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A contextual Introduction
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context

a bug is a disaster waiting to happen

security perspective: attack entry, security breach, information leakage, etc.

critical systems perspective: failure, dammage, (mission, life, etc.) loss, etc.

business perspective: disturbance, costs, loss of trust/business, etc.
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business example

Facebook development team motto:

Do not fail in front of the client, fail in-house

=⇒ heavy corporate investment in Programming (Language) Science and
Technologies: Reason, Hack, React, infer, flow, webassembly (contributor)
etc...
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another example
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software development context

the software lifecycle is complex
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in this talk
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but first:
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Some facts about programming activities

programming environments are always the result of design choices (made
by its creators)

there is no known silver bullet, then it’s always a (maybe outdated)
compromise (security, efficiency, high level/low level, automatic/manual
memory management etc.)
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Some facts about programming activities

• code reuse (central to the OO paradigm success), boilerplates/ code
recipes, stackoverflow style of programming, the import everything
paradigm, etc.

• relation between the programmer and its programming environment:

from the programming environment perspective, it is assumed that the
programmer knows the programming environment, its limitations, its
compromises and subsequent coding practices, and masters what he’s
doing

from the programmers perspective, it is assumed that the offered
programming facilities do exactly what they’re supposed to do, as efficient
as possible, as simple as possible and do not introduce unspecified behavior

how do we know that these assumptions hold?
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old but gold

binary search: first publication in 1946 ...

... first correct publication in 1962
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old but gold

Jon Bentley - Programming Pearls. 1986 (2nd ed. 2000)

(column 4) - writing correct programs
The challenge of binary search

(as seen p.37)

Warning
Boring material ahead
skip to section 4,4

when drowsiness strikes

concise and crystal clear explanation of what is going on...

and yet...
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old but gold

in 2006, an embarrassing bug was found in the standard library of Java... in the
(binary) search methods

Joshua Bloch, Google Research Blog
“Nearly All Binary Searches and Mergesorts are Broken”

... been there for more than nine years!
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old but gold

the bug :

...
int mid = (low + high) / 2;
int midVal = a[mid];

...

may surpass the int type range: integer overflow

and then cause an array out of bound error

possible solution:

int mid = low + (high - low) / 2
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lessons?

Computer Arithmetics 6= Arithmetics
even with integers

and

it’s a good idea to have API/Standard Libraries done right...
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The Vocal Project
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VOCAL – a Verified OCAml Library

a library of correct-by-construction, efficient general-purpose data
structures and algorithms

• priority queues
• hash tables
• sequences
• sets/maps
• resizable arrays
• heap
• ...

• graph algorithms
• sorting
• searching
• string processing
• union-find
• ...

software that could benefit from such a library: Coq, Frama-C, Astrée,
SPARK, Infer, Alt-Ergo, Cubicle, EasyCrypt, ProVerif, etc.

which, in turn, are used in avionics, defense, aerospacial, finance, security,
hardware, etc.

(LRI/CNRS + Inria + Verimag + TrutInSoft + OCamlPro)
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a specification language for OCaml

regular .mli files with
• formal specification in special comments (à la JML / ACSL)
• informal comments
• users can ignore formal specs
• simple, mostly first-order logic

regular .ml files
• no spec

three design workflows: why3, COQ, CFML+COQ
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Vocal/Why3 workflow
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example — Vector.mli

(** resizable arrays *)

type ’a t
(*@ ephemeral *)
(*@ field mutable view: ’a seq *)
(*@ invariant length view ≤ Sys.max_array_length *)
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example — Vector.mli

val resize: ’a t → int → unit
(** [resize a n] sets the length of vector [a] to [n].

The elements that are no longer part of the vector, if any,
are internally replaced by the dummy value of vector [a],
so that they can be garbage collected when possible.
Raise [Invalid_argument]

if [n < 0] or [n > Sys.max_array_length] *)
(*@ resize a n

checks 0 ≤ n ≤ Sys.max_array_length
modifies a
ensures length a.view = n
ensures forall i. 0 ≤ i < min (length (old a.view)) n →

a.view[i] = (old a.view)[i] *)
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WhyML code for Vector

type t ’a = {
dummy: ’a;

mutable size: int63;
mutable data: array ’a;

ghost mutable view: seq ’a;
}
invariant { length view = size}
invariant { forall i. 0 ≤ i < size → view[i] = data[i] }
invariant { 0 ≤ size ≤ length data ≤ max_array_length }
invariant { forall i. size ≤ i < length data → data[i] = dummy }
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WhyML code for Vector

type t ’a = {
dummy: ’a;

mutable size: int63;
mutable data: array ’a;

ghost mutable view: seq ’a;
}
invariant { length view = size}
invariant { forall i. 0 ≤ i < size → view[i] = data[i] }
invariant { 0 ≤ size ≤ length data ≤ max_array_length }
invariant { forall i. size ≤ i < length data → data[i] = dummy }

let resize (a: t ’a) (n: int63) : unit
writes { a.data, a.size, a.data.elts, a.view }
ensures { n = a.size }
ensures { forall i. 0 ≤ i < MinMax.min ((old a).size) n →

Seq.([]) a.view i = Seq.([]) (old a).view i }
raises { Invalid_argument → not (0 ≤ n ≤ max_array_length) }

= if not (zero≤ n ≤max_array_length) then raise Invalid_argument;
unsafe_resize a n
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extracted code from Vector

type ’a t = {
dummy: ’a;
mutable size: int;
mutable data: (’a array);

}

let resize (a: ’a t) (n: int) : unit =
begin

if not (0 <= n && n <= Sys.max_array_length)
then raise (Invalid_argument );

unsafe_resize a n
end
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driver to ocaml

module mach.int.Int63
syntax type int63 "int"
syntax val ( + ) "%1 + %2"
...

end

module mach.array.Array63
syntax type array "(%1 array)"
syntax val ([]) "Array.get %1 %2"
...

end
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Deductive program verification in a picture
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the state of the verified OCaml modules with Vocal/Why3

module spec code #VCs
UnionFind 74 176 135 union-find
PairingHeap 41 245 52 persistent priority queues
ZipperList 66 180 87 zipper data structure for lists
Arrays 37 121 77 binary search and binary sort
Queue 54 185 119 mutable queues
Vector 149 309 142 resizable arrays
HashSet 21 34 12 sets using hash tables
MergeSort 12 401 630 in-place mergesort of lists
Dfs - 58 5 depth-first graph marking
Schorr-Waite - 184 172 in-place graph marking

all the VCs were proved automatically!
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... and with Vocal/COQ/CFML

module tool loc Coq
Listmap Coq 50 170
HashTable CFML 150 750
UnionFind ∗ CFML 60 800
IntervalMap CFML WiP WiP

(∗) including (amortized) computational complexity
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On the importance of efficient supporting data structure
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the algorithmic quest

n \ O 1 log(n) n n log(n) n2 n3 2n n!

5 1 3 4 15 25 125 32 120
10 1 4 10 33 102 103 103 3628800
102 1 7 102 664 104 106 1030 9, 334× 10157

103 1 10 103 104 106 109 10301 4.024× 105136

104 1 13 104 105 108 1012 103000 -
105 1 17 105 1.7× 106 1010 1015 1030000 -
106 1 20 106 2× 107 1012 1018 103000000 -
107 1 23 107 2.3× 108 1014 - - -
108 1 27 108 2.7× 109 1016 - - -
109 1 30 109 3× 1010 1018 - - -
1010 1 33 1010 3.3× 1011 1020 - - -

if we estimate 109 operations per second on current computers architectures then:

10 minutes ≈ 1012 operations
1 hour ≈ 1013 operations
1 day ≈ 1015 operations
1 year ≈ 1017 operations

the universe is approx. 14× 109 years old

then has been able to perform ≈ 2× 1027

operations
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in a picture
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an example

In a positively weighted graph with an order of 109 vertices, how much time it
takes to determine the shortest path between two vertices?

using the Dijkstra algorithm? ... it depends on the data structure used to
represent working data (e.g. the graph, the neighborhood relationship, the
vertices to be processed)

naive implementations (run from them!) are quadratic.

If we accept that today’s computers perform roughly 109 operations per second,
this will take more than 30 years to find the shortest path

if one uses efficient data structures for the neighborhood relationship (set,
dictionaries, hash tables, etc.) and self-balancing binary search tree, binary
heap, pairing heap, or Fibonacci heap as a priority queue for the vertices to be
processed, Dijkstra algorithm can perform on a O(|E |+ |V |log(|V |)) basis

... then we run under 10 seconds to find the shortest path!
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the case for minimum spanning trees

Prim’s algorithm:
1. Pick some arbitrary start node s, initialize tree T = {s}
2. repeatedly add the shortest edge incident to T until the tree spans all

the nodes
naive implementations are also quadratic.

largely more efficient implementations make use of a priority queue to
store neighbors of the current tree.

If implemented by a binary heap, the complexity is O(|E |log(|V |))

with a Fibonacci heap, we have O(|E |+ |V |log(|V |)) (nicer for dense
graphs)
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the case for minimum spanning trees

Kurskal’s algorithm:
1. sort edges by cost and examine them from cheapest to most expansive
2. put each edge into the current forrest if it does not form a cycle with

the edges chosen so far
again, naive implementations are quadratic.

the initial sort costs O(|E |log(|E |)), the challenge is to detect cycles
efficiently (i.e. determine connected components).

The use of union-find data structure allows for such efficiency (below
O(|E |log(|E |))!!) and then we can then obtain an overall (worst case)
complexity of O(|E |log(|E |))!

(epilogue: Borůvka Alg. in O(|E |log(|V |) (and easily parallelizable ) and
Chazelle Alg. in O(|E |α(|E |, |V |)), that is in practice... linear !!)
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Union-Find
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Are we connected?

Can these two points communicate?

(source: R. Sedgewick and K. Wayne)
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Are we connected?

YES! - (63 connected components)

(source: R. Sedgewick and K. Wayne)

Use Union-Find!

If we set up the
Union-Find data structure
when setting up the
network configuration
itself, the answer of the
question is in practice
... constant!
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what is union-find?

union-find is a specialized data-structure
to keep track of disjoint subsets of a set,
say A, that form a partition of A

this implies the existence of a
equivalence relation over A that defines
the partition

as usual in equivalente classes, each
partition is denoted by a representative
element
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operations over set partitions
we expect three main operations (thus,
efficiently implemented) over set
partitions

create s: creates a “singleton” partition
{s} and adds it to the partitions set.

find n: returns the representative
element of the partition that contains n

union a b: merge the partitions
containing a and b (identity if a and b
belongs to the same partition )

two elements are in the same partition
(in the same class) if they have the
same representative element
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example of use

create 1 .. 10

union 1 3

union 5 8

find 1
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example of use

actual configuration

find 8

union 3 4
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example of use

union 7 3

find 4
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example of use

union 2 7
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example of use

union 8 6
union 6 9
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final configuration
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implementation details

since a node has at most one parent, one can use a (resizable) array to
encode the adjacency relation of the forest (seen as a graph)

1 2 3 4 5 6 7 8 9 10
7 2 1 1 5 5 2 5 5 10

this is a standard choice that implies the definition of a bijection of the set
A to {1..n} (with |A| = n)
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union-find

or, we could opt for the more direct encoding as a collection of pointers to
the following structure

type ’a content =
| Link of ’a content ref
| Root of int * ’a
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(worst case) complexity of this union-find

cost model: number of (pointer) allocation, update and dereferencing, for a set
of size N

create union find
1 N N

actually, this not the cost of individual operation seen alone that matters here

typical use of Union-Find is as an auxiliary data-structure, as a service

what matters is the overall behavior of a sequence of, say M, Union-Find
operations (as witnessed by its use in the Kruskal Algorithm)

=⇒ amortized complexity
O(M × N)

(N of these M operations are create operations, the remaining operations have
cost N - e.g. the cost of a sequence of Unions is quadratic)
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can we do better?

YES!

first: where is the bottleneck? in the size of underlying trees

can we do clever union when we know
the size of each class? yes.

this is union by rank.

if we encode in each class representative
the maximal depth of its underlying tree
(... its rank) we can cleverly choose
which class goes under the other

the representative element of the class with higher rank remains the
representative of the union.
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can we do even better?

YES!

each find operation go through the tree
to the root

we can take this opportunity to branch
all visited nodes directly to the root.

this is find with path compression
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complexity analysis of union-find with rank and path compression

technically more challenging to characterize precisely

but surprisingly fast in terms of performance

M union-find operations over N elements (so N create operations)

O(N +M × α(N))

where α is the inverse Ackermann function, which is a function that grows
astoundingly slow

e.g. α(number of atoms in the whole universe) ≤ 5

in practice, we can consider that each union-find operation takes constant time!

complexity epilogue - other data-structure with this amortized complexity: splay
tree (balanced BST in which elements under use are pushed to the root)
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correct-by-construction implementation using Vocal/Why3
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union-find data-structure

type ’a content =
| Link of ’a content ref
| Root of int * ’a

type ’a elem = ’a content ref
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union-find in Why3 : first attempt

type content ’a =
| Link (ref (content ’a))
| Root int ’a

Error:
This field has non-pure type, it cannot be used in a recursive
type definition

the Why3 type and effect system:

mutability of bounded depth =⇒ all aliases must be known statically
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solution : built-in memory model

embed a custom memory model into the why3’s logic :
• a type for memory pointers
• operations for pointer allocation, read and write
• an association table from pointers to their values

examples : Frama-C, Dafny, VeriFast, VCC, CFML

here we use the component-as-array memory model design technique
[Burstall, 1972]
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memory model for union-find (1/2)

type loc ’a

type content ’a =
| Link (loc ’a)
| Root int ’a

type memory ’a = {
ghost mutable refs: loc ’a → option (content ’a);

}

here None/Some mean non-allocated/allocated

JCF MP SMDS Proving programs with pointers Fev. 2018 56



memory model for union-find (2/2)

val alloc (ghost mem: memory ’a) (v: content ’a) : loc ’a
writes { mem }
ensures { (old mem).refs result = None }
ensures { mem.refs = (old mem.refs)[result ← Some v] }

val set_ref (ghost mem: memory ’a) (l: loc ’a) (v: content ’a)
requires { mem.refs l 6= None }
writes { mem }
ensures { mem.refs = (old mem.refs)[l ← Some v] }

...
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implementation: union-find data structure

type uf ’a = {
memo: memory ’a;

mutable dom : set (loc ’a); (* which "pointers" are involved *)
mutable rep : loc ’a → loc ’a;(* representative element *)
mutable img : loc ’a → ’a; (* representative element value *)
mutable dst : loc ’a → int; (* distance *)
mutable maxd: int;
}
invariant { forall x. mem x dom → img x = img (rep x) }
invariant { forall x. mem x dom → rep (rep x) = rep x }
invariant { forall x. mem x dom → mem (rep x) dom }
invariant { forall x y. mem x dom → mem y dom →

rep x = rep y → img x = img y }
invariant { forall x y. mem x dom → rep x = y → mem y dom }
invariant { forall x. mem x dom ↔ allocated memo x }
...
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implementation: union-find data structure

type uf ’a = {
memo: memory ’a;

mutable dom : set (loc ’a); (* which "pointers" are involved *)
mutable rep : loc ’a → loc ’a;(* representative element *)
mutable img : loc ’a → ’a; (* representative element value *)
mutable dst : loc ’a → int; (* distance *)
mutable maxd: int;
} ...

invariant { forall x. match memo.refs x with
| Some (Link y) → x 6= y ∧ allocated memo y ∧

rep x = rep y ∧ dst x < dst y
| Some (Root r v) → img x = v ∧ rep x = x
| None → true end }

invariant { 0 ≤ maxd }
invariant { forall x. mem x dom → dst x ≤ maxd }
invariant { forall x. mem x dom → match memo.refs (rep x) with

| Some (Root r _) → true
| _ → false end }
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implementation: union-find data operations

(* with path compression *)
let rec find (ghost uf: uf ’a) (x: loc ’a) : loc ’a

requires { mem x uf.dom }
writes { uf.memo }
variant { uf.maxd - uf.dst x }
ensures { result = uf.rep x }
ensures { uf.dst result ≥ uf.dst x }

= match get_ref uf.memo x with
| Root _ _ → x
| Link y → let rx = find uf y in

set_ref uf.memo x (Link rx);
rx end
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implementation: union-find data operations

let link (ghost uf: uf ’a) (x y: loc ’a) : ghost loc ’a
requires { mem x uf.dom }
requires { x = uf.rep x }
requires { mem y uf.dom }
requires { y = uf.rep y }
ensures { (result = old (rep uf x)) || (result = old (rep uf y)) }
ensures { forall z. mem z uf.dom →

rep uf z = if old (equiv uf z x || equiv uf z y) then result
else old (rep uf z) }

ensures { forall z. mem z uf.dom →
img uf z = if old (equiv uf z x || equiv uf z y) then img uf result

else old (img uf z) }
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implementation: union-find data operations

let union (ghost uf: uf ’a) (x y: loc ’a) : ghost loc ’a
requires { mem x uf.dom }
requires { mem y uf.dom }
ensures { result = old (rep uf x) || result = old (rep uf y) }
ensures { forall z. mem z uf.dom →

rep uf z = if old (equiv uf z x || equiv uf z y) then result
else old (rep uf z) }

ensures { forall z. mem z uf.dom →
img uf z = if old (equiv uf z x || equiv uf z y) then img uf result

else old (img uf z) }
= let a = find uf x in

let b = find uf y in
link uf a b
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OCaml driver for union-find

(* custom driver for UnionFind_impl, to map the custom memory
model to OCaml references. *)

module UnionFind_impl.Mem
syntax type loc "(%1 content) ref"
syntax function Link "Link %1"
syntax function Root "Root (%1, %2)"
syntax val (==) "%1 == %2"
syntax val (!=) "%1 != %2"
syntax val alloc "ref %1"
syntax val get_ref "!%1"
syntax val set_ref "%1 := %2"

end

module UnionFind_impl.Impl
prelude "type ’a content = Link of ’a content ref

| Root of int * ’a"
end
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conclusion

JCF MP SMDS Proving programs with pointers Fev. 2018 64



it works like a charm

how to generate a perfect maze of size N × N?

use union-find!

DEMO
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future work

obviously:
• more correct-by-construction data-structures and algorithms
• integration into critical software / client code

in the Vocal/CFML/COQ, the proof process is not automatic but it is
possible to prove very subtle or complex properties, for instance about
computational complexity

our plan to achieve this level of proof power can be divided in two points:

1. separation logic support in why3 (as a library), for a better systematic
memory region / frame reasonning

2. integrate time credits techniques for checking computational
complexity

JCF MP SMDS Proving programs with pointers Fev. 2018 66



Concluding Remark

Un peu de programmation éloigne de la logique mathématique;
beaucoup de programmation y ramène.

Xavier Leroy.
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