
Certified Programming in the heavy
presence of pointers
The case for Union-Find

Jean-Christophe Filliâtre, Mário Pereira, Simão Melo de Sousa

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 1

https://www.di.ubi.pt/~desousa

A contextual Introduction

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 2

context

a bug is a disaster waiting to happen

security perspective: attack entry, security breach, information leakage, etc.

critical systems perspective: failure, dammage, (mission, life, etc.) loss, etc.

business perspective: disturbance, costs, loss of trust/business, etc.

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 3

claim.... as seen on a reliable social medium

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 4

in this talk

the software lifecycle is complex

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 5

but first:

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 6

Some facts about programming activities

programming environments are always the result of design choices (made
by its creators)

there is no known silver bullet, then it’s always a (maybe outdated)
compromise (security, efficiency, high level/low level, automatic/manual
memory management etc.)

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 7

Some facts about programming activities

• code reuse (central to the OO paradigm success), boilerplates/ code
recipes, stackoverflow style of programming, the import everything
paradigm, etc.

• relation between the programmer and its programming environment:

from the programming environment perspective, it is assumed that the
programmer knows the programming environment, its limitations, its
compromises and subsequent coding practices, and masters what he’s
doing

from the programmers perspective, it is assumed that the offered
programming facilities do exactly what they’re supposed to do, as efficient
as possible, as simple as possible and do not introduce unspecified behavior

how do we know that these assumptions hold?

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 8

old but gold

binary search: first publication in 1946 ...

... first correct publication in 1962

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 9

old but gold

Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)

(column 4) - writing correct programs
The challenge of binary search

(as seen p.37)

Warning
Boring material ahead
skip to section 4,4

when drowsiness strikes

concise and crystal clear explanation of what is going on...

and yet...

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 10

old but gold

in 2006, an embarrassing bug was found in the standard library of Java... in the
(binary) search methods

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

... been there for more than nine years!

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 11

old but gold

the bug :

...
int mid = (low + high) / 2;
int midVal = a[mid];

...

may surpass the int type range: integer overflow

and then cause an array out of bound error

possible solution:

int mid = low + (high - low) / 2

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 12

lessons?

it’s a good idea to have API/Standard Libraries done right...

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 13

The Vocal Project

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 14

VOCAL – a Verified OCAml Library

a library of correct-by-construction, efficient general-purpose data
structures and algorithms

• priority queues
• hash tables
• sequences
• sets/maps
• resizable arrays
• heap
• ...

• graph algorithms
• sorting
• searching
• string processing
• union-find
• ...

software that could benefit from such a library: Coq, Frama-C, Astrée,
SPARK, Infer, Alt-Ergo, Cubicle, EasyCrypt, ProVerif, etc.

which, in turn, are used in avionics, defense, aerospacial, finance, security,
hardware, etc.

(LRI/CNRS + Inria + Verimag + TrutInSoft + OCamlPro)
JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 15

a specification language for OCaml

regular .mli files with
• formal specification in special comments (à la JML / ACSL)
• informal comments
• users can ignore formal specs
• simple, mostly first-order logic

regular .ml files
• no spec

three design workflows: why3, COQ, CFML+COQ

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 16

Vocal/Why3 workflow

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 17

example — Vector.mli

(** resizable arrays *)

type ’a t
(*@ ephemeral *)
(*@ field mutable view: ’a seq *)
(*@ invariant length view ≤ Sys.max_array_length *)

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 18

example — Vector.mli

val resize: ’a t → int → unit
(** [resize a n] sets the length of vector [a] to [n].

The elements that are no longer part of the vector, if any,
are internally replaced by the dummy value of vector [a],
so that they can be garbage collected when possible.
Raise [Invalid_argument]

if [n < 0] or [n > Sys.max_array_length] *)
(*@ resize a n

checks 0 ≤ n ≤ Sys.max_array_length
modifies a
ensures length a.view = n
ensures forall i. 0 ≤ i < min (length (old a.view)) n →

a.view[i] = (old a.view)[i] *)

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 19

WhyML code for Vector

type t ’a = {
dummy: ’a;

mutable size: int63;
mutable data: array ’a;

ghost mutable view: seq ’a;
}
invariant { length view = size}
invariant { forall i. 0 ≤ i < size → view[i] = data[i] }
invariant { 0 ≤ size ≤ length data ≤ max_array_length }
invariant { forall i. size ≤ i < length data → data[i] = dummy }

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 20

WhyML code for Vector

type t ’a = {
dummy: ’a;

mutable size: int63;
mutable data: array ’a;

ghost mutable view: seq ’a;
}
invariant { length view = size}
invariant { forall i. 0 ≤ i < size → view[i] = data[i] }
invariant { 0 ≤ size ≤ length data ≤ max_array_length }
invariant { forall i. size ≤ i < length data → data[i] = dummy }

let resize (a: t ’a) (n: int63) : unit
writes { a.data, a.size, a.data.elts, a.view }
ensures { n = a.size }
ensures { forall i. 0 ≤ i < MinMax.min ((old a).size) n →

a.view[i] = (old a).view[i] }
raises { Invalid_argument → not (0 ≤ n ≤ max_array_length) }

= if not (zero≤ n ≤max_array_length) then raise Invalid_argument;
unsafe_resize a n

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 21

extracted code from Vector

type ’a t = {
dummy: ’a;
mutable size: int;
mutable data: (’a array);

}

let resize (a: ’a t) (n: int) : unit =
begin

if not (0 <= n && n <= Sys.max_array_length)
then raise (Invalid_argument);

unsafe_resize a n
end

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 22

driver to ocaml

module mach.int.Int63
syntax type int63 "int"
syntax val (+) "%1 + %2"
...

end

module mach.array.Array63
syntax type array "(%1 array)"
syntax val ([]) "Array.get %1 %2"
...

end

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 23

Deductive program verification in a picture

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 24

the state of the verified OCaml modules with Vocal/Why3

module spec code #VCs
UnionFind 74 176 135 union-find
PairingHeap 41 245 52 persistent priority queues
ZipperList 66 180 87 zipper data structure for lists
Arrays 37 121 77 binary search and binary sort
Queue 54 185 119 mutable queues
Vector 149 309 142 resizable arrays
HashSet 21 34 12 sets using hash tables
MergeSort 12 401 630 in-place mergesort of lists
Dfs - 58 5 depth-first graph marking
Schorr-Waite - 184 172 in-place graph marking

all the VCs were proved automatically!

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 25

... and with Vocal/COQ/CFML

module tool loc Coq
Listmap Coq 50 170
HashTable CFML 150 750
UnionFind ∗ CFML 60 800
IntervalMap CFML WiP WiP

(∗) including (amortized) computational complexity

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 26

Union-Find

correct-by-construction implementation using Vocal/Why3

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 27

union-find data-structure

type ’a content =
| Link of ’a content ref
| Root of int * ’a

type ’a elem = ’a content ref

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 28

union-find in Why3 : first attempt

type content ’a =
| Link (ref (content ’a))
| Root int ’a

Error:
This field has non-pure type, it cannot be used in a recursive
type definition

the Why3 types and effect system:

mutability of bounded depth =⇒ all aliases must be known statically

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 29

solution : built-in memory model

embed a custom memory model into the why3’s logic :
• a type for memory pointers
• operations for pointer allocation, read and write
• an association table from pointers to their values

examples : Frama-C, Dafny, VeriFast, VCC, CFML

here we use the component-as-array memory model design technique
[Burstall, 1972]

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 30

memory model for union-find (1/2)

type loc ’a

type content ’a =
| Link (loc ’a)
| Root int ’a

type memory ’a = {
ghost mutable refs: loc ’a → option (content ’a);

}

here None/Some mean non-allocated/allocated

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 31

memory model for union-find (2/2)

val alloc (ghost mem: memory ’a) (v: content ’a) : loc ’a
writes { mem }
ensures { (old mem).refs result = None }
ensures { mem.refs = (old mem.refs)[result ← Some v] }

val set_ref (ghost mem: memory ’a) (l: loc ’a) (v: content ’a)
requires { mem.refs l 6= None }
writes { mem }
ensures { mem.refs = (old mem.refs)[l ← Some v] }

...

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 32

implementation: union-find data structure

type uf ’a = {
memo: memory ’a;

mutable dom : set (loc ’a); (* which "pointers" are involved *)
mutable rep : loc ’a → loc ’a;(* representative element *)
mutable img : loc ’a → ’a; (* representative element value *)
mutable dst : loc ’a → int; (* distance *)
mutable maxd: int; (* max value for dst *)
}
invariant { forall x. mem x dom → img x = img (rep x) }
invariant { forall x. mem x dom → rep (rep x) = rep x }
invariant { forall x. mem x dom → mem (rep x) dom }
invariant { forall x y. mem x dom → mem y dom →

rep x = rep y → img x = img y }
invariant { forall x y. mem x dom → rep x = y → mem y dom }
invariant { forall x. mem x dom ↔ allocated memo x }
...

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 33

implementation: union-find data structure

type uf ’a = {
memo: memory ’a;

mutable dom : set (loc ’a); (* which "pointers" are involved *)
mutable rep : loc ’a → loc ’a;(* representative element *)
mutable img : loc ’a → ’a; (* representative element value *)
mutable dst : loc ’a → int; (* distance *)
mutable maxd: int; (* max value for dst *)
} ...
invariant { forall x. match memo.refs x with

| Some (Link y) → x 6= y ∧ allocated memo y ∧
rep x = rep y ∧ dst x < dst y

| Some (Root r v) → img x = v ∧ rep x = x
| None → true end }

invariant { 0 ≤ maxd }
invariant { forall x. mem x dom → dst x ≤ maxd }
invariant { forall x. mem x dom → match memo.refs (rep x) with

| Some (Root r _) → true
| _ → false end }

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 34

implementation: union-find data operations

(* with path compression *)
let rec find (ghost uf: uf ’a) (x: loc ’a) : loc ’a

requires { mem x uf.dom }
writes { uf.memo }
variant { uf.maxd - uf.dst x }
ensures { result = uf.rep x }
ensures { uf.dst result ≥ uf.dst x }

= match get_ref uf.memo x with
| Root _ _ → x
| Link y → let rx = find uf y in

set_ref uf.memo x (Link rx);
rx end

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 35

implementation: union-find data operations

let link (ghost uf: uf ’a) (x y: loc ’a) : ghost loc ’a
requires { mem x uf.dom }
requires { x = uf.rep x }
requires { mem y uf.dom }
requires { y = uf.rep y }
ensures { (result = old (rep uf x)) || (result = old (rep uf y))}
ensures { forall z. mem z uf.dom →

rep uf z = if old (equiv uf z x || equiv uf z y)
then result
else old (rep uf z) }

ensures { forall z. mem z uf.dom →
img uf z = if old (equiv uf z x || equiv uf z y)

then img uf result
else old (img uf z) }

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 36

implementation: union-find data operations

let union (ghost uf: uf ’a) (x y: loc ’a) : ghost loc ’a
requires { mem x uf.dom }
requires { mem y uf.dom }
ensures { result = old (rep uf x) || result = old (rep uf y) }
ensures { forall z. mem z uf.dom →

rep uf z = if old (equiv uf z x || equiv uf z y)
then result
else old (rep uf z) }

ensures { forall z. mem z uf.dom →
img uf z = if old (equiv uf z x || equiv uf z y)

then img uf result
else old (img uf z) }

= let a = find uf x in
let b = find uf y in
link uf a b

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 37

OCaml driver for union-find

(* custom driver for UnionFind_impl, to map the custom memory
model to OCaml references. *)

module UnionFind_impl.Mem
syntax type loc "(%1 content) ref"
syntax function Link "Link %1"
syntax function Root "Root (%1, %2)"
syntax val (==) "%1 == %2"
syntax val (!=) "%1 != %2"
syntax val alloc "ref %1"
syntax val get_ref "!%1"
syntax val set_ref "%1 := %2"

end

module UnionFind_impl.Impl
prelude "type ’a content = Link of ’a content ref

| Root of int * ’a"
end

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 38

Overall result

module spec code #VCs
UnionFind 74 176 135

all the VCs were proved automatically

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 39

conclusion

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 40

it works like a charm

how to generate a perfect maze of size N × N?

use union-find!

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 41

it works like a charm

how to generate a perfect maze of size N × N?

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 42

future work

obviously:
• more correct-by-construction data-structures and algorithms
• integration into critical software / client code

in the Vocal/CFML/COQ, the proof process is not automatic but it is
possible to prove very subtle or complex properties, for instance about
computational complexity

our plan to achieve this level of proof power can be divided in two points:

1. separation logic support in why3 (as a library), for a better systematic
memory region / frame reasonning

2. integrate time credits techniques for checking computational
complexity

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 43

