
Software Reliability and Security

The Formal Methods perspective

Simão Melo de Sousa

SMDS @ LISP Reliability and Security Ciência 2017 1

https://www.di.ubi.pt/~desousa

an appetizer

what a nice car!

Ford F150 Raptor V6 Turbo

450 HP, 100 km/h in 6,1 seg, 2580 Kg
SMDS @ LISP Reliability and Security Ciência 2017 2

on a totally different matter

industry average: about 15 - 50 bugs per
1000 lines of code

(from Code Complete - Steve McConnell)

fortunately this ratio tends to go under this
lower bound in industry areas considered
sensitive or critical

SMDS @ LISP Reliability and Security Ciência 2017 3

returning to our appetizer

Ford F150 Raptor V6 Turbo
450 HP, 100 km/h in 6,1 seg, 2580 Kg

contains more than 150 millions of lines of code!
(source - link)

this is an actual trends in the automotive industry
SMDS @ LISP Reliability and Security Ciência 2017 4

https://www.eitdigital.eu/news-events/blog/article/guess-what-requires-150-million-lines-of-code/

predictable outcome

(source - link)

SMDS @ LISP Reliability and Security Ciência 2017 5

https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/

consequences of bugs

bugs can cost

• lives (e.g. a bug in a pacemaker)
• money (e.g. a bug in a transaction system)
• business, customer trust (e.g. a bug in a voting system, or a third
party business system)

• missions (e.g. a bug in the control system of a satellite)
• privacy (e.g. a bug in a sensible information system)
• etc...

SMDS @ LISP Reliability and Security Ciência 2017 6

the economical cost of bugs

(source: link)

SMDS @ LISP Reliability and Security Ciência 2017 7

http://insight.jbs.cam.ac.uk/2013/financial-content-cambridge-university-study-states-software-bugs-cost-economy-312-billion-per-year/

the actual picture, on the reliability side

we are living times that demand mass production of software and requires
software everywhere

but producing high-quality software is a serious matter and require
strong skills

software making tools (e.g. programming languages, etc.) classically
establish a compromise between efficiency and safety/security

this compromise usually tends to favor efficiency

SMDS @ LISP Reliability and Security Ciência 2017 8

on the reliability side: the actual picture

this compromise usually tends to favor efficiency

• trust on the assumption that the programmer knows very well
what he is doing, he is in charge of the safety and security (e.g. safe
memory management)

great power comes with great responsibility

• from the programming language research community perspective, this
trade-off is nowadays an anachronism: we can have both!

SMDS @ LISP Reliability and Security Ciência 2017 9

the actual picture, on the security side

a computer/software system is only as secure/reliable as its weakest link

generally speaking, WE (users, programmers, clients etc.) are this link...

but, putting aside the social engineering perspective, the security of
computer systems is now much less challenged by poor cryptographic
mechanisms ...

... than by software failures

SMDS @ LISP Reliability and Security Ciência 2017 10

claim

every bug is an attack waiting to be exploited

=⇒ software security seen as a special case of software reliability

SMDS @ LISP Reliability and Security Ciência 2017 11

claim.... as seen on a reliable social medium

SMDS @ LISP Reliability and Security Ciência 2017 12

who is the scariest? the bug or Terminator?

SMDS @ LISP Reliability and Security Ciência 2017 13

Vint Cerf about the internet (of things)

(source : link)

Robots won’t take over humans, but buggy
software might, according to the Google exec
known as the “father of the Internet.”
(...)
“I’m actually not as worried about artificial
intelligence and robots as I am with software and
robots,” he said during an event Monday at the
Italian embassy. “If there are bugs in the software
and some device is operating autonomously with
regard to that software, the bugs can cause bad
things to happen.”
(...)
People aren’t careful enough about updating their
software – especially when such software is
increasingly running heating and ventilation,
among other functions – and also making sure the
software they’re updating doesn’t include malware.

“The big headline I worry about is, ‘100,000
Refrigerators Attack Bank of America,’ ” he said.

SMDS @ LISP Reliability and Security Ciência 2017 14

https://en.wikipedia.org/wiki/Vint_Cerf
http://www.nextgov.com/emerging-tech/2016/04/vint-cerf-buggy-software-greater-threat-rogue-robots/127808/?oref=NextgovFB

Bruce Schneier about the internet (of things)

(source : link)

Truism No. 1: On the internet,
attack is easier than defense.

Truism No. 2: Most software is
poorly written and insecure.

Truism No. 3: Connecting everything to each other
via the internet will expose new vulnerabilities.

Truism No. 4: Everybody has to stop the best
attackers in the world.

Truism No. 5: Laws inhibit security research.
SMDS @ LISP Reliability and Security Ciência 2017 15

https://en.wikipedia.org/wiki/Bruce_Schneier
http://nymag.com/selectall/2017/01/the-internet-of-things-dangerous-future-bruce-schneier.html

What researchers at LISP are doing on this matter?

• raise awareness on these issues
• on the process/methodology side: better requirement engineering, better

software methodologies that make reliability and accountability a central
concern

• creating new or enhancing:

• programming languages, with better safe programming support
• (static) advanced type systems
• validation and verification tools
• static analysis tools
• programming environments
• runtime safety/security mechanisms

SMDS @ LISP Reliability and Security Ciência 2017 16

theoretical limits of Validation and Verification tools

Semantic specification: a rigorous specification of expected behavior (or expected
properties, or set of correct executions)

Rice theorem (1953)

Considering a Turing complete language, any non trivial semantic specification is
not computable

• computable means “can be found/calculated by a computer”

• intuition: there is no hope for a “finding all bugs” algorithm starting with only the
program code

• therefore all interesting properties are not computable (buffer/arithmetic
overflows, information leakage, abscence of crash, etc.)

SMDS @ LISP Reliability and Security Ciência 2017 17

Towards partial solutions

there is no hope for programming tools that ensure the absence of all bugs

solution: solve a weaker problem

several compromises can be made:

• provide interactive tools that take advantage of human ingenuity to
find/avoid bugs: expressiveness, but loss of automation

• understand the theoretical limits and try to provide tools that go as close as
possible to it: focus and automation, but incompleteness (i.e. innocuous
programs can be erroneously tagged as “possibly problematic” - the converse
does not occur!)

nevertheless, interesting results have been reached

SMDS @ LISP Reliability and Security Ciência 2017 18

do all these have a practical impact? ... one example

(source: link)
SMDS @ LISP Reliability and Security Ciência 2017 19

https://www.quantamagazine.org/20160920-formal-verification-creates-hacker-proof-code/

Reliability and Security @ LISP, very few examples

SMDS @ LISP Reliability and Security Ciência 2017 20

Certified Operating Systems or Virtual Machines
Java Card in COQ (JavaCard = multiple applications programmable smart
cards like Cartão de Cidadão, eID, mobile SIM card, credit cards, etc.)

Formal verification of the Java-Card Platform in COQ

1. a specification and prototype of JavaCard Execution Platform and

2. the proof that (a R. Milner quote)

Well-typed (JavaCard) Programs cannot go wrong

3. A provably correct implementation of the ByteCode Verifier (BCV), a crucial
security module based on static program analysis.

Upgradable Highly Critical RealTime Operating System

CPU consumption bounds certificate mathematically designed and carried with its
associated critical code

this certificate can be safely verified and used as a basis for safe upgrade policies (for
instance, in satellites or robotic space missions)

SMDS @ LISP Reliability and Security Ciência 2017 21

PROSINAL - EFACEC with UBI/LISP

• goal : CENELEC SIL4 Railway Signaling System for the Metro do
Porto - linha Aeroporto Sá Carneiro

• challenge: Software layer design, validation and certification (SIL4 -
the highest) using Formal Methods in a very restrictive normative
context (CENELEC). The first of its nature, to the best of our
knowledge

• auxiliary Mission: set-up and training of a (formal) Validation team in
a industrial context

• extension of the Scade toolset to deal with Function Block based HW
• a (pencil and paper proved) translation methodology and
• a (HW level) testing framework with tests generated from SCADE

models – allow for a better confidence on the translation process

(Highlight: First Signaling System in the world! formally and completely
proved from scratch that reach the new CENELEC SIL4 certification)

SMDS @ LISP Reliability and Security Ciência 2017 22

