
78 commuNicaTioNS of The acm | SePteMber 2009 | voL. 52 | No. 9

review articles
Doi:10.1145/1562164.1562186

It’s one of the fundamental mathematical
problems of our time, and its importance
grows with the rise of powerful computers.

BY LaNce foRTNoW

The Status of
the P versus
NP Problem

wHEn Editor-in-CHiEF MosHE Vardi asked me to write
this piece for Communications, my first reaction was
the article could be written in two words:

Still open.
When I started graduate school in the mid-1980s,

many believed that the quickly developing area of
circuit complexity would soon settle the P versus
NP problem, whether every algorithmic problem
with efficiently verifiable solutions have efficiently
computable solutions. But circuit complexity and
other approaches to the problem have stalled and
we have little reason to believe we will see a proof
separating P from NP in the near future.

nevertheless, the computer science landscape
has dramatically changed in the nearly four decades
since Steve Cook presented his seminal NP-
completeness paper “The Complexity of Theorem-
Proving Procedures”10 in Shaker Heights, oH in early
May, 1971. Computational power has dramatically

increased, the cost of computing has
dramatically decreased, not to men-
tion the power of the Internet. Com-
putation has become a standard tool
in just about every academic field.
Whole subfields of biology, chemis-
try, physics, economics and others are
devoted to large-scale computational
modeling, simulations, and problem
solving.

As we solve larger and more com-
plex problems with greater computa-
tional power and cleverer algorithms,
the problems we cannot tackle begin
to stand out. The theory of NP-com-
pleteness helps us understand these
limitations and the P versus NP prob-
lem begins to loom large not just as
an interesting theoretical question in
computer science, but as a basic prin-
ciple that permeates all the sciences.

So while we don’t expect the P ver-
sus NP problem to be resolved in the
near future, the question has driven
research in a number of topics to help
us understand, handle, and even take

The software written for this illustration
makes a stylized version of a network graph
that draws connections between elements
based on proximity. The graph constantly
changes as the elements sort themselves.

SePteMber 2009 | voL. 52 | No. 9 | commuNicaTioNS of The acm 79

advantage of the hardness of various
computational problems.

In this article I look at how people
have tried to solve the P versus NP
problem as well as how this question
has shaped so much of the research in
computer science and beyond. I will
look at how to handle NP-complete
problems and the theory that has
developed from those approaches.
I show how a new type of “interac-
tive proof systems” led to limitations
of approximation algorithms and
consider whether quantum comput-
ing can solve NP-complete problems
(short answer: not likely). And I close
by describing a new long-term project
that will try to separate P from NP us-
ing algebraic-geometric techniques.

This article does not try to be totally
accurate or complete either technical-
ly or historically, but rather informally
describes the P versus NP problem
and the major directions in computer
science inspired by this question over
the past several decades.

What is the P versus NP Problem?
Suppose we have a large group of stu-
dents that we need to pair up to work
on projects. We know which students
are compatible with each other and we
want to put them in compatible groups
of two. We could search all possible pair-
ings but even for 40 students we would
have more than 300 billion trillion pos-
sible pairings.

In 1965, Jack Edmonds12 gave an ef-
ficient algorithm to solve this match-
ing problem and suggested a formal
definition of “efficient computation”
(runs in time a fixed polynomial of the
input size). The class of problems with
efficient solutions would later become
known as P for “Polynomial Time.”

But many related problems do not
seem to have such an efficient algo-
rithm. What if we wanted to make
groups of three students with each pair
of students in each group compatible
(Partition into Triangles)? What if we
wanted to find a large group of students
all of whom are compatible with each

other (Clique)? What if we wanted to
sit students around a large round table
with no incompatible students sitting
next to each other (Hamiltonian Cycle)?
What if we put the students into three
groups so that each student is in the
same group with only his or her com-
patibles (3-Coloring)?

All these problems have a similar
favor: Given a potential solution, for
example, a seating chart for the round
table, we can validate that solution ef-
ficiently. The collection of problems
that have efficiently verifiable solutions
is known as NP (for “Nondeterministic
Polynomial-Time,” if you have to ask).

So P = NP means that for every prob-
lem that has an efficiently verifiable
solution, we can find that solution effi-
ciently as well.

We call the very hardest NP problems
(which include Partition into Triangles,
Clique, Hamiltonian Cycle and 3-Col-
oring) “NP-complete,” that is, given an
efficient algorithm for one of them, we
can find an efficient algorithm for all I

L
L

U
s

T
R

A
T

I
o

n
 B

y
 C

.E
.B

.
R

E
A

s

80 commuNicaTioNS of The acm | SePteMber 2009 | voL. 52 | No. 9

review articles

P = NP then public-key cryptography
becomes impossible. True, but what
we will gain from P = NP will make the
whole Internet look like a footnote in
history.

Since all the NP-complete optimiza-
tion problems become easy, everything
will be much more efficient. Transpor-
tation of all forms will be scheduled
optimally to move people and goods
around quicker and cheaper. Manufac-
turers can improve their production to
increase speed and create less waste.
And I’m just scratching the surface.

Learning becomes easy by using the
principle of Occam’s razor—we simply
find the smallest program consistent
with the data. Near perfect vision rec-
ognition, language comprehension and
translation and all other learning tasks
become trivial. We will also have much
better predictions of weather and earth-
quakes and other natural phenom-
enon.

P = NP would also have big implica-
tions in mathematics. One could find
short, fully logical proofs for theorems

of them and in fact any problem in NP.
Steve Cook, Leonid Levin, and Richard
Karp10, 24, 27 developed the initial theory
of NP-completeness that generated
multiple ACM Turing Awards.

In the 1970s, theoretical comput-
er scientists showed hundreds more
problems NP-complete (see Garey and
Johnson16). An efficient solution to any
NP-complete problem would imply P =
NP and an efficient solution to every NP-
complete problem.

Most computer scientists quickly
came to believe P ≠ NP and trying to
prove it quickly became the single most
important question in all of theoretical
computer science and one of the most
important in all of mathematics. Soon
the P versus NP problem became an im-
portant computational issue in nearly
every scientific discipline.

As computers grew cheaper and
more powerful, computation started
playing a major role in nearly every aca-
demic field, especially the sciences. The
more scientists can do with computers,
the more they realize some problems
seem computationally difficult. Many of
these fundamental problems turn out
to be NP-complete. A small sample:

Finding a DNA sequence that best ˲

fits a collection of fragments of the se-
quence (see Gusfield20).

Finding a ground state in the Ising ˲

model of phase transitions (see Cipra8).
Finding Nash Equilbriums with ˲

specific properties in a number of envi-
ronments (see Conitzer9).

Finding optimal protein threading ˲

procedures.26

Determining if a mathematical ˲

statement has a short proof (follows
from Cook10).

In 2000, the Clay Math Institute
named the P versus NP problem as one
of the seven most important open ques-
tions in mathematics and has offered a
million-dollar prize for a proof that de-
termines whether or not P = NP.

What if P = NP?
To understand the importance of the
P versus NP problem let us imagine
a world where P = NP. Technically we
could have P = NP, but not have practi-
cal algorithms for most NP-complete
problems. But suppose in fact we do
have very quick algorithms for all these
problems.

Many focus on the negative, that if

What we would
gain from P = NP
will make the whole
internet look like a
footnote in history.

review articles

september 2009 | vol. 52 | no. 9 | communications of the acm 81

but these proofs are usually extremely
long. But we can use the Occam razor
principle to recognize and verify math-
ematical proofs as typically written in
journals. We can then find proofs of
theorems that have reasonable length
proofs say in under 100 pages. A person
who proves P = NP would walk home
from the Clay Institute not with $1 mil-
lion check but with seven (actually six
since the Poincaré Conjecture appears
solved).

Don’t get your hopes up. Complexity
theorists generally believe P ≠ NP and
such a beautiful world cannot exist.

approaches to showing P ≠ nP
Here, I present a number of ways we
have tried and failed to prove P ≠ NP.
The survey of Fortnow and Homer14
gives a fuller historical overview of these
techniques.

Diagonalization. Can we just con-
struct an NP language L specifically
designed so that every single polyno-
mial-time algorithm fails to compute L
properly on some input? This approach,

agonalization techniques to show some
NP-complete problems like Boolean
formula satisfiability cannot have algo-
rithms that use both a small amount of
time and memory,39 but this is a long
way from P ≠ NP.

Circuit Complexity. To show P ≠ NP it
is sufficient to show some NP-complete
problem cannot be solved by relatively
small circuits of AND, OR, and NOT
gates (the number of gates bounded by
a fixed polynomial in the input size).

In 1984, Furst, Saxe, and Sipser15
showed that small circuits cannot solve
the parity function if the circuits have a
fixed number of layers of gates. In 1985,
Razborov31 showed the NP-complete
problem of finding a large clique does
not have small circuits if one only allows
AND and OR gates (no NOT gates). If one
extends Razborov’s result to general cir-
cuits one will have proved P ≠ NP.

Razborov later showed his techniques
would fail miserably if one allows NOT
gates.32 Razborov and Rudich33 develop
a notion of “natural” proofs and give
evidence that our limited techniques

known as diagonalization, goes back to
the 19th century.

In 1874, Georg Cantor7 showed the
real numbers are uncountable using a
technique known as diagonalization.
Given a countable list of reals, Cantor
showed how to create a new real num-
ber not on that list.

Alan Turing, in his seminal paper on
computation,38 used a similar technique
to show that the Halting problem is not
computable. In the 1960s complexity
theorists used diagonalization to show
that given more time or memory one
can solve more problems. Why not use
diagonalization to separate NP from P?

Diagonalization requires simula-
tion and we don’t know how a fixed NP
machine can simulate an arbitrary P
machine. Also a diagonalization proof
would likely relativize, that is, work even
if all machines involved have access to
the same additional information. Bak-
er, Gill and Solovay6 showed no relativ-
izable proof can settle the P versus NP
problem in either direction.

Complexity theorists have used di-i
l

l
u

s
t

r
a

t
i

o
n

 b
y

 C
.E

.b
.

r
E

a
s

82 communications of the acm | september 2009 | vol. 52 | no. 9

review articles

in circuit complexity cannot be pushed
much further. And, in fact, we haven’t
seen any significantly new circuit lower
bounds in the past 20 years.

Proof Complexity. Consider the set
of Tautologies, the Boolean formulas ø
of variables over ANDs, ORs, and NOTs
such that every setting of the variables
to True and False makes ø true, for ex-
ample the formula

(x AND y) OR (NOT x) OR (NOT y).

A literal is a variable or its negation,
such as x or NOT x. A formula, like the
one here, is in Disjunctive Normal Form
(DNF) if it is the OR of ANDs of one or
more literals.

If a formula ø is not a tautology, we
can give an easy proof of that fact by ex-
hibiting an assignment of the variables
that makes ø false. But if ø were indeed a
tautology, we don’t expect short proofs.
If one could prove there are no short
proofs of tautology that would imply P
≠ NP.

Resolution is a standard approach to
proving tautologies of DNFs by finding
two clauses of the form (y1 AND x) and
(y2 AND NOT x) and adding the clause
(y1 AND y2). A formula is a tautology ex-
actly when one can produce an empty
clause in this manner.

In 1985, Armin Haken21 showed that
tautologies that encode the pigeon-
hole principle (n + 1 pigeons in n holes
means some hole has more than one
pigeon) do not have short resolution
proofs.

Since then complexity theorists have
shown similar weaknesses in a number
of other proof systems including cutting
planes, algebraic proof systems based
on polynomials, and restricted versions
of proofs using the Frege axioms, the
basic axioms one learns in an introduc-
tory logic course.

But to prove P ≠ NP we would need
to show that tautologies cannot have
short proofs in an arbitrary proof sys-
tem. Even a breakthrough result show-
ing tautologies don’t have short general
Frege proofs would not suffice in sepa-
rating NP from P.

Dealing with hardness
So you have an NP-complete problem
you just have to solve. If, as we believe, P
≠ NP you won’t find a general algorithm
that will correctly and accurately solve

gives a fine-grained analysis of the com-
plexity of NP-complete problems based
on their parameter size.

Approximation. We cannot hope to
solve NP-complete optimization prob-
lems exactly but often we can get a good
approximate answer. Consider the trav-
eling salesperson problem again with
distances between cities given as the
crow flies (Euclidean distance). This
problem remains NP-complete but Aro-
ra4 gives an efficient algorithm that gets
very close to the best possible route.

Consider the MAX-CUT problem
of dividing people into two groups to
maximize the number of incompatibles
between the groups. Goemans and Wil-
liamson17 use semi-definite program-
ming to give a division of people only a
.878567 factor of the best possible.

Heuristics and Average-Case Com-
plexity. The study of NP-completeness
focuses on how algorithms perform on
the worst possible inputs. However the
specific problems that arise in practice
may be much easier to solve. Many com-
puter scientists employ various heuris-
tics to solve NP-complete problems that
arise from the specific problems in their
fields.

While we create heuristics for many
of the NP-complete problems, Boolean
formula Satisfiability (SAT) receives
more attention than any other. Boolean
formulas, especially those in conjunc-
tive normal form (CNF), the AND of ORs
of variables and their negations, have a
very simple description and yet are gen-
eral enough to apply to a large number
of practical scenarios particularly in
software verification and artificial in-
telligence. Most natural NP-complete
problems have simple efficient reduc-
tions to the satisfiability of Boolean for-
mulas. In competition these SAT solvers
can often settle satisfiability of formulas
of one million variables.a

Computational complexity theo-
rists study heuristics by considering
average-case complexity—how well can
algorithms perform on average from in-
stances generated by some specific dis-
tribution.

Leonid Levin28 developed a theory of
efficient algorithms over a specific dis-
tribution and formulated a distribution-
al version of the P versus NP problem.

Some problems, like versions of the

a http://www.satcompetition.org.

your problem all the time. But some-
times you need to solve the problem
anyway. All hope is not lost. Here, I de-
scribe some of the tools one can use on
NP-complete problems and how com-
putational complexity theory studies
these approaches. Typically one needs
to combine several of these approaches
when tackling NP-complete problems
in the real world.

Brute Force. Computers have gotten
faster, much faster since NP-complete-
ness was first developed. Brute force
search through all possibilities is now
possible for some small problem in-
stances. With some clever algorithms
we can even solve some moderate size
problems with ease.

The NP-complete traveling sales-
person problem asks for the smallest
distance tour through a set of specified
cities. Using extensions of the cutting-
plane method we can now solve, in
practice, traveling salespeople prob-
lems with more than 10,000 cities (see
Applegate3).

Consider the 3SAT problem, solving
Boolean formula satisfiability where
formulas are in the form of the AND of
several clauses where each clause is the
OR of three literal variables or nega-
tions of variables). 3SAT remains NP-
complete but the best algorithms can
in practice solve SAT problems on about
100 variables. We have similar results
for other variations of satisfiability and
many other NP-complete problems.

But for satisfiability on general for-
mulae and on many other NP-complete
problems we do not know algorithms
better than essentially searching all the
possibilities. In addition, all these algo-
rithms have exponential growth in their
running times, so even a small increase
in the problem size can kill what was an
efficient algorithm. Brute force alone
will not solve NP-complete problems no
matter how clever we are.

Parameterized Complexity. Consider
the Vertex Cover problem, find a set of
k “central people” such that for every
compatible pair of people, at least one
of them is central. For small k we can
determine whether a central set of peo-
ple exists efficiently no matter the total
number n of people we are considering.
For the Clique problem even for small k
the problem can still be difficult.

Downey and Fellows11 developed a
theory of parameterized complexity that

review articles

SePteMber 2009 | voL. 52 | No. 9 | commuNicaTioNS of The acm 83

shortest vector problem in a lattice or
computing the permanent of a ma-
trix, are hard on average exactly when
they are hard on worst-case inputs, but
neither of these problems is believed
to be NP-complete. Whether similar
worst-to-average reductions hold for
NP-complete sets is an important open
problem.

Average-case complexity plays an im-
portant role in many areas of computer
science, particularly cryptography, as
discussed later.

interactive Proofs and
Limits of approximation
Previously, we saw how sometimes one
can get good approximate solutions to
NP-complete optimization problems.
Many times though we seem to hit a
limit on our ability to even get good ap-
proximations. We now know that we
cannot achieve better approximations
on many of these problems unless P =
NP and we could solve these problems
exactly. The techniques to show these
negative results came out of a new mod-
el of proof system originally developed
for cryptography and to classify group
theoretic algorithmic problems.

As mentioned earlier, we don’t ex-
pect to have short traditional proofs of
tautologies. But consider an “interac-
tive proof” model where a prover Peggy
tries to convince a verifier Victor that a
formula ø is a tautology. Victor can ask
Peggy randomly generated questions
and need only be convinced with high
confidence. Quite surprisingly, these
proof systems have been shown to ex-
ist not only for tautologies but for any
problem computable in a reasonable
amount of memory.

A variation known as a “probabilisti-
cally checkable proof system” (PCPs),
where Peggy writes down an encoded
proof and Victor can make random-
ized queries to the bits of the proof, has
applications for approximations. The
“PCP Theorem” optimizes parameters,
which in its strong form shows that ev-
ery language in NP has a PCP where Vic-
tor uses a tiny number of random coins
and queries only three bits of the proof.

One can use this PCP theorem to
show the limitations of approximation
for a large number of optimization ques-
tions. For example, one cannot approxi-
mate the largest clique in a group of n
people by more than a multiplicative ra-

tio of nearly √n unless P = NP. See Mad-
hu Sudan’s recent article in Communi-
cations for more details and references
on PCPs.36

One can do even better assuming
a “Unique Games Conjecture” that
there exists PCPs for NP problems with
some stronger properties. Consider the
MAX-CUT problem of dividing people
discussed earlier. If the unique games
conjecture holds one cannot do bet-
ter than the .878567 factor given by the
Goemans-Williamson approximation
algorithm.26 Recent work shows how to
get a provably best approximation for
essentially any constrained problem as-
suming this conjecture.30

using hardness
In “What If P = NP?” we saw the nice
world that arises when we assume P =
NP. But we expect P ≠ NP to hold in very
strong ways. We can use strong hard-
ness assumptions as a positive tool,
particularly to create cryptographic pro-
tocols and to reduce or even eliminate
the need of random bits in probabilistic
algorithms.

Cryptography. We take it for granted
these days, the little key or lock on our
Web page that tells us that someone
listening to the network won’t get the
credit card number I just sent to an on-
line store or the password to the bank
that controls my money. But public-key
cryptography, the ability to send secure
messages between two parties that have
never privately exchanged keys, is a rela-
tively new development based on hard-
ness assumptions of computational
problems.

If P = NP then public-key cryptogra-
phy is impossible. Assuming P ≠ NP is
not enough to get public-key protocols,
instead we need strong average-case as-
sumptions about the difficulty of factor-
ing or related problems.

We can do much more than just pub-
lic-key cryptography using hard prob-
lems. Suppose Alice’s husband Bob is
working on a Sudoku puzzle and Alice
claims she has a solution to the puzzle
(solving a n × n Sudoku puzzle is NP-
complete). Can Alice convince Bob that
she knows a solution without revealing
any piece of it?

Alice can use a “zero-knowledge
proof,” an interactive proof with the ad-
ditional feature that the verifier learns
nothing other than some property

We expect P ≠ NP
to hold in very
strong ways.
We can use
strong hardness
assumptions as
a positive tool,
particularly
to create
cryptographic
protocols and
to reduce or
even eliminate
the need of random
bits in probabilistic
algorithms.

84 commuNicaTioNS of The acm | SePteMber 2009 | voL. 52 | No. 9

review articles

search problems so any algorithm would
have to use some special structure of NP-
complete problems that we don’t know
about. We have used some algebraic
structure of NP-complete problems for
interactive and zero-knowledge proofs
but quantum algorithms would seem to
require much more.

Lov Grover19 did find a quantum al-
gorithm that works on general NP prob-
lems but that algorithm only achieves
a quadratic speed-up and we have evi-
dence that those techniques will not go
further.

Meanwhile quantum cryptography,
using quantum mechanics to achieve
some cryptographic protocols without
hardness assumptions, has had some
success both in theory and in practice.

a New hope?
Ketan Mulmuley and Milind Sohoni
have presented an approach to the P
versus NP problem through algebraic
geometry, dubbed Geometric Complex-
ity Theory, or GCT.29

This approach seems to avoid the dif-

holds, like a Sudoku puzzle having a so-
lution. Every NP search problem has a
zero-knowledge proof under the appro-
priate hardness assumptions.

Online poker is generally played
through some “trusted” Web site, usu-
ally somewhere in the Caribbean. Can
we play poker over the Internet without
a trusted server? Using the right cryp-
tographic assumptions, not only poker
but any protocol that uses a trusted par-
ty can be replaced by one that uses no
trusted party and the players can’t cheat
or learn anything new beyond what they
could do with the trusted party.b

Eliminating Randomness. In the 1970s
we saw a new type of algorithm, one that
used random bits to aid in finding a so-
lution to a problem. Most notably we
had probabilistic algorithms35 for deter-
mining whether a number is prime, an
important routine needed for modern
cryptography. In 2004, we discovered
we don’t need randomness at all to effi-
ciently determine if a number is prime.2
Does randomness help us at all in find-
ing solutions to NP problems?

Truly independent and uniform
random bits are either very difficult or
impossible to produce (depending on
your beliefs about quantum mechan-
ics). Computer algorithms instead use
pseudorandom generators to gener-
ate a sequence of bits from some given
seed. The generators typically found on
our computers usually work well but oc-
casionally give incorrect results both in
theory and in practice.

We can create theoretically better
pseudorandom generators in two dif-
ferent ways, one based on the strong
hardness assumptions of cryptography
and the other based on worst-case com-
plexity assumptions. I will focus on this
second approach.

We need to assume a bit more than
P ≠ NP, roughly that NP-complete prob-
lems cannot be solved by smaller than
expected AND-OR-NOT circuits. A long
series of papers showed that, under this
assumption, any problem with an ef-
ficient probabilistic algorithm also has
an efficient algorithm that uses a pseu-
dorandom generator with a very short
seed, a surprising connection between
hard languages and pseudo-random-
ness (see Impagliazzo23). The seed is so
short we can try all possible seeds effi-

b See the survey of Goldreich18 for details.

ciently and avoid the need for random-
ness altogether.

Thus complexity theorists generally
believe having randomness does not
help in solving NP search problems and
that NP-complete problems do not have
efficient solutions, either with or with-
out using truly random bits.

While randomness doesn’t seem
necessary for solving search problems,
the unpredictability of random bits
plays a critical role in cryptography and
interactive proof systems and likely can-
not be avoided in these scenarios.

could Quantum computers
Solve NP-complete Problems?
While we have randomized and non-
randomized efficient algorithms for de-
termining whether a number is prime,
these algorithms usually don’t give us
the factors of a composite number.
Much of modern cryptography relies on
the fact that factoring or similar prob-
lems do not have efficient algorithms.

In the mid-1990s, Peter Shor34
showed how to factor numbers using
a hypothetical quantum computer. He
also developed a similar quantum al-
gorithm to solve the discrete logarithm
problem. The hardness of discrete log-
arithm on classical computers is also
used as a basis for many cryptographic
protocols. Nevertheless, we don’t ex-
pect that factoring or finding discrete
logarithms are NP-complete. While we
don’t think we have efficient algorithms
to solve factoring or discrete logarithm,
we also don’t believe we can reduce NP-
complete problems like Clique to the
factoring or discrete logarithm prob-
lems.

So could quantum computers one
day solve NP-complete problems? Un-
likely.

I’m not a physicist so I won’t address
the problem as to whether these ma-
chines can actually be built at a large
enough scale to solve factoring prob-
lems larger than we can with current
technology (about 200 digits). After bil-
lions of dollars of funding of quantum
computing research we still have a long
way to go.

Even if we could build these ma-
chines, Shor’s algorithm relies heavily on
the algebraic structures of numbers that
we don’t see in the known NP-complete
problems. We know that his algorithm
cannot be applied to generic “black-box”

NP can be seen as a graph where every
element is connected to every other
element. over these pages a deconstruction
of the graph is shown.

review articles

SePteMber 2009 | voL. 52 | No. 9 | commuNicaTioNS of The acm 85

ficulties mentioned earlier, but requires
deep mathematics that could require
many years or decades to carry through.

In essence, they define a family of
high-dimension polygons Pn based on
group representations on certain alge-
braic varieties. Roughly speaking, for
each n, if Pn contains an integral point,
then any circuit family for the Hamil-
tonian path problem must have size at
least nlog n on inputs of size n, which im-
plies P ≠ NP. Thus, to show that P ≠ NP
it suffices to show that Pn contains an
integral point for all n.

Although all that is necessary is to
show that Pn contains an integral point
for all n, Mulmuley and Sohoni argue
that this direct approach would be dif-
ficult and instead suggest first showing
that the integer programming problem
for the family Pn is, in fact, in P. Under
this approach, there are three signifi-
cant steps remaining:

1. Prove that the LP relaxation solves
the integer programming problem for
Pn in polynomial time;

2. Find an efficient, simple combi-

provide some insight to the P versus NP
problem.

Mulmuley and Sohoni have reduced
a question about the nonexistence of
polynomial-time algorithms for all NP-
complete problems to a question about
the existence of a polynomial-time al-
gorithm (with certain properties) for a
specific problem. This should give us
some hope, even in the face of problems
(1)–(3).

Nevertheless, Mulmuley believes it
will take about 100 years to carry out this
program, if it works at all.

conclusion
This survey focused on the P versus NP
problem, its importance, our attempts
to prove P ≠ NP and the approaches we
use to deal with the NP-complete prob-
lems that nature and society throws
at us. Much of the work mentioned
required a long series of mathemati-
cally difficult research papers that I
could not hope to adequately cover
in this short article. Also the field of
computational complexity goes well

natorial algorithm for the integer pro-
gramming problem for Pn, and;

3. Prove that this simple algorithm
always answers “yes.”

Since the polygons Pn are algebro-geo-
metric in nature, solving (1) is thought to
require algebraic geometry, representa-
tion theory, and the theory of quantum
groups. Mulmuley and Sohoni have giv-
en reasonable algebro-geometric condi-
tions that imply (1). These conditions
have classical analogues that are known
to hold, based on the Riemann Hypoth-
esis over finite fields (a theorem proved
by André Weil in the 1960s). Mulmuley
and Sohoni suggest that an analogous
Riemann Hypothesis-like statement is
required here (though not the classical
Riemann Hypothesis).

Although step (1) is difficult, Mulmu-
ley and Sohoni have provided definite
conjectures based on reasonable math-
ematical analogies that would solve
(1). In contrast, the path to completing
steps (2) and (3) is less clear. Despite
these remaining hurdles, even solving
the conjectures involved in (1) could I

L
L

U
s

T
R

A
T

I
o

n
 B

y
 C

.E
.B

.
R

E
A

s

86 commuNicaTioNS of The acm | SePteMber 2009 | voL. 52 | No. 9

review articles

(june 2003).
15. Furst, M., saxe, j., and sipser, M. Parity, circuits and

the polynomial-time hierarchy. Mathematical Systems
Theory 17 (1984), 13–27.

16. Garey, M. and johnson, D. Computers and Intractability.
A Guide to the Theory of NP-Completeness. W. H.
Freeman and Company, ny, 1979.

17. Goemans, M. and Williamson, D. Improved
approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming.
Journal of the ACM 42, 6 (1995), 1115–1145.

18. Goldreich, o. Foundations of cryptography|a primer.
Foundations and Trends in Theoretical Computer
Science 1, 1 (2005) 1–116.

19. Grover, L. A fast quantum mechanical algorithm for
database search. In Proceedings of the 28th ACM
Symposium on the Theory of Computing. ACM, ny,
1996, 212–219.

20. Gusfield, D. Algorithms on Strings, Trees and
Sequences: Computer Science and Computational
Biology. Cambridge University Press, 1997.

21. Haken, A. The intractability of resolution. Theoretical
Computer Science, 39 (1985) 297–305.

22. Impagliazzo, R. A personal view of average-case
complexity theory. In Proceedings of the 10th Annual
Conference on Structure in Complexity Theory. IEEE
Computer society Press, 1995, 134–147.

23. Impagliazzo, R. and Wigderson, A. P = BPP if E requires
exponential circuits: Derandomizing the XoR lemma. In
Proceedings of the 29th ACM Symposium on the Theory
of Computing. ACM, ny, 1997, 220–229.

24. Karp, R. Reducibility among combinatorial problems.
Complexity of Computer Computations. R. Miller and j.
Thatcher, Eds. Plenum Press, 1972, 85–103.

25. Khot, s., Kindler, G., Mossel, E., and o’Donnell, R.
optimal inapproximability results for MAX-CUT and
other 2-variable CsPs? SIAM Journal on Computing
37, 1 (2007), 319–357.

26. Lathrop, R. The protein threading problem with
sequence amino acid interaction preferences is nP-
complete. Protein Engineering 7, 9 (1994), 1059–1068.

27. Levin, L. Universal’nyie perebornyie zadachi (Universal
search problems: in Russian). Problemy Peredachi
Informatsii 9, 3 (1973), 265–266. Corrected English
translation.37

28. Levin, L. Average case complete problems. SIAM
Journal on Computing 15, (1986), 285–286.

29. Mulmuley, K. and sohoni, M. Geometric complexity
theory I: An approach to the P vs. nP and related
problems. SIAM Journal on Computing 31, 2, (2001)
496–526.

30. Raghavendra, P. optimal algorithms and
inapproximability results for every csp? In Proceedings
of the 40th ACM Symposium on the Theory of
Computing. ACM, ny, 2008, 245–254.

31. Razborov, A. Lower bounds on the monotone
complexity of some Boolean functions. Soviet
Mathematics-Doklady 31, (1985) 485–493.

32. Razborov, A. on the method of approximations. In
Proceedings of the 21st ACM Symposium on the Theory
of Computing. ACM, ny, 1989, 167–176.

33. Razborov, A., and Rudich, s. natural proofs. Journal
of Computer and System Sciences 55, 1 (Aug. 1997),
24–35.

34. shor. P. Polynomial-time algorithms for prime
factorization and discrete logarithms on a quantum
computer. SIAM Journal on Computing 26, 5 (1997)
1484–1509.

35. solovay, R. and strassen, V. A fast Monte-Carlo test for
primality. SIAM Journal on Computing 6 (1977), 84–85.
see also erratum 7:118, 1978.

36. sudan, M. Probabilistically checkable proofs. Commun.
ACM 52, 3 (Mar. 2009) 76–84.

37. Trakhtenbrot, R. A survey of Russian approaches to
Perebor (brute-force search) algorithms. Annals of the
History of Computing 6, 4 (1984), 384–400.

38. Turing, A. on computable numbers, with an application
to the Etscheidungs problem. Proceedings of the
London Mathematical Society 42 (1936), 230–265.

39. van Melkebeek, D. A survey of lower bounds for
satisfiability and related problems. Foundations and
Trends in Theoretical Computer Science 2, (2007),
197–303.

Lance Fortnow (fortnow@eecs.northwestern.edu) is a
professor of electrical engineering and computer science
at northwestern University’s McCormick school of
Engineering, Evanston, IL.

© 2009 ACM 0001-0782/09/0900 $10.00

beyond just the P versus NP problem
that I haven’t discussed here. In “Fur-
ther Reading,” a number of references
are presented for those interested in a
deeper understanding of the P versus
NP problem and computational com-
plexity.

The P versus NP problem has gone
from an interesting problem related to
logic to perhaps the most fundamental
and important mathematical question
of our time, whose importance only
grows as computers become more pow-
erful and widespread. The question has
even hit popular culture appearing in
television shows such as The Simpsons
and Numb3rs. Yet many only know of
the basic principles of P versus NP and
I hope this survey has given you a small
feeling of the depth of research inspired
by this mathematical problem.

Proving P ≠ NP would not be the end
of the story, it would just show that NP-
complete problem, don’t have efficient
algorithms for all inputs but many ques-
tions might remain. Cryptography, for
example, would require that a problem
like factoring (not believed to be NP-
complete) is hard for randomly drawn
composite numbers.

Proving P ≠ NP might not be the start
of the story either. Weaker separations
remain perplexingly difficult, for exam-
ple showing that Boolean-formula Satis-
fiability cannot be solved in near-linear
time or showing that some problem
using a certain amount of memory can-
not be solved using roughly the same
amount of time.

None of us truly understands the P
versus NP problem, we have only begun
to peel the layers around this increas-
ingly complex question. Perhaps we will
see a resolution of the P versus NP prob-
lem in the near future but I almost hope
not. The P versus NP problem continues
to inspire and boggle the mind and con-
tinued exploration of this problem will
lead us to yet even new complexities in
that truly mysterious process we call
computation.

further Reading
Recommendations for a more in-depth
look at the P versus NP problem and the
other topics discussed in this article:

Steve Homer and I have written a ˲

detailed historical view of computation-
al complexity.14

The 1979 book of Garey and John- ˲

son still gives the best overview of the P
versus NP problem with an incredibly
useful list of NP-complete problems.16

Scott Aaronson looks at the unlikely ˲

possibility that the P versus NP problem
is formally independent.1

Russell Impagliazzo gives a wonder- ˲

ful description of five possible worlds of
complexity.22

Sanjeev Arora and Boaz Barak have ˲

a new computational complexity text-
book with an emphasis on recent re-
search directions.5

The ˲ Foundations and Trends in Theo-
retical Computer Science journal and the
Computational Complexity columns of
the Bulletin of the European Association
of Theoretical Computer Science and SI-
GACT News have many wonderful sur-
veys on various topics in theory includ-
ing those mentioned in this article.

Read the blog Computational Com- ˲

plexity and you will be among the first to
know about any updates of the status of
the P versus NP problem.13

acknowledgments
Thanks to Rahul Santhanam for many
useful discussions and comments. Josh
Grochow wrote an early draft. The anon-
ymous referees provided critical advice.
Some of the material in this article has
appeared in my earlier surveys and my
blog.13

References
1. Aaronson, s. Is P versus nP formally independent?

Bulletin of the European Association for Theoretical
Computer Science 81 (oct. 2003).

2. Agrawal, M., Kayal, n., and saxena, n. PRIMEs. In
Annals of Mathematics 160, 2 (2004) 781–793.

3. Applegate, D., Bixby, R., Chvátal, V., and Cook, W. on the
solution of traveling salesman problems. Documenta
Mathematica, Extra Volume ICM III (1998), 645–656.

4. Arora, s. Polynomial time approximation schemes for
Euclidean traveling salesman and other geometric
problems. J. ACM 45, 5 (sept. 1998), 753–782.

5. Arora, s. and Barak, B. Complexity Theory: A Modern
Approach. Cambridge University Press, Cambridge,
2009.

6. Baker, T., Gill, j., and solovay, R. Relativizations of the P
= nP question. SIAM Journal on Computing 4, 4 (1975),
431–442.

7. Cantor, G. Ueber eine Eigenschaft des Inbegriffes
aller reellen algebraischen Zahlen. Crelle’s Journal 77
(1874), 258–262.

8. Cipra, B. This Ising model is nP-complete. SIAM News
33, 6 (july/Aug. 2000).

9. Conitzer, V. and sandholm, T. new complexity results
about nash equilibria. Games and Economic Behavior
63, 2 (july 2008), 621–641.

10. Cook, s. The complexity of theorem-proving
procedures. In Proceedings of the 3rd ACM Symposium
on the Theory of Computing, ACM, ny, 1971, 151–158.

11. Downey, R. and Fellows, M. Parameterized Complexity.
springer, 1999.

12. Edmonds, j. Paths, trees and owers. Canadian Journal
of Mathematics 17, (1965), 449–467.

13. Fortnow, L. and Gasarch, W. Computational complexity;
http://weblog.fortnow.com.

14. Fortnow, L. and Homer, s. A short history of
computational complexity. Bulletin of the European
Association for Theoretical Computer Science 80,

