
Towards a Formally Verified Kernel Module

Joaquim Tojal1,2, Carlos Carloto1, José Miguel Faria2, and Simão Melo de
Sousa1,3⋆

1 University of Beira Interior,Dept. of Computer Science, Covilhã, Portugal
2 Critical Software SA.,Coimbra, Portugal

3 University of Porto, Artificial Intelligence and Computer Science Laboratory
(LIACC-UP), Porto, Portugal

Abstract. In this article we present the design by contract approach to
formal verification of an industrial real-time kernel using VCC (Verified
C Compiler) and Frama-C tools. The annotations were directly inserted
into the source code of an industrial kernel module, xLuna, and verified
automatically. VCC was also used to reason about concurrency issues in
a preemptable and real-time environment. In addition we describe some
particular methodological aspects of these two verifiers. These are the
first results towards a Formally Verified Kernel.

1 Introduction

Almost every computer system depends directly on the operating systems be-
havior. As such, having kernel code that is proved to be correct is a goal that
researchers and industrial companies have attempted to achieve. Large amounts
of low-level implementations like operating system core is obviously a perfect
and challenging target for formal verification. The interest in formally verify-
ing realistic and industrial low-level code and obtaining the highest standards
of safety like Common Criteria EAL7 has grown significantly in recent years.
In this work we target precisely this goal taking a modular approach to for-
mally verify a real industrial real-time operating system kernel which was not
designed with formal verification in mind. The kernel targeted is a particu-
lar interrupt manager of xLuna real-time kernel for embedded systems built
by Critical Software,SA. For verification, we use Microsoft Research Verified C
Compiler(VCC) and Frama-C tools to reason about functional correctness, con-
currency and safety properties of xLuna kernel. The specifications are based in
Hoare-style pre- and post-conditions inlined with the real code.

The remaining of this paper is organized as follows: Section 2 show the xLuna
architecture and some particular design aspects. Then, in section 3, we gave an
overview toolchain and verification methodologies for both, VCC and Frama-
C. Section 4 exposes the detail design of xLuna IRQ manager and respective
verification approaches. At the end, sections 5 and 6 give some conclusions that
led us to future improvements and related work to the subject.

⋆ This work was partially funded by Fundação para a Ciência e Tecnologia (FCT) and
Program POSI and the project RESCUE (PTDC/EIA/65862/2006)

INForum 2010 - II Simpósio de Informática, Lúıs S. Barbosa, Miguel P. Correia
(eds), 9-10 Setembro, 2010, pp. 503–514

2 xLuna

xLuna [17] is a microkernel based on the RTEMS [18] Real-Time Operating
System with the ability to run a GNU/Linux Operating System [19], provid-
ing therefore a runtime environment for real-time (RTEMS) and non-real-time
(Linux) applications. xLuna was designed to supports ESA’s LEON SPARC pro-
cessor [17] with the main goal of extending the RTEMS kernel in order to enable
a safely Linux execution without jeopardizing aspects of reliability, availability,
maintainability and safety. Its general architecture is shown in Figure 1. The

...

Linux Task

NRT1

Linux kernel

NRTm

HRTnHRT1 ...

RTEMSRTEMS

xLuna core

Memory

Manager
IRQ

Manager

ISC

Manager

Device

Drivers

Hardware

Legend:

Linux subsystem

(user mode)

RTEMS subsystem

(privileged mode)

Fig. 1. xLuna architecture

Linux subsystem runs as an unprivileged RTEMS task and in a different mem-
ory partition. This provides spacial partitioning, guaranteeing a safe isolation
between the non-real-time (NRT) and hard-real-time (HRT) subsystems. xLuna
provides four main modules:

– Memory manager : enforces the isolation requirements between RTEMS and
Linux and memory protection of Linux kernel from NRT user processes.

– Interrupt Manager (IRQ): connects interrupts of the real hardware to the
Linux kernel (which does not have access to them) and provides services.

– Inter-System communication (ISC): for bidirectional communication between
HRT and NRT tasks.

– Device Drivers : for other hardware virtualizations required (e.g. timer).

In the following section we describe the important aspects of the verification
tools used on xLuna’s kernel.

3 Methodology and Tools

3.1 Verified C Compiler (VCC)

VCC [11] is an automatic verification tool for concurrent C that is being de-
veloped by Microsoft Research, Redmond, USA and European Microsoft In-

504 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

novation Center (EMIC), Aachen, Germany. VCC utilizes annotations based in
Hoare-style pre- and post-conditions closely attached to source code. That is, the
annotations are mixed into the codebase rather than within blocks of commented
(for the C compiler) specifications. Even so, the annotated C code can still be
compiled with any C compiler through conditional compilation: If a regular C
compiler is called, a special VCC flag is disabled and the annotations and speci-
fication code are preprocessed and transformed into empty strings. The concept
of complete code with annotations is the same used in JML [16] for Java code
or SPEC# [13] for C# programs.

Verification Toolchain VCC is fully integrated with the well known Microsoft
Visual Studio IDE, providing a familiar environment to programmers and mak-
ing the correct use of the VCC toolchain very simple. Three main steps are made
by VCC when trying to verify an annotated C program: (i) VCC translates anno-
tated C code into BoogiePL (an intermediated verification language), (ii) Boogie
translates BoogiePL into first-order predicate formulas (verification conditions)
and (iii) Z3 tries to solve them and if it finds a proof then the program is correct
according to the specifications.

VCC Annotations As in standard design by contract approach to partial
correctness, the pre- and post-conditions inserted into a C function constitute
a contract between the function and a function caller, guaranteeing that if the
function starts in a state that satisfies the precondition then the postcondition
holds at the end of the function. To express and reason about specifications, VCC
uses clauses such requires, ensures, result or writes representing, respectively,
pre- and post-conditions, function return value, and frame conditions which limit
what the function is authorized to modify. VCC also supports loop invariants
for reasoning about loop behavior and termination.

Ownership, Type Invariants and Ghost Code VCC memory model en-
sures that objects (pointers to structures) do not overlap in memory keeping a
typed and hierarchical view of all objects (Spec# ownership model). This own-
ership machinery is applied as a ghost transformation behind every structure in
the program. Each type has a related ownership control object in specification
code (ghost code), only visible to VCC and providing a bridge between implicit
specification code and VCC annotations in the real program. For the sake of
brevity the transformation process is not detailed in this paper (a more detailed
account can be found in [21], available at http://www.di.ubi.pt/~release).
Ghost code can also exist as explicit specification functions, objects or variables
only seen by VCC for verification purposes. Structures can be also annotated
with invariants related to their ownership behavior or to their own fields.

VCC implicitly lets an object own its representation and writing the object
allows writing its ownership domain. However, updating an object requires a
special wrap/unwrap protocol to transfer ownership domains (see Figure 2).

Towards a Formally Verified Kernel Module INForum 2010 – 505

Thread-owned

mutable

open

Object can be

modified

Object can be

modified

Invariant holdsInvariant holds

unwrapunwrap wrap

wrap owner

wrapped nested

unwrap owner
closed

unwrap owner

Fig. 2. VCC wrap/unwrap protocol

Defining an hierarchical structure gives VCC a tree view of the system. One
object can only have one owner and threads own themselves. Figure 2 shows
that in a specific ownership domain each object should be open or close inside of
the thread domain and close outside the thread domain. In a sequential fashion
an object can only be updated when it is mutable and must return to a safe
state performing some operations required by the wrap/unwrap protocol. The
explanation of these states is given bellow.

– Mutable. After creation the object is open and owned by me() which rep-
resents the current thread. In this state the thread is allowed to modify the
object and prevents other threads interference.

– Wrapped. Wrapping the object (wrap) requires its invariant to hold. The
reverse transition (unwrap) assume object invariants.

– Nested. Closed objects can be added to (or removed from) another objects
ownership via set owns(), set closed owner() (wrap owner) or unwrap owner
operations using giveup closed owner(). The reverse transition (unwrap)
assume object invariants.

3.2 Frama-C

Frama-C is a platform dedicated to the analysis of software source code written
in C. It gathers a series of different tools with several static analyses techniques
and a deductive verifier in a single collaborative framework. Its collaborative
approach allows different analyzers to build upon the results previously com-
puted by other analyzers. Frama-C is an extensible framework. It is open source
software and is organized with a plugin architecture. It contains several ready-
to-use plugins and new plugins may be built and use the results or functionalities
provided by the existing plugins. A common kernel centralizes information and
conducts the analysis. Plugins interact with each other through interfaces defined
by the kernel.
Currently, Frama-C provides several lightweight analyzers (e.g., “Metrics”, “Call-
graphs”, “Users”, “Constant Folding”, and “Occurrence”), semantic analyzers

506 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

(e.g., “Functional Dependencies”, “Slicing”, and “Impact”), the sophisticated
“Value Analysis” plugin, which automatically computes variation domains for
the variables of a program, and deductive verification, through the “Jessie” plu-
gin. Jessie is the Frama-C plugin that enables design by contract development
of C programs. The contracts are written in the ANSI/ISO C Specification Lan-
guage (ACSL) [15]. The generated verification conditions can be submitted to
external automatic provers such as Simplify, Alt- Ergo, Z3, Yices, and CVC3.

4 Verification of xLuna IRQ Manager

Verifying low-level code that was not implemented with formal verification in
mind and adapting the verification methodology to that implementation is a
non-trivial task. When reasoning about xLuna as a formal verification target
its own architecture suggests that a modular approach should be taken in order
to achieve an overall correctness proof. One of the most critical and crucial
modules of xLuna is the IRQ manager, since it has to catch and process all
interrupt requests needed for proper system functionality. It thus constitutes an
interesting target for formal verification and was the subject of our study. Yet,
the different modules are considerably dependent on each other. Moreover, kernel
code is highly dependent of machine assembly instructions, which causes issues
for the verification task since VCC does not interpret assembly language. For
this reason, it was decided, at this stage, to assume that machine instructions
and inlined assembly are correct. All IRQ module dependencies were studied to
build proper code isolations and abstractions were made to fit the verification
methodology.

4.1 IRQ Design

Following xLuna architecture, the Linux kernel is running as an unprivileged
(user-mode) RTEMS task and thus, it does not have direct hardware access. The
main purpose of the IRQ manager is to serve as a bridge connecting the Linux
subsystem to hardware interrupts. This enables catching incoming hardware
interrupts required by Linux kernel, system calls made by Linux processes, or
xLuna system calls made by Linux kernel. Hardware interrupts or software traps
are both called events that are inserted into an Event Queue to be sent to their
handlers.
Interrupts are filtered by a dispatcher function which is responsible to insert them
into the event queue. Once there are events in the queue they should be processed
by the IRQ manager through a monitor task which calls the respective Linux
handlers or xLuna services (see Figure 3). Events can be treated synchronously
or asynchronously. In the queue structure there can be only one sync event at
a time. This event is a request caused by the running instruction and must be
processed synchronously. Async events are accumulated in the queue according
to their event type (e.g., TT ISC RTEMS TO LX is the special trap type 0x21
for inter systems communication that is inserted as an async event). As shown in

Towards a Formally Verified Kernel Module INForum 2010 – 507

IRQ Manager

IRQ Monitor Task

Event queue

Sync

IRQ Entry

Event code

AsyncRelated data

Dispatcher

Legend:

Event dispatching Process events Send to handler Event data

Fig. 3. Interrupt request manager

Figure 3, both Sync and Async events have an associated data structure which
contains the data needed for event handlers and the interrupt/trap code.

In the next sections, we describe the approach taken for verifying the treat-
ment of each event inserted in the queue and the correct usage of data structures
evolved in this flow.

4.2 VCC Verification Approach

We can drive the verification methodology used, through the analysis of an IRQ
manager function used to insert a synchronous event into the queue. As already
mentioned, VCC enforces a ownership model to guarantee a consistent and typed
view of all objects (e.g., pointers to data structures) which ensures for instance
that objects of the same type and different addresses do not overlap in memory
[12].

Sync

event

Async

events

Event queue Lock

Queue container

Protect the queue

Legend:

Ownership link

(owner)

Protected object

Fig. 4. VCC event queue ownership

508 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

When xLuna interrupt manager is initialized, VCC considers all objects as mu-
table. Therefore ownership relations must to be configured at the program entry
point (irq init() function) to prevent further object updates without complying
with the ownership protocol. This setup ensures at IRQ manager boot time that:

– The queue is typed and protected at the end of the initialization;
– The queue is the owner of all sync and async events;
– When the queue is closed its invariant and the invariants of all embedded

types hold.

With this ownership setup in mind, the following example illustrates the addi-
tion of a sync event to the queue. The code is a simplified version of the original
function.

1 int ev en t qu eu e in s e r t s yn c (struct i r q e n t r y ∗ i r q claimp (c))
2 always (c , c l o s ed (&QueueLock))
3 r e q u i r e s (nested(&event queue))
4 r e q u i r e s (i rq−>data != NULL)
5 r e q u i r e s (! VCC SPEC FUN is asyn trap (i rq−>event))
6 r e q u i r e s (t h r e ad l o c a l (i r q))
7 reads (i r q)
8 wr i t e s (&event queue)
9 en su re s (&event queue . sync event == i r q)

10 en su re s (nested(&event queue))
11 {
12 //xLuna a s s e r t f unc t i on
13 ASSERT(irq−>event) ;
14 a s s e r t (typed(& irq−>event)) ;
15 s p a r c d i s a b l e i n t e r r u p t s () ;
16 spec (VCC SPEC FUN sparc disable interrupts (spec(&QueueLock

) spec (c)) ;)
17 // unwrap/wrap p ro to co l
18 unwrap(&event queue) ;
19 unwrap(&event queue . sync event) ;
20 // i n s e r t sync event (f o r vcc we can now change the queue)
21 event queue . sync event = ∗ i r q ;
22 // r e v e r s e wrapping
23 wrap(&event queue . sync event) ;
24 wrap(&event queue) ;
25 s p a r c e n ab l e i n t e r r u p t s () ;
26 spec (VCC SPEC FUN sparc enable interrupts (spec(&QueueLock)

spec (c)) ;)
27 return 0 ;
28 }

Listing 1.1. Insert synchronous event function in VCC

As preconditions one tells to VCC that this function will start in a state where:

– event queue is owned by an object and thus its invariant holds (line 3);

Towards a Formally Verified Kernel Module INForum 2010 – 509

– sync events always have data required by event handlers to work properly
(line 4);

– event code must be within sync event bounds (line 5);
– irq points to an object that is local to the running thread (lines 6) which is

only allowed to read the same irq object (lines 7). On the other hand, per-
missions to change event queue are necessary. The writes clause guarantees
that only event queue will be updated (line 8).

To respect the VCC ownership protocol one needs to unwrap (lines 18, 19)
the queue and its embedded IRQ entry, change it and then wrap in reverse
order (lines 23, 24). When an object is unwrapped, VCC implicitly assume its
invariant and assert it when wrap occurs. In the example, this ownership flow
will guarantee the second postcondition (line 10), whereas the first one ensures
that the queue sync event was updated correctly (line 9).

Lines 2, 15, 16, 25, 26 and the ghost claim parameter (line 1) are related with
concurrency verification and are explained in next section.

4.3 Concurrency Verification

The above described approach is suitable for sequential code. Nevertheless, the
kernel has to guarantee that executions are made without interference or un-
expected kernel behavior. In a concurrent real-time kernel, not only user pro-
cesses are preemptable but also kernel processes may be subject to stringent
scheduling policies or interrupts. In xLuna’s implementation, in order to achieve
non-interference updates of critical regions, low-level functions (implemented
in assembly language) that disable and enable back interrupts are used. The
required update steps are performed while interrupts are disabled. In our veri-
fication approach, such assembly functions are represented by VCC ghost code
instructions.

Lock approach Disabling interrupts gives to the running thread non-interference
execution steps before interrupts are enabled again. One can think about this
low-level access policy as a mandatory lock and use an abstract ghost imple-
mentation suitable for VCC methodology. When interrupts are disabled we call
a VCC ghost specification function (see Listing 1.1 line 16) that will transfer
ownership domain to the running thread and prevent preemption while inter-
rupts are enable (line 26). This allows reasoning about implementation steps in
a sequential fashion. Still, one needs to ensures that the lock is not destroyed or
deallocated: in VCC we can model this issue through a claim. The gray part of
Figure 4 shows the ownership configuration for ghost code and states that the
Queue Container ghost structure is the owner of the lock and the latter owns the
queue. The container has two invariants saying that (i) the object protected by
the lock is the queue and (ii) it is the owner of the lock. In VCC this knowledge
can be passed to functions through ghost parameters (claims). In the example,
the ghost claim parameter and the clause in line 2 guarantee that:

510 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

– c has an implicit invariant ensuring that the container remains closed (con-
tainer invariant holds)

– the always clause tells VCC to enforce the fact that if the container is closed,
the lock is also closed and thus it can never be destroyed.

4.4 Frama-C Verification Approach

The main focus of the Frama-C verification was the safety and functional issues
of xLuna IRQ Manager. Before that, the initial stage comprised the evalua-
tion and tailoring of the original code: since, at the moment, Frama-C does not
support all the C language, some functions had to be changed to resolve some
incompatibilities. The main topics covered were:

– Pointer dereferencing: the code of the xLuna IRQ Manager has a significant
number of global variables and pointers. As such, pointer dereferencing was
one of the most relevant aspects;

– Arguments : analyze if the function arguments are correctly introduced and
do not prevent the functions from terminating;

– Loops : analyze the body of the loops and build the necessary contracts (loop
variants and loop invariants) to prove that each loop terminates

To illustrate the Frama-C verification approach, we consider the same example,
i.e., the function that inserts synchronous events into the event queue.

1 /∗@ requ i r e s \ v a l i d (i r q) ;
2 r e qu i r e s (i rq−>data !=NULL) ;
3 ensures \ r e s u l t==0 | | \ r e s u l t==(−1) ;
4 @∗/
5 int ev en t qu eu e in s e r t s yn c (struct i r q e n t r y ∗ i r q)
6 {
7 int l e v e l ;
8 ASSERT(irq−>event) ;
9 i f (even t queue has sync even t ()) return −1;

10 //@ a s s e r t \ v a l i d (i r q) ;
11 //@ ensures even t queue . sync even t == ∗ i r q ;
12 event queue . sync event = ∗ i r q ;
13 return 0 ;
14 }

Listing 1.2. Insert synchronous event function in Frama-C

The contracts included in this function are explained as follows:

– Line 1: This contract is a precondition: in order to the function finishes
it needs a valid irq. It is required that irq pointer is allocated in a safely
memory location.

Towards a Formally Verified Kernel Module INForum 2010 – 511

– Line 2: Also a precondition. In this contract we say that the data cannot be
null.

– Line 3: A postcondition that guarantees that the output of the function is
either 0 or -1. (It is 0 if the event is inserted; if not the output is -1.)

– Line 8: This ASSERT is not part of the contracts that we build. It is an
original xLuna C statement.

– Line 10: An assertion. It strengthens the precondition on line 1. It is right
before the place where is absolutely necessary that irq is not NULL.

– Line 11: The postcondition of the function.

For this function, it were generated 15 proof obligations; all of them proved with
success by the automatic prover.

The proof obligations were generated by why, and Alt-ergo was the automatic
prover utilized to discharge them. In the total of the project, it were generated
373 proof obligations., all of them automatically proved by Alt-ergo. The results
are analyzed in the next section.

5 Conclusions and Future Work

In this paper we have presented the design by contract approach to formal verifi-
cation of a realistic system using different verification tools for a feasibility study.
One can instantly conclude that the annotations burden in VCC is greater than
Frama-C, mainly due to the ghost code and type invariants supported by VCC.
In the overall IRQ model (about 1k LOC C) were inserted almost ten times
more VCC annotations than Frama-C. Safety properties such as correct array
index, arithmetic overflow and pointer deference or null pointers were verified in
most parts of the IRQ manager. All inside function updates were surrounded by
frame conditions and all parameters validated, type invariants hold with respect
to the VCC ownership protocol. As said before VCC memory model guarantees
that objects do not overlap in memory. At this time, pre- and post-conditions
were added to approximately 80% of IRQ manager C code. The rest of the IRQ
C code is related to switching and Linux stack manipulations. The concurrency
verification approach guarantees sequential execution in a preemptable environ-
ment and it is proved to be suitable to VCC methodology [20,10] and also used
in PikeOS. However, assembly language in kernel code can not be ignored when
aiming to an overall system verification. One possibility to extend VCC work
is the construction of a ghost model of the underlying hardware and assembly
language, and connect the specifications made to the ghost model.

After this work we are able to do an analysis of the platform Frama-C. It is a
platform that is being developed and in the last months it has been in constant
evolution. In this moment it is a platform that is good to work with. The inte-
gration of the ACSL, Jessie and the why platform makes Frama-C a very good
platform to work in the verification of programs. However it has some problems
that the developer needs to improve. Some of those problems are:

– Frama-C has limited support for function pointers. This is a problem when
used on the type of code found in an operating system module.

512 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

– It currently lacks clear error messages describing what and where the prob-
lem is.

– Its implementation is not stable yet (it is an academic tool), it crashes often.
This mostly happens when there are pointers present in the code to be
verified.

– Some annotations cause crashes of Frama-C or its subsystems.

With Frama-C, in the functions that we analyze, the results on the automatic
prover was a success, and all the proof obligations of those function were checked
with success. As said before, some code of a few functions were removed because
of Frama-c incompatibilities, and other functions weren’t analyze because of
completely incompatibility with Frama-C. We have verified about 80% of the
IRQ Manager code. So as the Frama-C development proceed it will be possible
to reintroduce the code removed and to analyze the functions that we couldn’t
analyze with the actual version of Frama-C. After the work done in the verifi-
cation of the xLuna IRQ Manager we should be able to proceed to other xLuna
modules. As long as the xLuna modules aren’t too incompatible with the actual
version of Frama-C the verification of those modules may be possible. However
with the evolution of Frama-C it may be possible to verificate all of xLuna
modules.

6 Related Work

Prove correctness of low-level software implementations is a goal pursued for
decades, the early work on formal verification of operating systems comes from
1973-1980 with the Provably Secure Operating System (PSOS) [1]. Later in
seventies UCLA Data Secure Unix (DSU) [2] was the first approximating the
modern microkernel architecture. The proofs were guided based on first-order
predicate calculus and 20% of the code have been proven correct. Other early
work is the Kernel for Isolated Tasks (KIT) [3], KIT address the problem of
verifying properties for process isolation in a multi-tasking environment. PSOS,
DSU and KIT were pioneers in attempts to large scale software verifications
and inspired some techniques still used nowadays. Verified Fiasco (VFiasco) [4]
project started in 2001 with a experiment using SPIN model checker to verify a
small version of the Fiasco inter-process communication. After this experiment
the project moved on using the PVS theorem prover to formalize a subset of
C++ to reason about Fiasco implementations. SPIN model checker was also
used in other kernels such as Fluke [5], RUBIS [6] or HARMONY [7]. The L4
micro-kernel has also been a target for formal verification projects, the most re-
cent in seL4 project [8]. seL4 was concluded at the end of 2007 with a resulting
small (8700 LOC C and 600 LOC assembly) microkernel for run in ARM archi-
tecture. The OS design team used Haskell and Isabelle/HOL for fast prototyping
and specification proofs. More within the scope of this paper are the VerisoftXT
project which uses VCC verification methodology to prove correctness of Mi-
crosoft Hyper-V Hypervisor [9] and SYSGO PikeOS microkernel [10].

Towards a Formally Verified Kernel Module INForum 2010 – 513

References

1. P. Neumann, R. Feiertage: PSOS Revisited. Proceedings of the 19th Annual Com-
puter Security Applications Conference (2003) 208

2. B. Walker, R. Kemmerer, G. Popek: Specification and verification of the ucla unix
security kernel. Commun. ACM (1980) 118-131

3. W. Bevier: A verified operating system kernel. Report 11, Computational Logic Inc.,
Austin, Texas (1987)

4. M. Hohmuth, H. Tews: The vfiasco approach for a verified operating system. In 2nd
ECOOP Workshop on Program Languages and Operating Systems (2005)

5. P. Tullmann, J. Turner, J. McCorquodale, J. Lepreau, A. Chitturi, G. Back: Formal
methods: A practical tool for os implementors. Proceedings of the 6th Workshop on
Hot Topics in Operating Systems (1997)

6. G. Duval, J. Julliand: Modeling and verification of the rubis microkernel with spin.
In Proceedings of the First SPIN Workshop (1995)

7. T. Cattel: Modelization and verification of a multiprocessor real-time OS kernel.
Proceedings of the 7th IFIP WG6.1 International Conference on Formal Description
Techniques VII (1995)

8. G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock, P. Derrin, D. Elkaduwe,
K. Engelhardt, R. Kolanski, M. Norrish, T. Sewell, H. Tuch, S. Winwood: seL4:
Formal verification of an OS kernel. In Proc. 22nd ACM Symposium on Operating
Systems Principles (SOSP) (2009) 207-220

9. D. Leinenbach, T. Santen: Verifying the Microsoft Hyper-V Hypervisor with VCC.
Refinement Based Methods for the Construction of Dependable Systems, number
09381 in Dagstuhl Seminar Proceedings (2010) 104-108.

10. C. Baumann, B. Beckert, H. Blasum, T. Bormer: Ingredients of Operating System
Correctness. Embedded World 2010 Conference (2010)

11. E. Cohen , M. Dahlweid , M. Hillebrand , D. Leinenbach , M. Moskal , T. Santen
, W. Schulte , S. Tobies: VCC: A Practical System for Verifying Concurrent C.
Theorem Proving in Higher Order Logics (2009)

12. E. Cohen, M. Moskal, W. Schulte, S. Tobies: A Precise Yet Efficient Memory Model
for C. 4th International Workshop on Systems Software Verification (2009)

13. M. Barnett, K. Leino, and W. Schulte: The Spec# programming system: An
overview. In CASSIS 2004, LNCS vol. 3362, Springer (2004)

14. Frama-C Web page: http://frama-c.com/
15. J. Burghardt, J. Gerlach, K. Hartig, J. Soto, C. Weber: ACSL By Example: To-

wards a Verified C Standard Library (2010)
16. G. Leavens, and Y. Cheon: Design by Contract with JML. JML tutorial (2006)
17. P. Braga, L. Henriques, M. Zulianello: xLuna:eXtending free/open-source reaL-

time execUtive for oN-bord space Applications. Small Satellites Systems and Ser-
vices The ESA 4S Symposium (2008)

18. RTEMS web page: http://www.rtems.com/.
19. Snapgear Embedded Linux web page: http://www.snapgear.org/.
20. E. Hillebrand, D. Leinenbach: Formal Verification of a Reader-Writer Lock Im-

plementation in C. 4th International Workshop on Systems Software Verification
(2009) 123-141

21. J. Tojal. Towards a Formally Verified Microkernel using the VCC Verifier. Master’s
thesis, University of Beira Interior, Portugal (2010)

514 INForum 2010 Joaquim Tojal, Carlos Carloto, José Faria, Simão Sousa

