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A contextual Introduction
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context

a bug is a disaster waiting to happen

security perspective: attack entry, security breach, information leakage, etc.

critical systems perspective: failure, dammage, (mission, life, etc.) loss, etc.

business perspective: disturbance, costs, loss of trust/business, etc.
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claim.... as seen on a reliable social medium
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in this talk

the software lifecycle is complex
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but first:
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Some facts about programming activities

programming environments are always the result of design choices (made
by its creators)

there is no known silver bullet, then it’s always a (maybe outdated)
compromise (security, efficiency, high level/low level, automatic/manual
memory management etc.)
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Some facts about programming activities

• code reuse (central to the OO paradigm success), boilerplates/ code
recipes, stackoverflow style of programming, the import everything
paradigm, etc.

• relation between the programmer and its programming environment:

from the programming environment perspective, it is assumed that the
programmer knows the programming environment, its limitations, its
compromises and subsequent coding practices, and masters what he’s
doing

from the programmers perspective, it is assumed that the offered
programming facilities do exactly what they’re supposed to do, as efficient
as possible, as simple as possible and do not introduce unspecified behavior

how do we know that these assumptions hold?
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old but gold

binary search: first publication in 1946 ...

... first correct publication in 1962
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old but gold

Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)

(column 4) - writing correct programs
The challenge of binary search

(as seen p.37)

Warning
Boring material ahead
skip to section 4,4

when drowsiness strikes

concise and crystal clear explanation of what is going on...

and yet...
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old but gold

in 2006, an embarrassing bug was found in the standard library of Java... in the
(binary) search methods

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

... been there for more than nine years!
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old but gold

the bug :

...
int mid = (low + high) / 2;
int midVal = a[mid];

...

may surpass the int type range: integer overflow

and then cause an array out of bound error

possible solution:

int mid = low + (high - low) / 2

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 12



lessons?

it’s a good idea to have API/Standard Libraries done right...
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The Vocal Project
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VOCAL – a Verified OCAml Library

a library of correct-by-construction, efficient general-purpose data
structures and algorithms

• priority queues
• hash tables
• sequences
• sets/maps
• resizable arrays
• heap
• ...

• graph algorithms
• sorting
• searching
• string processing
• union-find
• ...

software that could benefit from such a library: Coq, Frama-C, Astrée,
SPARK, Infer, Alt-Ergo, Cubicle, EasyCrypt, ProVerif, etc.

which, in turn, are used in avionics, defense, aerospacial, finance, security,
hardware, etc.

(LRI/CNRS + Inria + Verimag + TrutInSoft + OCamlPro)
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a specification language for OCaml

regular .mli files with
• formal specification in special comments (à la JML / ACSL)
• informal comments
• users can ignore formal specs
• simple, mostly first-order logic

regular .ml files
• no spec

three design workflows: why3, COQ, CFML+COQ
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Vocal/Why3 workflow
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example — Vector.mli

(** resizable arrays *)

type ’a t
(*@ ephemeral *)
(*@ field mutable view: ’a seq *)
(*@ invariant length view ≤ Sys.max_array_length *)
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example — Vector.mli

val resize: ’a t → int → unit
(** [resize a n] sets the length of vector [a] to [n].

The elements that are no longer part of the vector, if any,
are internally replaced by the dummy value of vector [a],
so that they can be garbage collected when possible.
Raise [Invalid_argument]

if [n < 0] or [n > Sys.max_array_length] *)
(*@ resize a n

checks 0 ≤ n ≤ Sys.max_array_length
modifies a
ensures length a.view = n
ensures forall i. 0 ≤ i < min (length (old a.view)) n →

a.view[i] = (old a.view)[i] *)
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WhyML code for Vector

type t ’a = {
dummy: ’a;

mutable size: int63;
mutable data: array ’a;

ghost mutable view: seq ’a;
}
invariant { length view = size}
invariant { forall i. 0 ≤ i < size → view[i] = data[i] }
invariant { 0 ≤ size ≤ length data ≤ max_array_length }
invariant { forall i. size ≤ i < length data → data[i] = dummy }
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WhyML code for Vector

type t ’a = {
dummy: ’a;

mutable size: int63;
mutable data: array ’a;

ghost mutable view: seq ’a;
}
invariant { length view = size}
invariant { forall i. 0 ≤ i < size → view[i] = data[i] }
invariant { 0 ≤ size ≤ length data ≤ max_array_length }
invariant { forall i. size ≤ i < length data → data[i] = dummy }

let resize (a: t ’a) (n: int63) : unit
writes { a.data, a.size, a.data.elts, a.view }
ensures { n = a.size }
ensures { forall i. 0 ≤ i < MinMax.min ((old a).size) n →

a.view[i] = (old a).view[i] }
raises { Invalid_argument → not (0 ≤ n ≤ max_array_length) }

= if not (zero≤ n ≤max_array_length) then raise Invalid_argument;
unsafe_resize a n
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extracted code from Vector

type ’a t = {
dummy: ’a;
mutable size: int;
mutable data: (’a array);

}

let resize (a: ’a t) (n: int) : unit =
begin

if not (0 <= n && n <= Sys.max_array_length)
then raise (Invalid_argument );

unsafe_resize a n
end
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driver to ocaml

module mach.int.Int63
syntax type int63 "int"
syntax val ( + ) "%1 + %2"
...

end

module mach.array.Array63
syntax type array "(%1 array)"
syntax val ([]) "Array.get %1 %2"
...

end
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Deductive program verification in a picture
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the state of the verified OCaml modules with Vocal/Why3

module spec code #VCs
UnionFind 74 176 135 union-find
PairingHeap 41 245 52 persistent priority queues
ZipperList 66 180 87 zipper data structure for lists
Arrays 37 121 77 binary search and binary sort
Queue 54 185 119 mutable queues
Vector 149 309 142 resizable arrays
HashSet 21 34 12 sets using hash tables
MergeSort 12 401 630 in-place mergesort of lists
Dfs - 58 5 depth-first graph marking
Schorr-Waite - 184 172 in-place graph marking

all the VCs were proved automatically!
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... and with Vocal/COQ/CFML

module tool loc Coq
Listmap Coq 50 170
HashTable CFML 150 750
UnionFind ∗ CFML 60 800
IntervalMap CFML WiP WiP

(∗) including (amortized) computational complexity
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Union-Find

correct-by-construction implementation using Vocal/Why3
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union-find data-structure

type ’a content =
| Link of ’a content ref
| Root of int * ’a

type ’a elem = ’a content ref
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union-find in Why3 : first attempt

type content ’a =
| Link (ref (content ’a))
| Root int ’a

Error:
This field has non-pure type, it cannot be used in a recursive
type definition

the Why3 types and effect system:

mutability of bounded depth =⇒ all aliases must be known statically
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solution : built-in memory model

embed a custom memory model into the why3’s logic :
• a type for memory pointers
• operations for pointer allocation, read and write
• an association table from pointers to their values

examples : Frama-C, Dafny, VeriFast, VCC, CFML

here we use the component-as-array memory model design technique
[Burstall, 1972]

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 30



memory model for union-find (1/2)

type loc ’a

type content ’a =
| Link (loc ’a)
| Root int ’a

type memory ’a = {
ghost mutable refs: loc ’a → option (content ’a);

}

here None/Some mean non-allocated/allocated
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memory model for union-find (2/2)

val alloc (ghost mem: memory ’a) (v: content ’a) : loc ’a
writes { mem }
ensures { (old mem).refs result = None }
ensures { mem.refs = (old mem.refs)[result ← Some v] }

val set_ref (ghost mem: memory ’a) (l: loc ’a) (v: content ’a)
requires { mem.refs l 6= None }
writes { mem }
ensures { mem.refs = (old mem.refs)[l ← Some v] }

...
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implementation: union-find data structure

type uf ’a = {
memo: memory ’a;

mutable dom : set (loc ’a); (* which "pointers" are involved *)
mutable rep : loc ’a → loc ’a;(* representative element *)
mutable img : loc ’a → ’a; (* representative element value *)
mutable dst : loc ’a → int; (* distance *)
mutable maxd: int; (* max value for dst *)
}
invariant { forall x. mem x dom → img x = img (rep x) }
invariant { forall x. mem x dom → rep (rep x) = rep x }
invariant { forall x. mem x dom → mem (rep x) dom }
invariant { forall x y. mem x dom → mem y dom →

rep x = rep y → img x = img y }
invariant { forall x y. mem x dom → rep x = y → mem y dom }
invariant { forall x. mem x dom ↔ allocated memo x }
...
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implementation: union-find data structure

type uf ’a = {
memo: memory ’a;

mutable dom : set (loc ’a); (* which "pointers" are involved *)
mutable rep : loc ’a → loc ’a;(* representative element *)
mutable img : loc ’a → ’a; (* representative element value *)
mutable dst : loc ’a → int; (* distance *)
mutable maxd: int; (* max value for dst *)
} ...
invariant { forall x. match memo.refs x with

| Some (Link y) → x 6= y ∧ allocated memo y ∧
rep x = rep y ∧ dst x < dst y

| Some (Root r v) → img x = v ∧ rep x = x
| None → true end }

invariant { 0 ≤ maxd }
invariant { forall x. mem x dom → dst x ≤ maxd }
invariant { forall x. mem x dom → match memo.refs (rep x) with

| Some (Root r _) → true
| _ → false end }
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implementation: union-find data operations

(* with path compression *)
let rec find (ghost uf: uf ’a) (x: loc ’a) : loc ’a

requires { mem x uf.dom }
writes { uf.memo }
variant { uf.maxd - uf.dst x }
ensures { result = uf.rep x }
ensures { uf.dst result ≥ uf.dst x }

= match get_ref uf.memo x with
| Root _ _ → x
| Link y → let rx = find uf y in

set_ref uf.memo x (Link rx);
rx end

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 35



implementation: union-find data operations

let link (ghost uf: uf ’a) (x y: loc ’a) : ghost loc ’a
requires { mem x uf.dom }
requires { x = uf.rep x }
requires { mem y uf.dom }
requires { y = uf.rep y }
ensures { (result = old (rep uf x)) || (result = old (rep uf y))}
ensures { forall z. mem z uf.dom →

rep uf z = if old (equiv uf z x || equiv uf z y)
then result
else old (rep uf z) }

ensures { forall z. mem z uf.dom →
img uf z = if old (equiv uf z x || equiv uf z y)

then img uf result
else old (img uf z) }

JCF MP SMDS Proving programs with pointers FCT-UNL, July. 2018 36



implementation: union-find data operations

let union (ghost uf: uf ’a) (x y: loc ’a) : ghost loc ’a
requires { mem x uf.dom }
requires { mem y uf.dom }
ensures { result = old (rep uf x) || result = old (rep uf y) }
ensures { forall z. mem z uf.dom →

rep uf z = if old (equiv uf z x || equiv uf z y)
then result
else old (rep uf z) }

ensures { forall z. mem z uf.dom →
img uf z = if old (equiv uf z x || equiv uf z y)

then img uf result
else old (img uf z) }

= let a = find uf x in
let b = find uf y in
link uf a b
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OCaml driver for union-find

(* custom driver for UnionFind_impl, to map the custom memory
model to OCaml references. *)

module UnionFind_impl.Mem
syntax type loc "(%1 content) ref"
syntax function Link "Link %1"
syntax function Root "Root (%1, %2)"
syntax val (==) "%1 == %2"
syntax val (!=) "%1 != %2"
syntax val alloc "ref %1"
syntax val get_ref "!%1"
syntax val set_ref "%1 := %2"

end

module UnionFind_impl.Impl
prelude "type ’a content = Link of ’a content ref

| Root of int * ’a"
end
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Overall result

module spec code #VCs
UnionFind 74 176 135

all the VCs were proved automatically
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conclusion
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it works like a charm

how to generate a perfect maze of size N × N?

use union-find!
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it works like a charm

how to generate a perfect maze of size N × N?
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future work

obviously:
• more correct-by-construction data-structures and algorithms
• integration into critical software / client code

in the Vocal/CFML/COQ, the proof process is not automatic but it is
possible to prove very subtle or complex properties, for instance about
computational complexity

our plan to achieve this level of proof power can be divided in two points:

1. separation logic support in why3 (as a library), for a better systematic
memory region / frame reasonning

2. integrate time credits techniques for checking computational
complexity
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