
Assessing the Formal Development of a Secure
Partitioning Kernel with the B Method

André Passos, José Miguel Faria, Simão Melo de Sousa
Critical Software, DI - Universidade da Beira Interior

This extended abstract reports on the introduction and the use of a for-
mal development cycle in the partial development of a real industrial ap-
plication, namely the design of security policies enforcement mechanisms in
real time operating systems, in particular using the "Correct By Construc-
tion"paradigm. The work allowed the exploitation of formal methods applied
to such a complex system as a kernel based application. The main goal of
this publication is to share the key results and conclusions achieved, specially
focusing the issues related to the industrial adoption of formal methods.

The design and implementation of safe and secure systems has been
proven to be a hard task to accomplish, especially when they rely upon
the features of an underlying operating system. The Multiple Independent
Levels of Security (MILS) was created to enable applications to enforce their
own security policies. Rushby, when presenting the idea for the first time,
in the early 80’s, proposed that a separation kernel should divide memory
into partitions and allow only carefully controlled communication between
non-kernel partitions. MILS architecture provides the basis for the construc-
tion of a secure partitioning kernel. MILS also allows a remarkable reduction
of the amount of security-critical code making it easier to inspect the re-
spective code. Therefore, it is a perfect target for rigorous inspection and
mathematical proof of correctness by techniques such as formal methods.

In this work, the B Method is used for the (partial) formal development of
a secure partitioning kernel (SPK). This constitutes a novelty in the formal
methods community, posing an extra challenge in the project: to evaluate
the suitability of applying the B Method outside its usual application domain
(railway and automotive). The B Method covers all the steps of the software
development life cycle and is supported by a set of mature tools that allow

1



the proof of correctness of the developed models and provide the desired
functionality of automatic code generation.

The work performed can be divided in two phases. Initially, a complete
development of a high-level model of the SPK was built. Then, part of the
kernel was refined to a level where C code could be automatically generated
from it. (This is called implementation level in B.) The high-level models
of the kernel constitute a complete architectural design of the system. The
ProB animator and model checker was used to animate and validate the
models. ProB allows the analysis of the system behaviour by interactively
generating all the possible instances of execution. Additionally, it was possi-
ble to observe that the use of an animator can be very successful when used
as a communication tool between the different parts involved in a project,
such as domain experts and B practitioners.

The validated high-level models could be refined for a completely formally
developed SPK. In our work, and as a first step to this task, the Partition
Information Flow Policy (PIFP), which is part of the SPK, was implemented.
Information flow between partitions has to be monitored and controlled by
the kernel. The PIFP defines the rules for each flow. Every time a partition
tries to communicate with another, the SPK first checks (using the PIFP)
whether or not the flow involving the two partitions is possible. With this
mechanism, the SPK assures information security. The refinement process
that led to the implementation of the PIFP was carried out with the assis-
tance of Atelier B. This tool provides the necessary means to achieve early
validation though the use of formal proof. Atelier B was also used for the
generation of the C code. Indubitably, such capability is judged very impor-
tant. It allows the reduction of the time spent writing and validating the
implementation code (no unit and integration tests are made) while, at the
same time, providing a continuity in the development process and assuring
that the generated code correctly implements the specified functionalities.

At the final stage, an open source micro kernel – PREX – was adopted
to integrate the proposed PIFP. With this, two goals were achieved: firstly,
PREX provides the necessary evidences for testing the PIFP. Second, this
procedure demonstrated the feasibility of applying formal methods only to
parts of the system, since hand-written code could be coalesced with the
automatically generated code.

Verification and validation has been achieved trough the use of tests and
mathematical proof of correctness. In terms of formal proofs, the Atelier B
automatically proved 88% of the generated proof obligations (which is a usual

2



percentage in traditional developments using B). The remaining 12% are in
the process of being interactively proved. Compared to the other activities
in the project, this is the part which requires the highest proficiency in the
methodology.

These first results show that the design and implementation of safe and
secure system using Formal Methods in industry is possible and rewarding.
Our current goals are related to the improvement of the proof effort and the
further refinement of the remaining components.

3


