
Towards a Worst-Case Execution Time
Calculation Platform with Certificate Production

Diogo Fialho, Nuno Gaspar and Simão Melo de Sousa
RELEASE - Reliable And Secure Computation Group

University of Beira Interior
Covilhã, Portugal

{dfialho, nmpgaspar, desousa}@di.ubi.pt

Jorge Sousa Pinto
DI/CCTC

University of Minho
Braga, Portugal

jsp@di.uminho.pt

Rogério Reis
DCC-FC & LIACC
University of Porto

Porto, Portugal
rvr@ncc.up.pt

Abstract—In real-time systems, time constraints must be
satisfied in order to guarantee that deadlines will be met. The
calculation of each task’s worst-case execution time (WCET)
is a prerequisite the for schedulability analysis, and hence
of paramount importance for real-time systems. This can
be difficult if the underlying hardware architecture possesses
features like caches and pipelines.

In this position paper we present our ongoing work towards
an Abstraction-Carrying Code based platform for the derivation
of the WCETs. Our approach has as starting point an extension
of the C programming language with annotations that express
the intended time behavior. Moreover, by placing these annota-
tions directly into the source code, we are also able to express
valuable informations for the subsequent WCET analysis, such
as infeasible paths and loop bounds. Being one of the most
used architectures in embedded systems, our platform targets
the ARM processor.

Furthermore, in order to minimize the trusted computing
base, we produce a checkable certificate whose validity entails
compliance with the calculated WCET.

Keywords-real-time systems; worst-case execution time; ab-
stract interpretation; abstraction-carrying code; fixpoint com-
putation;

I. INTRODUCTION

Real-time systems can be seen as a set of tasks, that are
expected to perform some functionality. In general, in order
to ensure a correct system behavior (schedulability analysis),
an upper bound for the worst-case execution time (WCET)
of each task is necessary.

In order to improve performance, modern processors
include features like caches and pipelines which make
instruction’s execution time context dependent, increasing
the difficulty of static timing analysis. One could be tempted
to always assume the local worst case scenario (e.g. cache
miss) in order to obtain safe predictions, but two problems
could arise of such approach. First, it could lead to an
excessive over-approximation of the actual WCET, resulting
in a waste of hardware resources. Second, due to timing

This work is partially supported by the RESCUE project
PTDC/EIA/65862/2006 funded by FCT (Fundação para a Ciência e
a Tecnologia)

anomalies [1], the obtained prediction could in fact be unsafe
(an under-approximation).

The determination of safe and tight upper bounds for
the WCET has been the object of intensive study in the
literature [2], yet, to the best of our knowledge, there is still
no attempt to provide some insurances w.r.t. the correctness
of the predicted WCET.

II. APPROACH

The proposed platform is depicted in figure 1. We begin
by extending the C programming language with annotations
that define the intended time properties for each function.
The time specification of the main function is of most
importance, however one may also want to define some
constraints on the auxiliary functions. Moreover, by placing
these annotations directly into the source code, we are also
able to express valuable informations for the subsequent
WCET analysis, such as infeasible paths and loop bounds
[3]. This is achieved by the use of a WCET-aware compila-
tion process that preserve the annotations semantics.

Figure 1. Abstraction-Carrying Code based WCET Platform

Only at the hardware level one can accurately calculate the
WCET, but feedback about the compliance of the given time
specification should be done at source-code level. Hence, in
order to perform time validation w.r.t. the functions’ time
specification, we perform the WCET analysis at machine-
code level, taking into account the effects of the hardware



specific features, and alert any non-compliance through to
use of back annotations [4]. This is what the bottom left
area of Figure 1 represents.

We denote the set of execution times of the program P , by
JPK. The problem of verifying the compliance of the given
time specification can be formulated as follows:

P respects the time specification I if JPK ⊆ I,

where I stands for intended time behavior, i.e., the set
of accepted execution times. The idea is to express the
collecting semantics [5] of P as the fixpoint of a set of
recursive equations.

In general, the state space to be considered is too large to
exhaustively explore all possible executions, some abstrac-
tion of the application domain is required in order to make
the time analysis feasible.

A. Abstract Interpretation

In the abstract interpretation [6] framework a program
P is interpreted over a simpler abstract domain Dα. This
abstract domain permits to trade efficiency over precision,
i.e., although it is an approximation, by computing the
fixpoint over this abstract domain, we will be able to produce
precise, yet safe, (over-)approximations of the collecting
semantics.

We denote by JPKα the result of the fixpoint calculation
over the abstract domain. Moreover, since comparison be-
tween actual and intended semantics is most easily done
in the same domain, we assume that the intended time
specification is also given in the abstract domain, i.e.,
Iα ∈ Dα.

The problem of verifying the compliance with the given
time specification can now be reformulated as follows:

P respects the time specification Iα if JPKα ⊆ Iα

B. Abstraction-Carrying Code

In the context of a code producer/code consumer software
distribution model, i.e., in order to ensure the correctness
of our calculation to a program consumer, we produce
a certificate (or proof ) whose validity entails compliance
with the calculated WCET. Our methodology is based on
the work introduced by Hermenegildo et al: Abstraction-
Carrying Code [7].

The produced certificate allows a program consumer to
locally check the calculated WCET, avoiding a blind con-
fidence on the producer side. This checking operation is
much more efficient than the certificate production process.
While on the producer side one has to compute a fixpoint
in a complex and possibly long iterative process, on the
consumer side, a one pass process is enough to confirm that
the certificate is indeed a fixpoint.

III. CONCLUSION

Abstract Interpretation has been widely used in the indus-
try, being static timing analysis one of its most successful
applications [5]. In our approach we also use the Abstract
Interpretation framework as the underlying technique, how-
ever we obtain our WCET prediction by explicitly following
a standard fixpoint computation strategy [8]. This fixpoint
computation will allow us to infer an abstract model of the
program, which can then be used as a certificate, i.e., a
program consumer can locally validate the predicted WCET
by simply checking that this abstract model is indeed a
fixpoint (a one-pass process).

We presented our architecture proposal and ongoing work
towards a platform for the calculation of WCETs with the
production of certificates. We focus ourselves in the ARM
architecture as target processor. By performing the WCET
analysis on the resulting ARM binary, accounting with the
hardware specific features (caches, pipelines, etc) behavior,
we are able to verify if the program will comply with the
given time specification.

To the best of our knowledge this is the first work applying
the concepts of Abstraction-Carrying Code to the static
timing analysis field.

REFERENCES

[1] J. Reineke, B. Wachter, S. Thesing, R. Wilhelm, I. Polian,
J. Eisinger, and B. Becker, “A definition and classification of
timing anomalies,” in 6th Intl Workshop on WCET Analysis,
2006.

[2] R. Wilhelm and et al, “The worst-case execution-time
problem—overview of methods and survey of tools,” ACM
Trans. Embed. Comput. Syst., vol. 7, no. 3, pp. 1–53, 2008.

[3] R. Kirner, J. Knoop, A. Prantl, M. Schordan, and I. Wenzel,
“Wcet analysis: The annotation language challenge,” in Proc.
7th International Workshop on WCET Analysis, Pisa, 2005.

[4] T. Harmon and R. Klefstad, “Interactive back-annotation of
worst-case execution time analysis for java microprocessors,”
in Proc. 13th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications. Washington:
IEEE Computer Society, 2007.

[5] R. Wilhelm and B. Wachter, “Abstract interpretation with ap-
plications to timing validation,” in CAV ’08: Proceedings of the
20th international conference on Computer Aided Verification.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 22–36.

[6] P. Cousot and R. Cousot, “Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints,” in POPL’77. New York: ACM,
1977, pp. 238–252.

[7] M. V. Hermenegildo, E. Albert, P. López-Garcı́a, and
G. Puebla, “Abstraction carrying code and resource-
awareness,” in PPDP, 2005, pp. 1–11.

[8] G. A. Kildall, “A unified approach to global program optimiza-
tion,” in POPL’73. New York: ACM, 1973, pp. 194–206.


