i ) ) ≥ τ1 } , y ∈ { ′ a ′ , ′ n 

′ } , (6)

.e., given a segment’s prediction score, it is selected if its posterior 

or either the ’n’/’a’ classes is higher than a threshold. 

Regarding the self-supervision of the WS expert (step 3 in 

ig. 1 ), the strong Bayesian classifier receives the video segments 

cores and should decide at the video (bag) level, globally classify- 

ng the video as normal / abnormal : 

 s 

(
y | f (B 

i ) 
)

= 

P 
(

f (B 

i ) | y ) P (y ) 

P 
(

f (B 

i ) 
) (7) 
53 
here the abnormal / normal classes are denoted as y ∈ { ′ a ′ , ′ n ′ } . The

oor levels of performance of simple fusion rules (such as max or 

prod) in obtaining the degree of belief per video, led us to the ap- 

lication of a simple feed-forward classification module with a 4- 

ayer fully connected architecture designed with 256 : 196 : 128 : 1 

or estimating P s 
(
y | f (B 

i ) 
)
. This network is trained with the SS ex-

ert’s result scores from the validation set in each generation to 

e able to adapt itself according to the SS model’s evolution. Fi- 

ally, similarly to the weak Bayesian classifier, only the videos that 

resent the extreme degrees of belief are inserted into the next 

eneration of the learning set: 

 

(t+1) def = {B 

i ⇐⇒ P s 
(
y | f (B 

i ) 
)

≥ τ2 } , ∀ i ∈ B 

(t) , y ∈ { ′ a ′ , ′ n 

′ } , (8)

In accordance with the performance observed in a validation 

et, the thresholds τi were adjusted empirically. 

. Experiments and discussion 

.1. Datasets, baselines and empirical evaluation protocol 

Our experiments were conducted in three datasets: 1) specif- 

cally concerned about the detection of fighting events in surveil- 

ance footage, we mined 1,0 0 0 videos (collected from Youtube and 

iveLeak ), where 216 contain a real-life fighting scenario, and the 

emaining 784 contain only normal events. This dataset was man- 

ally annotated at the frame level and is freely available. It con- 

ains video data from both outdoor/indoor environments, with 

ubjects appearing under completely uncontrolled poses, lighting 

onditions, at very different scales, and often under severe oc- 

lusions. 2) the UCF-Crime [17] , which contains 1,900 untrimmed 

urveillance videos, including 13 types of abnormalities and nor- 

al scenarios, providing video level annotation (learning) and at 

he segment level (test). It is currently the most extensive pub- 

icly available data source for abnormal events detection. It was 

ollected from the web and contains highly heterogeneous data, 

ollected at different light spectra (near-infrared and visible), vary- 

ng scale, perspectives, distances, and in indoor/outdoor environ- 

ents. 3) the UCSD dataset [11] , acquired by a stationary camera 

ounted at an elevation, overlooking pedestrian walkways. In this 

et, the crowd density in the walkways varies, ranging from sparse 

o very crowded. Normal video contains only pedestrians, while ab- 

ormal events are due to either the circulation of non-pedestrian 

ntities or due to anomalous pedestrian motion patterns. This one 

s the less heterogeneous of the three sets tested, with all video 

les being collected by the same device, using near-infrared light, 

nd subjects appearing at similar (high) scales and perspectives. 

Each video was resized to 360 × 640 pixels, with a normal- 

zed frame rate of 30 fps, and trimmed into sub-videos with a con- 

tant length of 16 s, and corresponding annotations manually ad- 

usted. The UBI-Fights set was split into three disjoint subsets: 80% 

for learning), 5% (for validation purposes) and 15% (for the test 

hase), while for the UCF-Crime and UCSD sets we used the default 

earning sets, with 50% of the test set (randomly chosen) for val- 

dation purposes. Next, for every 16 frame-clip (i.e., one segment) 

or the three datasets, we employed the sixth fully-connected layer 

FC6) of the C3D network [18] in order to extract the spatiotempo- 

al descriptors. Regarding the parameterization of our solution, we 

mpirically set τ1 = τ2 = 0.99 ( Fights ) and 0.999 ( UCF-Crime and 

CSD ), λ1 = λ2 = 8 × 10 −5 , λ3 ∈ [0 , log ( ep +1) 
30 ], regarding the train-

ng epoch ep, and λ4 = 1 . 

Concerning the baselines, five methods, regarding both one- 

lass and binary classification, were considered to represent the 

tate-of-the-art: [3,6,14,17,20] , all described in Section 2 . Apart 

rom these, a quadratic kernel SVM operating under the single- 

lass paradigm was also tested, which was fed by the same C3D 
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Fig. 5. Effect of the novel term added to the [17] loss function and compared between the posteriors P 
(
y | f (V i ) ) estimated by the Bayesian classifier with the application of 

the Sultani et al. original formulation (at left) and ours (at right). 
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eature vectors as our WS and Sultani et al. models. Three perfor- 

ance measures are reported: the decidability index ( d ′ ), the area 

nder the curve (AUC), and the equal error rate (EER). 

In order to ensure a fair evaluation between the state-of-the-art 

nd our proposal, taking into consideration that one premise of our 

ethod is the availability of unsupervised data, 50% of the ground- 

ruth labels were disregarded from the learning sets and consid- 

red those subsets as unlabelled . Therefore, we also removed these 

nstances from the learning sets of the other approaches, with the 

urpose of using rigorously the same amount of labeled data for 

he learning phase. 

All our experiments were conducted according to a 

ootstrapping-like strategy that is widely adopted in computer vi- 

ion/pattern recognition experiments (e.g. [10] ). Having n instances 

vailable, the bootstrap randomly selects (without replacement 

n our case) 0 . 9 n of them, creating a sample composed by 90%

f the available data. This sample is further disjointly divided 

nto two subsets: one for learning purposes and the other for 

erformance evaluation. The bootstrapping-like draw was repeated 

0 times per data set, creating 10 subsets of each one. Next, 

he experiments (model learning and performance evaluation) 

ere conducted in each subset, which enables to obtain the av- 

rage and standard deviation performance values at all operating 

oints. 

.2. Results and discussion 

.2.1. State-of-the-art comparison 

The immediate observation was the extremely poor perfor- 

ance that single-class techniques achieve in this type of prob- 

em, in conformity with the conclusion drew by Sultani et al.. 

hese techniques fail in an almost catastrophic way to appropri- 

tely establish a boundary between normality and abnormality 

n test data, particularly in cases of outdoor environments. From 

ur observation, the heterogeneity of the expected inputs in those 

atasets is extremely high, not forgetting that these frameworks 

ltimately require tremendous additional amounts of training data 

o become minimally effective. 

Concerning our approach, Fig. 6 provides the learning curve of 

ur solution, i.e., the evolution in WS/SS models performance, with 

espect to the iteration. For the UBI-Fights and UCF-Crime datasets, 

he SS expert achieves its maximum AUC value at the end of the 

hird and second iteration, respectively, while the WS model ob- 

ained its optimal point at the forth iteration with a clear margin 

n the UBI-Fights set, and in the UCF-Crime only by a residual dif- 

erence. With regard to the results in the latter set, the WS expert 

erformance is justified by the considerably more difficult task of 

xtracting simultaneously consistent patterns among 13 different 
54 
ypes of abnormalities, attaining practically similar results as the 

ultani et al. method in all iterations. 

The UCSD set provided the best performance values, both for 

ur proposal and the Sultani et al. baseline. In this case, the first 

eneration of the WS and SS models attained results clearly worse 

han the baseline performance, which was only surpassed by the 

ubsequent generations of both models, when working with addi- 

ional amounts of data. Overall, this dataset can be considered as 

elatively easier than the remaining ones, as a result of containing 

ata of a single scene, acquired by a stationary device, and in rel- 

tively homogenous lighting conditions. Here, the observed failure 

ases were in most circumstances due to some ill-definition of an 

bnormal event, for some anomalous pedestrian trajectories poorly 

epresented in the learning set. 

Fig. 7 compares the ROC curves observed for all methods, in 

he UBI-Fights (left plot), UCF-Crime (central plot) and UCSD (right 

lot) sets. Overall, our solution achieved clearly better results than 

ny competitor, with the exception of a small region of the per- 

ormance space in the UBI-Fights dataset, where Sultani et al.’s 

ethod got results to ours. In an interesting way, the performance 

mprovements were more obvious in the UCF-Crime set than in the 

BI-Fights , despite that our method was developed taking into ac- 

ount the specific detection of fighting scenarios. In all cases, Sul- 

ani et al. was the runner up proposal, which corresponds to the 

esults previously reported. Nevertheless, the noticed gap between 

he reported results in [17] and here enables the conclusion con- 

erning the extremely high sensitivity of this approach with re- 

pect to the amounts of learning data used. The remaining ap- 

roaches were considered to fail in a disastrous way of detecting 

bnormal events, at least with these amounts of data for learn- 

ng purposes, and with a extremely environmental heterogeneity 

s considered in these experiments. 

The application of single-class learning techniques appears 

o be appropriate exclusively when providing learning data that 

eatures highly similar lighting conditions and camera pose in 

he learning and test set, which happens in the UCSD dataset. 

n this case, even though our SS proposal got again the best 

erformance among all techniques, [17] and [3] techniques at- 

ained similar effectiveness in some regions of the performance 

pace. 

Regarding the solution described in this paper, the experiments 

upport its effectiveness, in particular when the initial data set (at 

teration 0) represent the major data variation factors that the sys- 

em should handle. In cases where that set is not representative 

f the typical data variation factors (i.e., lack of specific lighting 

onditions, or particular perspectives/scales), obvious decreases in 

erformance were observed (with AUC values reducing over 5%). 

n our view, this is due to the lack of generalisation capabilities of 
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Fig. 6. Performance improvements in the validation set of our frameworks regarding its iteration, observed in each dataset. The SS expert is denoted with the red points and 

the WS expert with the blue points. As our main baseline, Sultani et al.’s performance is represented with the continuous black lines. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. ROC curves comparison obtained by the seven approaches considered in our experiments, concerning the UBI-Fights (left plot), UCF-Crime (center plot) and UCSD 

(right plot) datasets. 
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he Bayesian classifiers that then face difficulties in classifying the 

ata with novel data variation factors as ”normal/abnormal”. 

.2.2. Ensemble classifier 

Upon our state-of-the-art comparison, we noticed that the 

ested methods have very different typical failure cases, which sug- 

ests that a meta-classifier ensemble would possibly maximize the 

mprovements due to fusion. Hence, we measured the linear cor- 

elation between the responses produced by the eight methods for 

he UCF-Crime and Fights datasets, which were considered the most 
55 
ppropriate for our purposes due to the heterogeneity of the data 

hey contain. Results are shown in the left plot of Fig. 8 , with an 8

8 matrix describing the Pearson correlation coefficients between 

ur WS and SS models, Sultani et al. (S), Hasan et al. (H), Ravan- 

akhsh et al. (R), Wang et al. (W), Chong and Tay (C) and the SVM

lassifier (V). The upper diagonal provides the correlation coeffi- 

ients for the UCF-Crime set, while the corresponding Fights results 

re provided in the lower diagonal of the matrix. The levels of cor- 

elation in both sets were approximately the same, even though 

lightly higher values were observed for the Fights set. 
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Fig. 8. At left: linear correlation (Pearson coefficient) among the predictions produced by the proposals analyzed. At right: performance improvements for the UBI-Fights 

and UCF-Crime sets when employing a Random Tree ensemble, which fuses at the score level the output of the WS/SS/ [17] experts (continuous lines) concerning the best 

individual expert (dashed lines). 

Fig. 9. Qualitative analysis of our results.Top rows: examples of the Arson and Stealing classes, where the most significant improvements of our solution with respect to 

Sultani et al. were observed. Bottom row: example of the Road Accidents case, where no relevant improvements were attained. 

Fig. 10. Gap in performance typically observed between indoor and outdoor environments. The dynamics of outdoor conditions augment considerably the challenges in 

obtaining smooth responses. 
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The low levels of linear correlation motivated us to exploit the 

mprovements in performance due to fusion. We used a Random 

orest model [2] to fuse at the score level the responses pro- 

ided by the best-performing algorithms (i.e., our SS/WS mod- 

ls and [17] ). The results are provided at the right plot in Fig. 8 ,

nd turn evident a slight improvement in effectiveness with re- 

pect to the best individual expert, attaining AUC values of about 

.819 ( Fights ) and 0.769 ( UCF-Crime ). The final results are sum- 

arized in Table 1 , providing the AUC, decidability (d’), and EER 

alues for all the methods tested individually and also for the 
nsemble. s

56 
In terms of a qualitative comparison between our solution and 

he baselines, we concentrated our analysis in the UCF-Crime data 

et and in the Sultani et al.solution. In this case, improvements 

ere maximally evident for the Arson and Stealing cases, that are 

llustrated in Fig. 9 . In opposition, no significant improvements of 

ur solution with respect to the baseline were observed for the 

oad Accidents class. 

As a concluding remark, even though the proposed method 

and the ensemble) consistently advance the state-of-the-art, there 

s still an evident gap between the performance attained in indoor 

cenarios (where lighting conditions are controlled) and outdoor 
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Table 1 

Performance summary of the proposed method with respect to the state-of-the- 

art. The final rows in the Fights and UCF-Crime datasets provide the performance 

of an ensemble Random Forest that fuses at the score level the responses of our 

SS/WS models to [17] . 

Method AUC d’ EER 

UBI-Fights 

[6] 0.528 ± 0.003 0.194 ± 0.007 0.466 ± 0.002 

[14] 0.533 ± 0.003 0.147 ± 0.001 0.484 ± 0.002 

[20] 0.540 ± 0.002 0.164 ± 0.008 0.475 ± 0.002 

[3] 0.541 ± 0.003 0.059 ± 0.001 0.480 ± 0.001 

Binary SVM Classifier 0.556 ± 0.003 0.128 ± 0.012 0.443 ± 0.003 

[17] 0.787 ± 0.002 0.738 ± 0.011 0.294 ± 0.002 

Proposed Method 0.819 ± 0.001 0.986 ± 0.008 0.284 ± 0.001 

Ensemble 0.846 ± 0.001 1.108 ± 0.008 0.216 ± 0.001 

UCF-Crime 

[6] 0.573 ± 0.001 0.167 ± 0.006 0.424 ± 0.001 

[14] 0.642 ± 0.001 0.423 ± 0.005 0.376 ± 0.001 

[20] 0.539 ± 0.001 0.104 ± 0.004 0.472 ± 0.001 

[3] 0.532 ± 0.002 0.138 ± 0.006 0.484 ± 0.001 

Binary SVM Classifier 0.604 ± 0.001 0.377 ± 0.003 0.441 ± 0.001 

[17] 0.668 ± 0.001 0.523 ± 0.004 0.375 ± 0.001 

Proposed Method 0.744 ± 0.001 0.764 ± 0.005 0.305 ± 0.001 

Ensemble 0.769 ± 9e −4 0.890 ± 0.005 0.266 ± 9e −4 

UCSD 

[6] 0.591 ± 0.011 0.309 ± 0.040 0.425 ± 0.014 

[14] 0.582 ± 0.011 0.139 ± 0.019 0.443 ± 0.006 

[20] 0.545 ± 0.011 0.113 ± 0.039 0.473 ± 0.009 

[3] 0.660 ± 0.010 0.264 ± 0.030 0.343 ± 0.009 

Binary SVM Classifier 0.590 ± 0.012 0.310 ± 0.043 0.441 ± 0.008 

[17] 0.758 ± 0.009 0.811 ± 0.059 0.302 ± 0.012 

Proposed Method 0.809 ± 0.010 1.112 ± 0.060 0.252 ± 0.011 
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nvironments, where the scores typically are much more irregular 

han in the indoor setting. This problem is illustrated in Fig. 10 and 

hould motivate further developments in this technology. 

. Conclusions and further work 

In this paper, we described a solution for abnormal events 

etection in surveillance footage that fuses the weakly and self- 

upervised learning paradigms. We introduced an iterative learn- 

ng framework composed of two experts (based upon the weakly 

nd self-supervised paradigms) feeding data to each other, where 

wo Bayesian frameworks infer the most likely correctly classified 

nstances from each expert. Such frameworks filter the input in- 

tances of the weakly and self-supervised experts and iteratively 

rovide additional data to each other. More importantly, having 

bserved that the proposed experts provide scores that are poorly 

orrelated to the values generated by Sultani et al. [17] , we used a

andom Forest model that fuses at the score level the outputs of 

he top-three best performing models. The final ensemble outper- 

orms the state-of-the-art in both datasets, reducing the EER from 

5% ( UCF-Crime ) to 24% ( UBI-Fights ). As an additional contribution, 

he UBI-Fights dataset is fully annotated at the frame level and 

ublicly available 1 for the research community. The source code of 

he method and the datasets are freely available and can be used 

o support further developments in the challenging problem of ab- 

ormal events detection. 

As possible directions for further work, one direction will be the 

nalysis of the properties of the initial generation of the data set, 

o maximize effectiveness and improvements in subsequent itera- 

ions. Also, other options could be used as a replacement of the 

ayesian classifiers, such as the creation and mapping of latent 
1 http://socia-lab.di.ubi.pt/EventDetection 

57 
odes into low-dimensional manifolds, from where simple rules 

ased in Euclidean distance could be used to select the most con- 

dently classified normal / abnormal instances. 
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