

A Web-based Host Platform for Pedagogical
Virtual Machines

Nuno Gaspar1 and Simão Melo de Sousa2

1 Computer Science Department, University of Beira Interior, Portugal,
nmpgaspar@gmail.com

2 Computer Science Department, University of Beira Interior, Portugal,
desousa@di.ubi.pt

Abstract: Difficulties in the multi platform deployment and use of pedagogical
Virtual Machines can have an annoying impact in the success of a compilers
construction course. This paper introduces a compilers construction course support
platform that tackles this issue. The proposed platform is web-based, where the
virtual machines are remotely accessed through a browser and by the adequate use
of web services. Moreover, both command line and graphical user interface
versions are supported. Aside portability and maintenance issues, an interesting
feature of the architecture design is its ability to easily integrate new virtual
machines. As proof of concept we will show some preliminary results on the
integration of two very different virtual machines that are used in compiler
construction courses in Portuguese universities.

Keywords: virtual machines, pedagogical web platform, compilers, education,
computer assisted instruction, teaching methods

1. Introduction

The paper introduces a compilers construction course support platform. Our focus
is the easy installation, multi platform deployment and use of virtual machines
(VMs) that are the target architecture in a compilers construction course.

1.1 The need for such tools

As argued in [1], the standard computer science curriculum only leaves a small
room for compiler construction courses. This is the case, in particular, in Europe
with the university reform arising from the Bologna process. Usually only a one-
semester long course (two at the best) is dedicated to the teaching of the classical

2� Nuno Gaspar and Simão Melo de Sousa

compilation concepts and tools. Therefore, the teacher must define and adopt
pedagogical alternative strategies to the teaching of detailed compilation
techniques. Adequately covering all the classical aspects of compilers design in
such a short time slot is simply inappropriate. In this context, the choice of a VM
as target architecture for code generation plays an important role in the success of
the course. With its use, the intricacies of a real architecture are omitted, letting
the undergraduate compilers construction courses focus on the most important
aspects.

In a first contact with such concepts, a carefully designed GUI for the VM or
other auxiliary tools are of paramount importance for a deep understanding of the
involved mechanisms. However the VM multi-platform deployment is not easy
and becomes usually problematic for students. It is very common to see in the
same classroom the use of three different operating systems. Appropriately
distribute VM (with graphical interface) source code, letting students handle the
compilation process and provide them an effective support can be hard. Our
experience shows that most of the VMs used in compilers construction courses are
developed in a Linux environment and used in a Windows environment. This is
the case for the two VMs that we address here.

1.2 Our approach

In order to tackle this issue, we propose a web-based VM host platform. By
providing a web-based platform, we ease the virtual machine’s use, distribution
and maintenance. Enabling its access through a browser and web service calls, we
provide a setup independent from the client’s operating system. Furthermore, the
distribution of updates is not required anymore, since eventual changes will reflect
on any client.

Another interesting feature is the ability to gather and share tools, extensions
and contributions from the users’ community. For instance, bytecode optimization
tools, online tutorials, hints or new VMs can easily be added to the platform.

1.3 Related work

To the best of our knowledge, there is no similar approach to provide a
pedagogical web environment for the use of VMs. Indeed, a quick look at the
compilers tools catalogue [2] shows that there are tools for almost all the phases of
the design of a compiler except for the VMs.

Nevertheless, we may refer that broadly used VMs in the context of compiler
construction courses are LLVM [3], Parrot [4], Java [5] and CLR [6]. For the two
last VMs, the designed compilers usually target a carefully chosen subset of the
java bytecode and .NET IL. Let us mention that the MIPS assembly (executed via
emulators like SPIM [7] and which success is due, for instance, to the existence of

A Web-based Host Platform for Pedagogical Virtual Machines 3�

compilers design books like [8]) or the Intel x86 assembly are also widely chosen
as the target of compiler construction courses homework. Finally, VM [9] and
Apoo [10] are two virtual machines that are used in several Portuguese
universities.

All of these execution environments are, obviously, easily distributed over
several platforms in their command line form, but except for java/swing
implementations, VM graphical interfaces deployment is in fact problematic1.
Opting for a java based implementation is a possible solution for the issue
addressed here. But we must refer that a web-based architecture also provides
mechanisms and benefits (e.g. upgrades, sharing and integrating extensions from
the users’ community) that are not easily covered by this approach.

Another tool that we may refer is the CGI interface to SPIM [11]. It is very
simple and closer to command line interface than to a pedagogical and full
featured graphical one. The lack of an internal state visualizer and of step by step
interaction makes it unappealing for pedagogical purposes.

1.4 Organization of the paper

Section 2 introduces the main ingredients of the proposed architecture. Some
preliminary results are introduced in section 3. Concluding remarks and future
work are presented in section 4.

2. Architecture of the Platform

The overall architecture of the proposed platform can be found in the figure 1. The
VMs, WebApoo and WebVM, are both available in graphical and command line
interfaces. The user can execute his machine code files in either version. For the
last one, the submitted program is executed at once and only the virtual machine’s
final state (registers, memory cells values, etc) is presented to the user.

1 To the best of our knowledge, none of the referred VMs have such java implementation.

4� Nuno Gaspar and Simão Melo de Sousa

Figure 1 Platform Architecture.

On the other hand, the graphical version allows the user to analyze the program
behavior by executing each instruction step by step. This permits a better
understanding of the VM state changes induced by the execution. Alternatively,
the user can just run the program, where the use of breakpoints may be of great
benefit when debugging.

In the case of WebVM, since it has the ability to interpret and perform graphical
operations (like drawing geometrical figures), those will be displayed in a
draggable window.

Concerning the interaction with the VMs, the communications between the
clients and the platform (the server) are done via web services. The reply of each
request made will affect the virtual machine’s interface displayed in the browser.
One definite advantage of this kind of architecture is its capacity to be internally
restructured without reflecting any change to the client side.

Moreover, besides WebApoo and WebVM, the platform also includes a
mechanism for dynamic integration of new VMs in their executable form. The
details regarding this process will be described in section 3.

2.1 Client side

The web interfaces are implemented in Silverlight [12]. In order to play with it, the
user must install the plug-in in its favorite browser.

Despite being relatively recent, Silverlight already offers a nice compatibility
between browsers and operating systems. This fact is illustrated by table 1, taken
from the official Microsoft Silverlight web site, and completed with information
available from the Mono project web site.

A Web-based Host Platform for Pedagogical Virtual Machines 5�

Table 1. Silverlight compatibility

Operating System IE7 IE6 Firefox 1.5 Firefox 2 Safari
Windows Vista Yes - Yes Yes -

Windows XP SP2 Yes Yes Yes Yes -
Windows 2000 - Yes** Yes Yes -

Windows Server 2003 Yes Yes Yes Yes -
Mac OS 10.4.8+ (PowerPC) - - Yes* Yes* Yes*

Mac OS 10.4.8+ (Intel-based) - - Yes Yes Yes
Linux - - - Yes*** -

* Silverlight 1.0 only; **Silverlight 2.0 only; ***via the Moonlight – a Mono-based
implementation of Silverlight

2.2 Server side

On the server side, the web services are the means by which all the computation
requests are done. The following web services are available for each VM:

• UploadFile: This operation accepts a machine code file, and returns a
unique session key to the client.

• ExtInstructions: This operation accepts a session key, and returns the
initial configuration of the VM.

• Step: This operation executes the instruction pointed by the program
counter. It requires the user session key and returns the virtual machine’s
configuration after the execution.

• Run: As expected, this operation is a sequence of steps. It accepts a
session key and performs the steps operations until the end of the
program.

The server stores the virtual machine’s state for each active client connection.

The purpose of the session key is to relate the stored states with the clients’
requests.

3. Preliminary results

In order to get familiarized with the diversity of target VMs, we first implemented
from scratch two very distinct specimens. A stack based virtual machine with
graphical primitives, VM from laboratoire de Recherche en Informatique of the
Université Paris Sud, and a register based virtual machine, Apoo, from Faculdade
de Ciências of the Universidade do Porto.

At this stage, our focuses were to prototype the system and obtain a proof of
concept. Thus, the integration in the platform was done manually, without the use

6� Nuno Gaspar and Simão Melo de Sousa

of the integration mechanism whose implementation, use and result are described
below.

These first experiments let us understand all the necessary details and
considerations to take care of for the systematic integration and use of a VM
within a generic platform.

3.1 Apoo integration

Essentially developed by Rogério Reis and Nelma Moreira, from Universidade do
Porto, Apoo is a register based VM. It has a very simple instructions set that
mimics almost all the essential features of a modern microprocessor.

Figure 2 WebApoo graphical interface.

The web version of Apoo has the same characteristics and allows to do the
same operations as in the original one (as illustrated by figure 2). It has a set of
general purposes registers, a memory area, a system stack and a program counter
register. It allows to check the virtual machine’s state, step by step or running it
without pauses. Using the command line interface, the user only sees the result of
the complete execution.

3.2 LRI’s VM integration

Initially developed by Christine Paulin-Mohring, Jean-Christophe Filliâtre and
Sylvain Conchon, from Laboratoire de Recherche en Informatique, VM is a stack
based virtual machine. It has an execution stack, a call stack, two heaps and four

A Web-based Host Platform for Pedagogical Virtual Machines 7�

registers. It is used in Universidade da Beira Interior, Universidade do Minho and
several French universities as a support for compilers construction courses.

Figure 3 WebVM graphical interface.

The web version of VM works the same way as the original one. The specificity
lies in its ability to process graphical primitives. As shown in figure 3, the
graphical client is able, thanks to Silverlight, to directly interpret these primitives
and displays their result in a draggable window.

Alternatively, WebVM can also be accessed via a command line interface.

3.3 Integrating new virtual machines

As result of these first experiments, we were able to understand how to generalize
the platform in order to allow the systematic integration of new VMs. By
specifying what data areas (registers, stacks, etc.) are needed, and linking them to
a third party VM output, it is possible to achieve this genericity.

Most of the VMs used in a pedagogical environment are provided with source
code. The required changes for their integration were planned in order to be
accomplished as easy as possible. The first step is to define a valid VM
specification according to the XML schema illustrated by figure 4.

8� Nuno Gaspar and Simão Melo de Sousa

Figure 4 XML schema.

Basically, the name, author and areas of the VM need to be provided. Each
area is composed by its name, sections, type and hide attributes.

The value of the name attribute will be used as title for the window where the
current area will be displayed. The type attribute can only have the values
“Primitive” or “List”, meaning that the data to be stored for that area requires a
single text field or a list of them, respectively. Since there may be situations where
it is required to store data that is not relevant to the user, the hide attribute
determines whether the area is meant to be displayed or not. Only the values
“YES” or “NO” are allowed. Finally, the sections attribute enumerates the sections
that compose the area.

As for the virtual machine’s executable file itself, the following changes are
required:

1) The VM must have two execution modes:

a. Load mode – Receives the machine code file to execute as
parameter. It must produce an XML file with the virtual
machine’s initial state (the contents of each area defined in its
XML specification file). The produced XML file must have the
same name as the one passed as argument. For instance, if
invoked by the command virtualmachine.exe –l asm_file.vm,
the VM must output the file asm_file.vm.xml, containing the
expected result.

b. Step mode – Receives an XML file and a possible user input.
The XML file holds the virtual machine’s internal state, from
which all the necessary information required to perform the
step operation will be loaded from. As result, the VM must
overwrite the XML file passed as parameter, with its updated

A Web-based Host Platform for Pedagogical Virtual Machines 9�

internal state. For instance, the following invocation
virtualmachine.exe –s asm_file.vm.xml [input] produces an
updated asm_file.vm.xml file.

2) Any instruction requiring an input must get the expected value from the
second command line parameter.

3) If the VM can interpret graphical primitives, it must produce a XAML or
SVG file with the drawing to represent.

4) When reached the end of the program, the VM must produce an empty
file.

5) If any error occurs during the execution, it must be described in the
produced XML file as follows: <errorMessage>Error
Description</errorMessage>.

6) The VM must run in a Windows environment.

Once the XML specification file and the modifications are done, by uploading
them to the platform, the VM is stored in the server database and automatically
available to the all community.

In order to demonstrate this functionality, we integrated an executable version
of Apoo. Despite its different and generic layout, it works the same way as the two
previously described VMs. After loading the intended machine code file to be
executed, the user can either step or run the program. As illustrated by figure 5,
the contents of each area are represented in specific windows.

Figure 5 Integrated virtual machine generic layout.

Since the integrated VMs can have many areas, each window can be moved,
resized and minimized. This way, the user can adjust the interface layout
according to his will and needs.

10� Nuno Gaspar and Simão Melo de Sousa

4. Conclusion

We described a web-based platform for VMs that provides both command line
and graphical interfaces. The use of Silverlight for the client produces the same
advantages of a local GUI, without the issues of muti platform deployment. By
simply installing the plug-in, students can interactively see and enjoy the involved
mechanisms. Moreover, the ability to automatically add new VMs allows a high
degree of reusability and can provide a wide range of code generation targets.

At this time, the platform has been tested in a small environment and not in a
real class situation yet. Although preliminary tests points to a good student’s
receptivity, a deeper analysis is required. In order to get feedback from the
community, compilers construction courses teachers have been contacted to let
their students to alternatively use the platform. Furthermore, an online form where
users can leave their suggestions and point out their usage experience is available2.

As future work, we plan the integration of new features to provide more support
to students. For instance, provide interactive examples on loops translation to
machine code, optimization techniques or even new VMs.

We conclude by proposing this platform to the compiler construction courses
teaching. The benefits of easy multi platform deployment and the possibility to
gather and share tools from the community can make an interesting impact on the
compilers construction courses success.

References

1. William M. Waite. The compiler course in today’s curriculum: three strategies. SIGCSE
Bull., 38(1):87-91, 2006.

2. German National Research Center for Information Technology. The catalog of compiler
construction tools, 2006. http://catalog.compilertools.net/.

3. Chris Lattner and Vikram Adve. LLVM: A compilation Frameword for Lifelong Program
Analysis & Transformation. In Proceedings of the 2004 International Symposium on Code
Generation and Optimization (CGO’04), Pablo Alto, California, Mar 2004.

4. Perl Foundation. Parrot virtual machine parrot homepage, 2008. http://www.parrotcode.org/.
5. Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 1999.
6. E. Meijer and J. Gough. Technical overview of the common language runtime, 2000.
7. James R. Larus. Spim: A mips32 simulator, 2006. http://www.cs.wisc.edu/~larus/spim.html
8. Andrew W. Appel. Modern compiler implementation in ML: basic techniques. Cambridge

University Press, New York, NY, USA, 1997.
9. C. Paulin, J.C. Filliâtre, and S. Conchon. Virtual Machine for the LRI compiler course, 2008.

http://www.lri.fr/~conchon/m1/.
10. Rogério Reis and Nelma Moreira. Apoo: an environment for a first course in assembly

language programming. SIGCSE Bull., 33(4):43-47, 2001.
11. James R. Larus. Ee380 cgi spim, 2001. http://cgi.aggregate.org/cgibin/cgispim.cgi.
12. Christian Wenz. Essential Silverlight. O’Reailly, 2008.

2 See the RELEASE web site http://www.di.ubi.pt/~release

