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Abstract. This paper describes a tool-supported method for the formal
verification of timed properties of HTL programs, supported by the auto-
mated translation tool HTL2XTA, which extracts from a HTL program
(i) an Uppaal model and (ii) a set of properties that state the compliance
of the model with certain automatically inferred temporal constraints.
These can be manually extended with other temporal properties provided
by the user. The paper introduces the details of the proposed mechanisms
as well as the results of our experimental validation.

1 Introduction

New requirements arise from the continuous evolution of computer systems.
Processing power alone is not sufficient to satisfy all the industrial requirements.
For instance in the context of critical systems, the safety and reliability aspects
are fundamental [14]: it is not sufficient to merely provide the technical means for
a set of tasks to be executed; it is also required that the system (as a whole) can
correctly execute all of the tasks in due time. The focus of this paper is precisely
on the reliability of safety-critical systems. Such systems are usually real-time
systems [I1] that add to traditional reliability requirements the intrinsic need
to ensure that tasks are executed within a well-established time scope. For such
systems, missing these timing requirements corresponds to a system failure.

Our study considers the Hierarchical Timing Language (HTL) [5L6,10] as a
basis for real-time system development, and addresses the issue of the (auto-
mated) formal verification of timing requirements. Since HTL is a coordination
language [4] for which schedulability analysis is decidable, our focus here is on the
verification of complementary timing properties. The verification framework we
propose relies on model checking based on timed automata and timed temporal
logic. The contribution of this paper is a detailed description of the methodology
and its underlying tool-supported verification mechanism.

Our tool takes as input a HTL program and extracts from it an Uppaal model
and a set of proof obligations that correspond to certain expected timed tempo-
ral properties. The resulting model can be used to run a timed simulation of the
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program execution, and the properties can be checked using the proof facilities
provided by the Uppaal tool. With the help of these mechanisms, the develop-
ment team can audit the program against the expected temporal behaviour.

Motivation and Related Work. The HTL language is derived from Giotto [9].
Giotto-based languages share the important feature that they allow one to stat-
ically determine the schedulability of programs. Although academic, these lan-
guages have a number of interesting properties that cannot be found in languages
currently used in industry, including efficient reuse of code; theoretical ease of
adaptation of a program to several platforms; hierarquical construction of pro-
grams; and the use of functional features of languages without limitations.

HTL introduces several improvements with respect to Giotto, but the HTL
platform still lacks verification mechanisms to complement schedulability anal-
ysis, in order to allow the language to compete with other tools more widely
used in industry. Bearing in mind this aspect, we propose to complement the
verification of temporal HTL with model checking [3]. While the static analysis
performed by the HTL compiler enforces the schedulability (seen as a safety
property) of the set of tasks in a program, a model checker allows the system de-
signer to perform a temporal analysis of the tasks’ behaviour from the specified
timing requirements — an aspect that is ignored by the HTL tools.

The verification methodology proposed in this paper is inspired by [13], but
uses a different abstraction based on the logical execution time of each task.
Unlike [13], a key point of our tool chain is that the verification is fully auto-
matic. [I2] proposes the use of Uppaal with a related goal: the verification of a
Ravenscar-compliant scheduler for Ada applications.

HTL. The Hierarchical Timing Language [6/5/I0J7] is a coordination language [4]
for real-time critical systems with periodic tasks, which allows for the static ver-
ification of the schedulability of the implemented tasks. The aim of coordination
languages is the combination and manipulation of programs written in hetero-
geneous programming languages. A system may be implemented by providing a
set of tasks written in possibly different programming languages, together with
a HTL layer, and additionally specifying how the tasks interact. This favours a
clear separation, in the system design, between the functional layer and the con-
current and temporal aspects. The HTL toolchain provides code generators that
translate the HTL layer into executable code of the target execution platform.

A fundamental aspect of HTL is the Logical Ezecution Time (LET), that
provides an abstraction for the physical execution of tasks. The LET of a task
considers a time scope in which the task can be executed regardless of how the
operating system assigns resources to this task. The LET of a periodic task
implementing a read data; process; write data cycle begins in the instant when
the last variable is read and ends when the first variable is written.

For illustration purposes, we give in Listing [Tl an excerpt of a HTL program
(based on the 3TS Simulink case study, see Section Bl). A HTL program is com-
posed by a number of main commands which allow programmers to describe the
desired behaviour of almost any program. These commands are communicator,



Model-Checking Temporal Properties of Real-Time HTL Programs 193

1 module IO start readWrite{

2 task t read

3 input () state ()

4 output (c double p hl, ¢ double p h2,c bool p V1, ¢ bool p V2)
5 function f read;

7

8 mode readWrite period 500{

9 invoke t read

10 input ()

11 output ((h1,3), (h2,3), (v1,1), (v2,1));
12 (...)

13 }

14}

Listing 1.1. 3TS Simulink code snippet

module, task, port, mode, invoke and switch. Briefly, a communicator is a typed
variable which can be accessed any time during the execution; modules have to
be declared after communicators and their bodies are composed by ports, tasks
and modes. At least one (initial) mode must be declared. The task command,
as the name indicates, is used to declare tasks, taking as arguments possible
input/output ports and a Worst Case Execution Time (WCET) estimation.
Similarly to a communicator, a port is a typed variable accessed during program
execution, but in this case declared inside a module. The set of modes declared
inside a module defines the module’s behaviour. Through the modes declaration
it is possible to know which tasks will be executed, and at which moment. The
invocations are responsible for dictating when the tasks should be executed, and
define the LET of each task. Finally, the switch command, which takes as input
a condition and a mode identifier, is used to change the current execution mode.

HTL favours a layered approach to the development of programs. Tasks can
be organized in refinements that allow programmers to provide details gradually,
and also allow for a more finely grained task structure. A concrete task refines
an abstract task if it has the same frequency as the abstract task and it is able to
provide a time behaviour that is at least as good as the behaviour of the abstract
task. The notion of refinement correctness is then expressed in terms of time
safety. The refined task must be time-indistinguishable from the abstract task;
a concrete HTL program is schedulable if it contains only time-safe refinements
of the tasks of a schedulable abstract HTL program.

Uppaal. The Uppaal tool is a modelling application developed at the universi-
ties of Uppsala and Aalborg, based on networks of timed automata [2]. The
tool offers simulation and verification functionality based on model checking of
formulas of a subset of the TCTL logic [I]. Uppaal is particularly suitable for
modeling and analysing the timed behaviour of a set of tasks; properties like two
given tasks t1, to do not reach the states A and B simultaneously are typical of
the kind of analyses that can be performed with Uppaal.

Since the model checking engine is independent from the GUI, both visual and
textual representations of timed automata can be used for the verification tasks.
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This is particularly interesting when Uppaal is used in cooperation with other
tools. Timing requirements (target properties to be checked) can be specified
using the editing facilities of the GUI, or separately in a file. This last approach
is used by the toolchain introduced in this paper.

2 The HTL2XTA Toolchain

The purpose of the verification methodology proposed in this paper is to extend
the verification capabilities provided by the HTL platform. Given a HTL pro-
gram and the schedulability analysis provided by the regular HTL toolchain [7],
the methodology consists in the following two steps:

1. From a HTL program, the HTL2XTA translator produces two files: one
(.xta) contains a model of the program (timed automata); the other (.q)
a set of automatically inferred properties (timed temporal logic formulas).
The translation algorithm has a recursive structure and requires only two
depth-first traversals of the AST: the first one produces the model and the
second one infers the properties.

2. Both these files are fed to the Uppaal model checker; the GUI or the model
checker engine (verifyta) can be used to check if the properties are satisfied.

We remark that the automatically generated properties correspond to relatively
simple timing requirements; formulas for more complex requirements, such as
“task X must not execute at the same time as task Y, or “if task X executes,
then after T time units task Y must also execute” are not automatically gen-
erated, but can of course be manually incorporated in the .q file after the first
step above. Writing the appropriate TCTL formulas must of course take into
consideration the requirements and the generated model. We now turn to an
exploration of the involved translation mechanisms, which will be detailed in
the next two sections.

Model Translation. With the classic state space explosion limitation of model
checking [3] in mind, and given the central role of the models in the verifica-
tion process, it was decided to avoid translation schemes that would result in
the construction of very complex models. Therefore, and given that the HTL
platform already performs a scheduling analysis, the translation abstracts away
from the physical execution of tasks, unlike, say, the approach described in [13].
As such, we consider that the notion of LET is sufficient to allow the remaining
interesting timing properties to be checked. A network of timed automata is then
obtained from a HTL program as follows:

— Each task is modeled as a single automaton with its own LET, calculated
from the concrete ports and the communicators given in the task’s declara-
tion. The lower bound of the LET corresponds to the instant in which the
last variable reading is performed, and the upper bound to the instant in
which the first variable writing is performed.
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— For each module in the HTL program a timed automaton is created. Note
that each mode in a module represents the execution of a set of tasks, and
that, at any moment, each module can only be in one operation mode, thus
there is no need to have more than one automaton for each module. When-
ever the (module) automaton performs an execution cycle, it will synchronize
with the automata representing the tasks invoked in the specified mode. The
level of abstraction adopted completely ignores the type of communicator as
well as the initialization driver.

Since HTL is a hierarchical coordination language, a very relevant aspect is the
number of refinements in the program (directly related to program hierarchies),
which can naturally increase the complexity of the model substantially. By de-
fault, the translation process reflects faithfully the refinement present in the
HTL programs. However in some cases this could make the model exploration
impracticable, and for this reason the translator allows for the construction of
models to take the desired level of refinement as input.

Inference of Properties. Listing shows examples of automatically produced
timing properties. The automatically inferred properties are all related with
some HTL feature, like the modes’ periods, the LET of each task, the tasks in-
voked in each mode, and the program refinement. To allow for traceability, each
property is annotated with a textual description of the feature to check, a refer-
ence to the position of the respective feature in the HTL file, and the expected
verification result. The inferred properties can and should be manually comple-
mented with information extracted from the established temporal requirements.
The automata corresponding to a given module and tasks, as well as the states
corresponding to task invocations and LETSs, are identified by clearly defined
labels, which facilitates writing properties manually.

/* Deadlock Free —> true %/
A[] not deadlock

/* P1 mode readWrite period 500 @ Line 19 —> true x/
A[] sP_3TS_.IO.readWrite imply ((not sP_3TS_IO.t>500) && (not sP_3TS_IO.t
<0))

T W N

/* P2 mode readWrite period 500 @ Line 19 —> true x/
sP_3TS_I0.readWrite —> (sP_3TS_IO.Ready && (sP_3TS_IO.t==0 ||
sP_3TS_I0.t==500))

[ ol =)

10 | /* P1 Let of t_write = [400;500] @ Line 21 —> true %/
11 |A[] (IO_readWrite_t_write.Let imply (not IO_readWrite_t_write.tt <400 &&
not IO_readWrite_t_write.tt >500))

Listing 1.2. Example of annotated properties

3 Model Translation

Some aspects of HTL are purely ignored by the translation process, either be-
cause they do not bring any relevant information, or because the abstraction level
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of the model is not sufficient to cope with it. The translation process is syntax-
oriented and based on the abstract syntax tree (AST) of the HTL language,
which was built using a HTL grammar. It supports all of the HTL language,
however there is information that is not analysed or translated by the tool.

Let us consider the definition of the function 7' that takes as input a HTL
program and returns a network of timed automata (NTA). Naturally, this func-
tion is defined recursively over the structure of the AST. An auxiliary function
A is used for task invocation analysis, that takes as argument a HTL program
and returns relevant information to build the NTA.

Translation of Mode Switch. Consider the abstract representation of a switch
instruction as the tuple (n, s, p), where n is the name of the mode for which the
change of execution is pretended, s the name of the function (in the functional
code) that evaluates whether the change should take place, and p the decla-
ration position in the HTL file. Let Prog denote the set of all programs, then
we have Vswitch € Prog, Tswiten (0, 8,p) = (0. Note that the non-determinism of
Uppaal will be important to guarantee that the modes are alternated during the
execution. The translation itself is not affected by any mode switches.

Translation of Types and Initialization Drivers. Let ct be a type and ci the
declaration of the initialization driver. We have Vdt € Prog, Ty (ct,ci) = 0.
Neither the type nor the initial value (initialization driver) of a declaration have
any impact on the application of the translation process. This information does
not contribute to the temporal analysis.

Translation of Task Declarations. Consider the abstract representation of a
task as the tuple (n,ip, s,op, f,w,p), where n is the name of the task, ip the
list of input ports, s the list of internal states, op the list of output ports, f
the name of the function which implements the task, w the task’s WCET,
and finally p the task declaration position in the HTL file. We have Viask €
Prog, Tiask (0, ip, 8, op, f,w,p) = (). Analogously to the previous situations, task
declarations do not have any impact on the translation.

Translation of Communicator Declarations. Consider the abstract representa-
tion of a communicator as the tuple (n, dt, pd, p), where n is the communicator’s
name, dt the communicator’s type with ct, c¢i as initialization driver, pd the
communicator’s period and p the communicator’s declaration position in the
HTL file, then Ycommunicator € Prog, Teommunicator(M, dt, pd, p) = 0.

Once more the translator ignores the declaration. In order to evaluate the
LET (see below) the following clause is defined for the auxiliary function A:
Y communicator € Prog, Acommunicator(com, dt, pd,p) = pd, even if the commu-
nicator com does not have a direct representation in the model given the ab-
straction level adopted.

Translation of Ports Declaration. Let the abstract representation of a port be
the tuple (n,dt,p), where n is the ports’s name, dt the port’s type with ct,
¢t the initialization driver and p the port’s declaration position in the HTL
file, then Vport € Prog, Tport(n, dt,p) = 0. The port’s declaration is ignored in
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t<=Ist_in
Lst IN

10_readWrite_t_read

release?
t=0, tt=0

t==lst_in

Let

ide t<=penod

t == period

End_Let

Fig. 1. taskT A automata on the left and instantiation on the right

the translation, and moreover no task invocation analysis is performed. In task
invocations ports are just names.

LET Transposition

This translation is based on an implementation of the concept of LET, based on
the timed automata taskTA, taskTA S, taskTA R and taskTA SR. These four
automata result from the use of concrete ports in the task invocations: taskT A
represents the task invocations where only communicators are used, taskT A S
(S for send) those where a single concrete port is used as output, taskT A R
(R for receive) those where a single concrete port is used as input, and finally
taskT A SR where two concrete ports are used, as input and as output.

In the following, a task invocation will be seen in abstract terms as the tu-
ple (n, ip, op, s, pos) where n is the invoked task’s name, ip is the input port’s
(variables) mapping, op the output port’s (variable) mapping, s the name of the
task’s parent, and finally pos is the task’s declaration position in the HTL file.

TaskTA. Let Port be the set of all concrete ports, c¢p be one concrete port, and
taskTA(r,t,p,li) be a timed automaton where r is a release urgent synchroniza-
tion, t is a termination urgent synchronization, p the task’s LET period and Ii
the exact moment where the last variable is read. Then we have

Yep € Port,Vinvoke € Prog, cp & ip, cp & op, =
Tinvoke (n, ip, op, s, pos) = taskTA(r, t,p, li)

Each task invocation in which no concrete ports are used either in the input
or in the output variables, gives rise to an automaton taskTA (see Figure[ll). The
urgent synchronization channels r and t are calculated in the system declaration.
For each task instantiation the channel r» has an unique name, produced by an
enumeration 71, 79,73, ... Similarly, the channel ¢ has an unique name for each
set of mode automata, produced by an enumeration t1,to, t3, ...

The instant at which the last input variable i is read is calculated as a product
of the maximum value of each instance of input communicator and the period
(in the case of non-existence of input variable, this instant is considered to be
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Fig. 2. taskT A S automaton on the left and taskT' A R on the right

zero). The LET’s period p is the subtraction between the instant where the
first output port is written (in case of non-existence, the value is the respective
mode’s period) and /i.

TaskTA S. Let taskT A S(r,t,dec,p,li) be a timed automaton where r is the
release urgent synchronization, t a termination urgent synchronization, dc the
urgent synchronization of a direct communication (directCom), p the task’s LET
period and i the instant where the last input variable is read, then

Yep € Port,Yinvoke € Prog, cp & ip, cp € op, =
Tinvoke (N, ip, 0p, s, pos) = taskTA S(r,t, dc,p, li)

For each task invocation, the existence of a concrete port in the set of output
variables and non-existence in the set of input variables originates the instanti-
ation of a taskTA S automaton (Figure 2] left). This automaton is very similar
to taskTA — the difference is just the inclusion of direct communication.

TaskTA R. Let taskT A R(r,t,dc,p,li) be a timed automaton with r, ¢, dc, p,
and [i the same as in the previous case, then

Vep € Port,Vinvoke € Prog, cp € ip, cp & op, =
Tinvoke (1, 1D, 0P, S, pos) = taskTA R(r,t,dc,p,li)

For each task invocation, the existence of a concrete port in the set of input
variables and non-existence in the set of output variables originates the instanti-
ation of taskTA R automaton (Figure[2 right). This automaton is slightly more
complex than taskT A S since it considers two alternative paths for the initial-
ization of the task’s LET. The first one encodes the direct communication done
before the reading of the last communicator (with no impact on the LET’s start)
and the later encodes awaiting of the port reading after all communicators have
been read (the LET’s start becomes dynamic). In this last case, the start of the
LET depends on a direct communication with another task in the same mode.
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Modules and Modes. Consider a module abstracted as a tuple (n, h, mi, bm, pos),
where n is the module’s name, h a list of hosts, mi the initial mode, bmu the
module’s body and pos the module’s declaration position in the HTL file.

Let moduleTA(ref, i, tl) be a timed automaton with ref the refinement’s ur-
gent synchronization channel (if it exists), rl the set of all release urgent syn-
chronization channels coming from the invocations of module tasks, and finally
tl the set of all termination urgent synchronization channels coming from the
invocations of module tasks, then

Vmodule € Prog, Tmodute (1, b, mi, bm, pos) = module TA(ref, ri, tl)

For each module a timed automaton is dynamically created. Unlike tasks
automata, where the instantiation of the different default automata is done by
just matching the input parameters, here a single automaton is attributed to each
module, instantiated by passing as parameters the synchronization channels used
by the module’s task invocations.

Consider now a mode abstracted as the tuple (n,p, refP, bmo, pos), where n
is the mode’s name, p is the period, refP is the refinement program for that
mode (if it exists), bmo the mode’s body, and pos the mode’s declaration posi-
tion in the HTL file. Let subModule(e,t) be a subset of the timed automaton’s
module TA declaration where e is the set of states (with invariants) and ¢ the set
of transitions (with guards, updates and synchronizations), then we have

VYmode € module, IsubModule(e,t) € moduleTA,
Tinode(n, p, TefP, bmo, pos) = subModule(e, t)

4 Inference of Properties

This section presents the definition of a function P which accepts a HTL program
and returns the specification of properties to verify. Naturally, this function is
again defined recursively over the AST structure of the HTL language.

Absence of Block. Let Prog be the set of all programs and df be the absence of
blocking property description, then we have Pp,.q = df. The application of this
method to any program always produces the same absence of blocking property
(A0 not deadlock).

Modes Period. Let the tuple (n, p, refP, bmo, pos) be the abstraction of a mode,
where n is the mode’s name, p the period, refP the refinement program for
that mode (if it exists), bmo the mode’s body and pos the mode’s declaration
position in the HTL file. In the following vm denotes the property specifications
of a mode’s period. We have

VYmode € Prog, Prode(n, p, refP, bmo, pos) = vm(pl, p2)
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We also have, with moduleTA a module automaton and NTA a set of timed
automata,

Vmode € Prog,dmoduleTA € NTA,
pl = A0 moduleTA.n = ((— moduleTA.t > p) A (= moduleTA.t < 0)),
p2 = moduleTA.n = (moduleTA.Ready
A (moduleTA.t == 0 V moduleTA.t == p)

The first property pl states that whenever the control state is the mode state,
the module’s (automaton) local clock is lower than the mode’s period, and not
negative. The second property p2 on the other hand states that whenever the
mode’s state is reached, the state Ready is also reached, which implies that the
local clock is either zero or exactly equal to the period’s value. The combination
of both properties allows the restriction of a mode’s period to the interval [0, p],
and guarantees that the period’s maximum value is reached.

Task Invocations. Let (n, ip, op, s, pos) be a task invocation, where n is the task’s
name, ip the input port’s (variables) mapping, op the output port’s (variable)
mapping, s the name of the parent task and finally pos the task’s declaration
position in the HTL file. In the following vi denotes the specification of properties
in a mode’s task invocation. We have

Vinvoke € Prog, Pipyoke (1, ip, 0p, 8, pos) = vi(pl, p2)

Let taskTA; be the automaton of task i, taskTA the set of task automata,
taskState; the task i invocation’s state, modeState the mode’s state where the
invocation is done, moduleTA a module automaton and NTA a set of timed
automata, then

Vi, dmoduleTA € NTA, JtaskTA; € TaskTA,
pl = A O (moduleTA.taskStaste; = (- taskTA;.1dle))
A (moduleTA.Ready = taskTA;.Idle),
p2 = A0 (taskTA;.Let N taskTA.tt! = 0) = moduleTA.modeState

The property pl states that for all executions, every time an invocation’s state
is equal to a control state, that task’s automaton cannot be in the Idle state.
Moreover, when the respective module TA’s control state is equal to Ready, the
task’s automaton must be in the Idle state. The second property specifies that
whenever a task’s automaton Let state is the control state and the local clock ¢t
is different from zero, the execution of the module’s automaton must be in the
state representing the mode in which the tasks are invoked.

Tasks LET. Considering a task invocation vlet in a correct mode, its properties
are specified as

Vinvoke € Prog, Pipyoke (1, i, 0p, S, pos) = vlet(pl, p2,p3), Vi, ImoduleTA€ NTA,
pl = A0 (taskTA;.Let = (- taskTA;.tt <0 A = taskTA;.tt > p)),
p2 = A o moduleTA.modeState = (taskTA;.Lst IN A taskTA;.tt ==0),
p3 = A o moduleTA.modeState = (taskTA;.Let N taskTA;.tt == p)
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Ready Start readWrite_t_read
t=0, count=0
@ @ @ ) readWrite_t_write
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readWrite readWrite_t_ref

Fig. 3. P 3TS I0 automaton (automatic instantiation of taskTA)

The LET’s validation is done via three distinct properties. Property pl spec-
ifies that whenever a task’s Let is reached, the automaton’s local clock ¢ must
lie between 0 and the period. Property p2 specifies that every time the mode’s
state is reached, the Lst I N state is also reached, necessarily with the local clock
tt set to zero. Finally, property p3 specifies that every time the mode’s state is
reached, the Let state is inevitably reached, with the clock ¢t set to the maximum
value of the task’s period.

5 Case Studies

We consider here the main case study used for illustration purposes by the HTL
team: the three-tank system. A HTL program implements the controller of a
physical system that includes three interconnected tanks with two pumps (for
tanks 1 and 3), three taps (one for each tank) and two interconnection taps. The
controller supervises the taps in order to maintain the liquid at a specific level.

Description of the Problem. The controller is implemented as a program that
contains three modules; two of them (T1 and T2) specify the timing for the
controllers of tanks T1 and T2, and the third module specifies the timing for
the communications (IO) controller. Each controller module contains one mode
which invokes one task and which is refined by a program into a P or PI con-
troller. We assume that in addition to height measuring sensors there exist also
sensors that detect perturbation in a tank (this determines the switch between P
and PI). The I0 module contains one mode named readWrite and invokes three
tasks: t read reads sensor values and updates communicators h1, h2, v1 and v2;
t write reads communicators ul and u2 and sends commands to the pumps;
t ref reads target values and updates communicators hl ref and h2 ref.

Generated Model (excerpt). The HTL program is translated into a network con-
sisting of nine timed automata, of which four are default automata that are in-
stantiated by each task invocation depending on the modules and ports declared;
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Table 1. Results

File Levels HTL Model Verifications States
3TS-simulink.htl (1) ;g ?gg gg?gg 2;5666
e 0 @omomm o
s 0 30 lenos
e 0 UL s
oo 8 T3 108 6lTi0 A

flatten 3TS.htl 0 60 203 31/31 411

the remaining five represent the modules and respective execution modes. Tak-
ing as example the IO module, in which three tasks (t read, t write and t ref)
and no ports are used, it is translated as three timed automata, with the de-
fault taskTA automaton instantiated for each task. An example is shown below,
extracted from the (.xta) file produced by the tool. Task invocations are repre-
sented by signals RreadWrite t read, RreadWrite t write and RreadWrite t ref.

Properties. In abstract terms the automatically inferred properties can be seen
as divided in four classes: Absence of Block, Modes Period, Task Invocations
and Tasks’ LET. We give below an excerpt from the (.q) file generated for the
3TS Simulink program, that shows two classes of properties : Absence of Block
for the first property shown, and Modes Period for the second. The properties
are annotated with a descriptive string and the expected verification result.

//Deadlock Free —> true
A[] not deadlock

//P1 mode readWrite period 500 @ Line 19 —> true
A[] sP 3TS IO.readWrite imply ((not sP 3TS IO.t>500) && (not sP 3TS IO.
t<0))

In some situations, small modifications in the code can have serious effects in
the program and affect the verification of properties. In these cases the solution
is to analyse and manually specify properties appropriate to each scenario.

Verification. In this case study the HTL2XTA translator for all levels of refine-
ment (switch -L 0) has generated 62 properties automatically, which were all
successfully checked (using verifyta version 4.0.10). 291794 states were explored
and the maximum number of states consumed by a single property was 7566.
Some properties were trivially verified. These numbers contribute to an increased
confidence degree on the 3TS Simulink’s HTL specification. In spite of the large
number of properties and states, this goal is achieved in reasonable time.

Other Case Studies. Using the current version of the translator it was possible
to successfully generate models and properties for several HTL programs from [6],
10], and the HTL website. Table [l summarizes relevant information about the
results, specifically the number of applied levels (0=all, 1=main program), the
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M_m_tl

program P{ sP_M
communicator
c_int cO period 10 init c_zero;
c_int c1 period 25 init c_zero;
module M start m{
task 11 input{c_int i) state()
output(c_int o) function FT1;
mode m period 50{
invoke t1 input((c0,0)) output((c1,1));

Fig. 4. A misbehaved HTL program and the corresponding Uppaal automata

number of lines in the HTL file, the number of lines in the model’s specification
file, the number of specified properties versus the number of properties successfully
verified, and the number of states explored. The values in the table concern the
Uppaal verification, given several different models translated from HTL to XTA.

The proposed toolchain was able to cope with all except one program, the
more complex steer-by-wire example, for which the verification process does not
terminate in reasonable time. Clearly, this is due to the use of all the advanced
features of HTL (including a large and complex coordination layer).

6 Towards Correctness

The correctness of the proposed approach has not yet been established; we give
here some preliminary remarks. The desired correctness property can be formu-
lated as follows, where p is a HTL program, and M C' corresponds to execution
of the Model Checker.

If MC(T(p)) = Error then there exists an execution that derives to a timed
error execution, following the operational semantics of HTL [5].

Although we have not proven such a correctness result, we give here an example
to give the reader an intuition of why the approach should in principle be correct.

The example is shown in Figure [l The period of the last task’s (t1) output
is 25 and the first input is 0; the mode’s period is 50, so it is trivial to conclude
that this system is schedulable. As such, this program is validated by the HTL
toolchain. However, this is not satisfactory, since with these values the LET of
this task is specified as [0;25]. Due to the period of the communicator ¢o this
task must not execute between instants 0 and 9, and the standard HTL toolchain
contains no mechanism to specify or prove situations like this.

It is obvious that in such a small example this problem could be easily detected
and corrected by simply changing the instant when the ¢y communicator is used
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from 0 to 1. But in more complex systems it is hard to obtain any insight about
this kind of temporal behaviours.

Considering again the above example, it is straightforward to see that the
HTL2XTA translator preserves the bad temporal requirement in the timed au-
tomata model. Checking the property A[|M m ti.Let imply (not(M m t1.tt <
10)), which can be manually inserted in Uppaal and specifies that task ¢; must
never occur in an instant inferior to 10, will produce a counter-example.

7 Conclusion and Future Work

The HTL language was created in an academic context, and its transfer to the
industrial context remains a challenge. This work is a contribution towards that
goal. The tool is available onlindl] and runs only on the Linux platform. The
HTL2XTA translator was developed in Ocaml, following the traditional compiler
design process (but we rely on the HTL compiler for type checking).

We envision two natural improvements of our current methodology. First, the
translation methodology has not yet been formally verified (i.e. it has not been
proved that the translation preserves the timed semantics of HTL programs).
The proof of the theorem sketched in Section [0l is a heavyweight task that must
be carefully carried out.

Secondly, the current version of the translator is unable to deal with large-scale
HTL programs, and moreover there are still some features of HTL syntax that
are not covered by the current version. The translation of the currently covered
HTL features can be improved in order to lower the size of the resulting NTA.
As future work we plan to analyse these possibilities, and also to extend HTL
with annotations to introduce supplementary behaviour rules. For instance this
may provide insight about the behaviour of programs in the presence of switch
cases. The impact of such annotations in the model and their influence on the
design of the translator will of course have to be carefully considered.

Moreover, in the short term, the toolchain could be improved with a script
that provides an automatic analysis of the logfile generated by Uppaal. Such a
script could establish conveniently which timing requirements have been checked
and which have not, and create a final report based on this information.

Finally, we are interested in transferring our work to the context of the
SPARK/Ada language, widely used in the development of safety-critical systems.
The Giotto in Ada [8] initiative should make this process quite straightforward.
We also believe that our translation mechanisms may in principle be applied to
other (more exploratory) concurrency models, but this remains an open issue.
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