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It’s one of the fundamental mathematical 
problems of our time, and its importance 
grows with the rise of powerful computers.

BY LaNce foRTNoW

The Status of 
the P versus 
NP Problem

wHEn Editor-in-CHiEF MosHE Vardi asked me to write 
this piece for Communications, my first reaction was 
the article could be written in two words:

Still open.
When I started graduate school in the mid-1980s, 

many believed that the quickly developing area of 
circuit complexity would soon settle the P versus 
NP problem, whether every algorithmic problem 
with efficiently verifiable solutions have efficiently 
computable solutions. But circuit complexity and 
other approaches to the problem have stalled and 
we have little reason to believe we will see a proof 
separating P from NP in the near future.

nevertheless, the computer science landscape 
has dramatically changed in the nearly four decades 
since Steve Cook presented his seminal NP-
completeness paper “The Complexity of Theorem-
Proving Procedures”10 in Shaker Heights, oH in early 
May, 1971. Computational power has dramatically 

increased, the cost of computing has 
dramatically decreased, not to men-
tion the power of the Internet. Com-
putation has become a standard tool 
in just about every academic field. 
Whole subfields of biology, chemis-
try, physics, economics and others are 
devoted to large-scale computational 
modeling, simulations, and problem 
solving.

As we solve larger and more com-
plex problems with greater computa-
tional power and cleverer algorithms, 
the problems we cannot tackle begin 
to stand out. The theory of NP-com-
pleteness helps us understand these 
limitations and the P versus NP prob-
lem begins to loom large not just as 
an interesting theoretical question in 
computer science, but as a basic prin-
ciple that permeates all the sciences.

So while we don’t expect the P ver-
sus NP problem to be resolved in the 
near future, the question has driven 
research in a number of topics to help 
us understand, handle, and even take 

The software written for this illustration 
makes a stylized version of a network graph 
that draws connections between elements 
based on proximity. The graph constantly 
changes as the elements sort themselves.
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advantage of the hardness of various 
computational problems.

In this article I look at how people 
have tried to solve the P versus NP 
problem as well as how this question 
has shaped so much of the research in 
computer science and beyond. I will 
look at how to handle NP-complete 
problems and the theory that has 
developed from those approaches. 
I show how a new type of “interac-
tive proof systems” led to limitations 
of approximation algorithms and 
consider whether quantum comput-
ing can solve NP-complete problems 
(short answer: not likely). And I close 
by describing a new long-term project 
that will try to separate P from NP us-
ing algebraic-geometric techniques.

This article does not try to be totally 
accurate or complete either technical-
ly or historically, but rather informally 
describes the P versus NP problem 
and the major directions in computer 
science inspired by this question over 
the past several decades.

What is the P versus NP Problem?
Suppose we have a large group of stu-
dents that we need to pair up to work 
on projects. We know which students 
are compatible with each other and we 
want to put them in compatible groups 
of two. We could search all possible pair-
ings but even for 40 students we would 
have more than 300 billion trillion pos-
sible pairings.

In 1965, Jack Edmonds12 gave an ef-
ficient algorithm to solve this match-
ing problem and suggested a formal 
definition of “efficient computation” 
(runs in time a fixed polynomial of the 
input size). The class of problems with 
efficient solutions would later become 
known as P for “Polynomial Time.”

But many related problems do not 
seem to have such an efficient algo-
rithm. What if we wanted to make 
groups of three students with each pair 
of students in each group compatible 
(Partition into Triangles)? What if we 
wanted to find a large group of students 
all of whom are compatible with each 

other (Clique)? What if we wanted to 
sit students around a large round table 
with no incompatible students sitting 
next to each other (Hamiltonian Cycle)? 
What if we put the students into three 
groups so that each student is in the 
same group with only his or her com-
patibles (3-Coloring)?

All these problems have a similar 
favor: Given a potential solution, for 
example, a seating chart for the round 
table, we can validate that solution ef-
ficiently. The collection of problems 
that have efficiently verifiable solutions 
is known as NP (for “Nondeterministic 
Polynomial-Time,” if you have to ask).

So P = NP means that for every prob-
lem that has an efficiently verifiable 
solution, we can find that solution effi-
ciently as well.

We call the very hardest NP problems 
(which include Partition into Triangles, 
Clique, Hamiltonian Cycle and 3-Col-
oring) “NP-complete,” that is, given an 
efficient algorithm for one of them, we 
can find an efficient algorithm for all I
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P = NP then public-key cryptography 
becomes impossible. True, but what 
we will gain from P = NP will make the 
whole Internet look like a footnote in 
history.

Since all the NP-complete optimiza-
tion problems become easy, everything 
will be much more efficient. Transpor-
tation of all forms will be scheduled 
optimally to move people and goods 
around quicker and cheaper. Manufac-
turers can improve their production to 
increase speed and create less waste. 
And I’m just scratching the surface.

Learning becomes easy by using the 
principle of Occam’s razor—we simply 
find the smallest program consistent 
with the data. Near perfect vision rec-
ognition, language comprehension and 
translation and all other learning tasks 
become trivial. We will also have much 
better predictions of weather and earth-
quakes and other natural phenom-
enon.

P = NP would also have big implica-
tions in mathematics. One could find 
short, fully logical proofs for theorems 

of them and in fact any problem in NP. 
Steve Cook, Leonid Levin, and Richard 
Karp10, 24, 27 developed the initial theory 
of NP-completeness that generated 
multiple ACM Turing Awards.

In the 1970s, theoretical comput-
er scientists showed hundreds more 
problems NP-complete (see Garey and 
Johnson16). An efficient solution to any 
NP-complete problem would imply P = 
NP and an efficient solution to every NP-
complete problem.

Most computer scientists quickly 
came to believe P ≠ NP and trying to 
prove it quickly became the single most 
important question in all of theoretical 
computer science and one of the most 
important in all of mathematics. Soon 
the P versus NP problem became an im-
portant computational issue in nearly 
every scientific discipline.

As computers grew cheaper and 
more powerful, computation started 
playing a major role in nearly every aca-
demic field, especially the sciences. The 
more scientists can do with computers, 
the more they realize some problems 
seem computationally difficult. Many of 
these fundamental problems turn out 
to be NP-complete. A small sample:

Finding a DNA sequence that best  ˲

fits a collection of fragments of the se-
quence (see Gusfield20).

Finding a ground state in the Ising  ˲

model of phase transitions (see Cipra8).
Finding Nash Equilbriums with  ˲

specific properties in a number of envi-
ronments (see Conitzer9).

Finding optimal protein threading  ˲

procedures.26

Determining if a mathematical  ˲

statement has a short proof (follows 
from Cook10).

In 2000, the Clay Math Institute 
named the P versus NP problem as one 
of the seven most important open ques-
tions in mathematics and has offered a 
million-dollar prize for a proof that de-
termines whether or not P = NP.

What if P = NP?
To understand the importance of the 
P versus NP problem let us imagine 
a world where P = NP. Technically we 
could have P = NP, but not have practi-
cal algorithms for most NP-complete 
problems. But suppose in fact we do 
have very quick algorithms for all these 
problems.

Many focus on the negative, that if 

What we would 
gain from P = NP 
will make the whole 
internet look like a 
footnote in history.
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but these proofs are usually extremely 
long. But we can use the Occam razor 
principle to recognize and verify math-
ematical proofs as typically written in 
journals. We can then find proofs of 
theorems that have reasonable length 
proofs say in under 100 pages. A person 
who proves P = NP would walk home 
from the Clay Institute not with $1 mil-
lion check but with seven (actually six 
since the Poincaré Conjecture appears 
solved).

Don’t get your hopes up. Complexity 
theorists generally believe P ≠ NP and 
such a beautiful world cannot exist.

approaches to showing P ≠ nP
Here, I present a number of ways we 
have tried and failed to prove P ≠ NP. 
The survey of Fortnow and Homer14 
gives a fuller historical overview of these 
techniques.

Diagonalization. Can we just con-
struct an NP language L specifically 
designed so that every single polyno-
mial-time algorithm fails to compute L 
properly on some input? This approach, 

agonalization techniques to show some 
NP-complete problems like Boolean 
formula satisfiability cannot have algo-
rithms that use both a small amount of 
time and memory,39 but this is a long 
way from P ≠ NP.

Circuit Complexity. To show P ≠ NP it 
is sufficient to show some NP-complete 
problem cannot be solved by relatively 
small circuits of AND, OR, and NOT 
gates (the number of gates bounded by 
a fixed polynomial in the input size).

In 1984, Furst, Saxe, and Sipser15 
showed that small circuits cannot solve 
the parity function if the circuits have a 
fixed number of layers of gates. In 1985, 
Razborov31 showed the NP-complete 
problem of finding a large clique does 
not have small circuits if one only allows 
AND and OR gates (no NOT gates). If one 
extends Razborov’s result to general cir-
cuits one will have proved P ≠ NP.

Razborov later showed his techniques 
would fail miserably if one allows NOT 
gates.32 Razborov and Rudich33 develop 
a notion of “natural” proofs and give 
evidence that our limited techniques 

known as diagonalization, goes back to 
the 19th century.

In 1874, Georg Cantor7 showed the 
real numbers are uncountable using a 
technique known as diagonalization. 
Given a countable list of reals, Cantor 
showed how to create a new real num-
ber not on that list.

Alan Turing, in his seminal paper on 
computation,38 used a similar technique 
to show that the Halting problem is not 
computable. In the 1960s complexity 
theorists used diagonalization to show 
that given more time or memory one 
can solve more problems. Why not use 
diagonalization to separate NP from P?

Diagonalization requires simula-
tion and we don’t know how a fixed NP 
machine can simulate an arbitrary P 
machine. Also a diagonalization proof 
would likely relativize, that is, work even 
if all machines involved have access to 
the same additional information. Bak-
er, Gill and Solovay6 showed no relativ-
izable proof can settle the P versus NP 
problem in either direction.

Complexity theorists have used di-i
l
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in circuit complexity cannot be pushed 
much further. And, in fact, we haven’t 
seen any significantly new circuit lower 
bounds in the past 20 years.

Proof Complexity. Consider the set 
of Tautologies, the Boolean formulas ø 
of variables over ANDs, ORs, and NOTs 
such that every setting of the variables 
to True and False makes ø true, for ex-
ample the formula

(x AND y) OR (NOT x) OR (NOT y).

A literal is a variable or its negation, 
such as x or NOT x. A formula, like the 
one here, is in Disjunctive Normal Form 
(DNF) if it is the OR of ANDs of one or 
more literals.

If a formula ø is not a tautology, we 
can give an easy proof of that fact by ex-
hibiting an assignment of the variables 
that makes ø false. But if ø were indeed a 
tautology, we don’t expect short proofs. 
If one could prove there are no short 
proofs of tautology that would imply P 
≠ NP.

Resolution is a standard approach to 
proving tautologies of DNFs by finding 
two clauses of the form (y1 AND x) and 
(y2 AND NOT x) and adding the clause 
(y1 AND y2). A formula is a tautology ex-
actly when one can produce an empty 
clause in this manner.

In 1985, Armin Haken21 showed that 
tautologies that encode the pigeon-
hole principle (n + 1 pigeons in n holes 
means some hole has more than one 
pigeon) do not have short resolution 
proofs.

Since then complexity theorists have 
shown similar weaknesses in a number 
of other proof systems including cutting 
planes, algebraic proof systems based 
on polynomials, and restricted versions 
of proofs using the Frege axioms, the 
basic axioms one learns in an introduc-
tory logic course.

But to prove P ≠ NP we would need 
to show that tautologies cannot have 
short proofs in an arbitrary proof sys-
tem. Even a breakthrough result show-
ing tautologies don’t have short general 
Frege proofs would not suffice in sepa-
rating NP from P.

Dealing with hardness
So you have an NP-complete problem 
you just have to solve. If, as we believe, P 
≠ NP you won’t find a general algorithm 
that will correctly and accurately solve 

gives a fine-grained analysis of the com-
plexity of NP-complete problems based 
on their parameter size.

Approximation. We cannot hope to 
solve NP-complete optimization prob-
lems exactly but often we can get a good 
approximate answer. Consider the trav-
eling salesperson problem again with 
distances between cities given as the 
crow flies (Euclidean distance). This 
problem remains NP-complete but Aro-
ra4 gives an efficient algorithm that gets 
very close to the best possible route.

Consider the MAX-CUT problem 
of dividing people into two groups to 
maximize the number of incompatibles 
between the groups. Goemans and Wil-
liamson17 use semi-definite program-
ming to give a division of people only a 
.878567 factor of the best possible.

Heuristics and Average-Case Com-
plexity. The study of NP-completeness 
focuses on how algorithms perform on 
the worst possible inputs. However the 
specific problems that arise in practice 
may be much easier to solve. Many com-
puter scientists employ various heuris-
tics to solve NP-complete problems that 
arise from the specific problems in their 
fields.

While we create heuristics for many 
of the NP-complete problems, Boolean 
formula Satisfiability (SAT) receives 
more attention than any other. Boolean 
formulas, especially those in conjunc-
tive normal form (CNF), the AND of ORs 
of variables and their negations, have a 
very simple description and yet are gen-
eral enough to apply to a large number 
of practical scenarios particularly in 
software verification and artificial in-
telligence. Most natural NP-complete 
problems have simple efficient reduc-
tions to the satisfiability of Boolean for-
mulas. In competition these SAT solvers 
can often settle satisfiability of formulas 
of one million variables.a

Computational complexity theo-
rists study heuristics by considering 
average-case complexity—how well can 
algorithms perform on average from in-
stances generated by some specific dis-
tribution.

Leonid Levin28 developed a theory of 
efficient algorithms over a specific dis-
tribution and formulated a distribution-
al version of the P versus NP problem.

Some problems, like versions of the 

a http://www.satcompetition.org.

your problem all the time. But some-
times you need to solve the problem 
anyway. All hope is not lost. Here, I de-
scribe some of the tools one can use on 
NP-complete problems and how com-
putational complexity theory studies 
these approaches. Typically one needs 
to combine several of these approaches 
when tackling NP-complete problems 
in the real world.

Brute Force. Computers have gotten 
faster, much faster since NP-complete-
ness was first developed. Brute force 
search through all possibilities is now 
possible for some small problem in-
stances. With some clever algorithms 
we can even solve some moderate size 
problems with ease.

The NP-complete traveling sales-
person problem asks for the smallest 
distance tour through a set of specified 
cities. Using extensions of the cutting-
plane method we can now solve, in 
practice, traveling salespeople prob-
lems with more than 10,000 cities (see 
Applegate3).

Consider the 3SAT problem, solving 
Boolean formula satisfiability where 
formulas are in the form of the AND of 
several clauses where each clause is the 
OR of three literal variables or nega-
tions of variables). 3SAT remains NP-
complete but the best algorithms can 
in practice solve SAT problems on about 
100 variables. We have similar results 
for other variations of satisfiability and 
many other NP-complete problems.

But for satisfiability on general for-
mulae and on many other NP-complete 
problems we do not know algorithms 
better than essentially searching all the 
possibilities. In addition, all these algo-
rithms have exponential growth in their 
running times, so even a small increase 
in the problem size can kill what was an 
efficient algorithm. Brute force alone 
will not solve NP-complete problems no 
matter how clever we are.

Parameterized Complexity. Consider 
the Vertex Cover problem, find a set of 
k “central people” such that for every 
compatible pair of people, at least one 
of them is central. For small k we can 
determine whether a central set of peo-
ple exists efficiently no matter the total 
number n of people we are considering. 
For the Clique problem even for small k 
the problem can still be difficult.

Downey and Fellows11 developed a 
theory of parameterized complexity that 
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shortest vector problem in a lattice or 
computing the permanent of a ma-
trix, are hard on average exactly when 
they are hard on worst-case inputs, but 
neither of these problems is believed 
to be NP-complete. Whether similar 
worst-to-average reductions hold for 
NP-complete sets is an important open 
problem.

Average-case complexity plays an im-
portant role in many areas of computer 
science, particularly cryptography, as 
discussed later.

interactive Proofs and 
Limits of approximation
Previously, we saw how sometimes one 
can get good approximate solutions to 
NP-complete optimization problems. 
Many times though we seem to hit a 
limit on our ability to even get good ap-
proximations. We now know that we 
cannot achieve better approximations 
on many of these problems unless P = 
NP and we could solve these problems 
exactly. The techniques to show these 
negative results came out of a new mod-
el of proof system originally developed 
for cryptography and to classify group 
theoretic algorithmic problems.

As mentioned earlier, we don’t ex-
pect to have short traditional proofs of 
tautologies. But consider an “interac-
tive proof” model where a prover Peggy 
tries to convince a verifier Victor that a 
formula ø is a tautology. Victor can ask 
Peggy randomly generated questions 
and need only be convinced with high 
confidence. Quite surprisingly, these 
proof systems have been shown to ex-
ist not only for tautologies but for any 
problem computable in a reasonable 
amount of memory.

A variation known as a “probabilisti-
cally checkable proof system” (PCPs), 
where Peggy writes down an encoded 
proof and Victor can make random-
ized queries to the bits of the proof, has 
applications for approximations. The 
“PCP Theorem” optimizes parameters, 
which in its strong form shows that ev-
ery language in NP has a PCP where Vic-
tor uses a tiny number of random coins 
and queries only three bits of the proof.

One can use this PCP theorem to 
show the limitations of approximation 
for a large number of optimization ques-
tions. For example, one cannot approxi-
mate the largest clique in a group of n 
people by more than a multiplicative ra-

tio of nearly √n  unless P = NP. See Mad-
hu Sudan’s recent article in Communi-
cations for more details and references 
on PCPs.36

One can do even better assuming 
a “Unique Games Conjecture” that 
there exists PCPs for NP problems with 
some stronger properties. Consider the 
MAX-CUT problem of dividing people 
discussed earlier. If the unique games 
conjecture holds one cannot do bet-
ter than the .878567 factor given by the 
Goemans-Williamson approximation 
algorithm.26 Recent work shows how to 
get a provably best approximation for 
essentially any constrained problem as-
suming this conjecture.30

using hardness
In “What If P = NP?” we saw the nice 
world that arises when we assume P = 
NP. But we expect P ≠ NP to hold in very 
strong ways. We can use strong hard-
ness assumptions as a positive tool, 
particularly to create cryptographic pro-
tocols and to reduce or even eliminate 
the need of random bits in probabilistic 
algorithms.

Cryptography. We take it for granted 
these days, the little key or lock on our 
Web page that tells us that someone 
listening to the network won’t get the 
credit card number I just sent to an on-
line store or the password to the bank 
that controls my money. But public-key 
cryptography, the ability to send secure 
messages between two parties that have 
never privately exchanged keys, is a rela-
tively new development based on hard-
ness assumptions of computational 
problems.

If P = NP then public-key cryptogra-
phy is impossible. Assuming P ≠ NP is 
not enough to get public-key protocols, 
instead we need strong average-case as-
sumptions about the difficulty of factor-
ing or related problems.

We can do much more than just pub-
lic-key cryptography using hard prob-
lems. Suppose Alice’s husband Bob is 
working on a Sudoku puzzle and Alice 
claims she has a solution to the puzzle 
(solving a n × n Sudoku puzzle is NP-
complete). Can Alice convince Bob that 
she knows a solution without revealing 
any piece of it?

Alice can use a “zero-knowledge 
proof,” an interactive proof with the ad-
ditional feature that the verifier learns 
nothing other than some property 

We expect P ≠ NP  
to hold in very 
strong ways. 
We can use 
strong hardness 
assumptions as 
a positive tool, 
particularly 
to create 
cryptographic 
protocols and  
to reduce or  
even eliminate  
the need of random 
bits in probabilistic 
algorithms. 
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search problems so any algorithm would 
have to use some special structure of NP-
complete problems that we don’t know 
about. We have used some algebraic 
structure of NP-complete problems for 
interactive and zero-knowledge proofs 
but quantum algorithms would seem to 
require much more.

Lov Grover19 did find a quantum al-
gorithm that works on general NP prob-
lems but that algorithm only achieves 
a quadratic speed-up and we have evi-
dence that those techniques will not go 
further.

Meanwhile quantum cryptography, 
using quantum mechanics to achieve 
some cryptographic protocols without 
hardness assumptions, has had some 
success both in theory and in practice.

a New hope?
Ketan Mulmuley and Milind Sohoni 
have presented an approach to the P 
versus NP problem through algebraic 
geometry, dubbed Geometric Complex-
ity Theory, or GCT.29

This approach seems to avoid the dif-

holds, like a Sudoku puzzle having a so-
lution. Every NP search problem has a 
zero-knowledge proof under the appro-
priate hardness assumptions.

Online poker is generally played 
through some “trusted” Web site, usu-
ally somewhere in the Caribbean. Can 
we play poker over the Internet without 
a trusted server? Using the right cryp-
tographic assumptions, not only poker 
but any protocol that uses a trusted par-
ty can be replaced by one that uses no 
trusted party and the players can’t cheat 
or learn anything new beyond what they 
could do with the trusted party.b

Eliminating Randomness. In the 1970s 
we saw a new type of algorithm, one that 
used random bits to aid in finding a so-
lution to a problem. Most notably we 
had probabilistic algorithms35 for deter-
mining whether a number is prime, an 
important routine needed for modern 
cryptography. In 2004, we discovered 
we don’t need randomness at all to effi-
ciently determine if a number is prime.2 
Does randomness help us at all in find-
ing solutions to NP problems?

Truly independent and uniform 
random bits are either very difficult or 
impossible to produce (depending on 
your beliefs about quantum mechan-
ics). Computer algorithms instead use 
pseudorandom generators to gener-
ate a sequence of bits from some given 
seed. The generators typically found on 
our computers usually work well but oc-
casionally give incorrect results both in 
theory and in practice.

We can create theoretically better 
pseudorandom generators in two dif-
ferent ways, one based on the strong 
hardness assumptions of cryptography 
and the other based on worst-case com-
plexity assumptions. I will focus on this 
second approach.

We need to assume a bit more than 
P ≠ NP, roughly that NP-complete prob-
lems cannot be solved by smaller than 
expected AND-OR-NOT circuits. A long 
series of papers showed that, under this 
assumption, any problem with an ef-
ficient probabilistic algorithm also has 
an efficient algorithm that uses a pseu-
dorandom generator with a very short 
seed, a surprising connection between 
hard languages and pseudo-random-
ness (see Impagliazzo23). The seed is so 
short we can try all possible seeds effi-

b See the survey of Goldreich18 for details.

ciently and avoid the need for random-
ness altogether.

Thus complexity theorists generally 
believe having randomness does not 
help in solving NP search problems and 
that NP-complete problems do not have 
efficient solutions, either with or with-
out using truly random bits.

While randomness doesn’t seem 
necessary for solving search problems, 
the unpredictability of random bits 
plays a critical role in cryptography and 
interactive proof systems and likely can-
not be avoided in these scenarios.

could Quantum computers 
Solve NP-complete Problems?
While we have randomized and non-
randomized efficient algorithms for de-
termining whether a number is prime, 
these algorithms usually don’t give us 
the factors of a composite number. 
Much of modern cryptography relies on 
the fact that factoring or similar prob-
lems do not have efficient algorithms.

In the mid-1990s, Peter Shor34 
showed how to factor numbers using 
a hypothetical quantum computer. He 
also developed a similar quantum al-
gorithm to solve the discrete logarithm 
problem. The hardness of discrete log-
arithm on classical computers is also 
used as a basis for many cryptographic 
protocols. Nevertheless, we don’t ex-
pect that factoring or finding discrete 
logarithms are NP-complete. While we 
don’t think we have efficient algorithms 
to solve factoring or discrete logarithm, 
we also don’t believe we can reduce NP-
complete problems like Clique to the 
factoring or discrete logarithm prob-
lems.

So could quantum computers one 
day solve NP-complete problems? Un-
likely.

I’m not a physicist so I won’t address 
the problem as to whether these ma-
chines can actually be built at a large 
enough scale to solve factoring prob-
lems larger than we can with current 
technology (about 200 digits). After bil-
lions of dollars of funding of quantum 
computing research we still have a long 
way to go.

Even if we could build these ma-
chines, Shor’s algorithm relies heavily on 
the algebraic structures of numbers that 
we don’t see in the known NP-complete 
problems. We know that his algorithm 
cannot be applied to generic “black-box” 

NP can be seen as a graph where every 
element is connected to every other 
element. over these pages a deconstruction 
of the graph is shown.
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ficulties mentioned earlier, but requires 
deep mathematics that could require 
many years or decades to carry through.

In essence, they define a family of 
high-dimension polygons Pn based on 
group representations on certain alge-
braic varieties. Roughly speaking, for 
each n, if Pn contains an integral point, 
then any circuit family for the Hamil-
tonian path problem must have size at 
least nlog n on inputs of size n, which im-
plies P ≠ NP. Thus, to show that P ≠ NP 
it suffices to show that Pn contains an 
integral point for all n.

Although all that is necessary is to 
show that Pn contains an integral point 
for all n, Mulmuley and Sohoni argue 
that this direct approach would be dif-
ficult and instead suggest first showing 
that the integer programming problem 
for the family Pn is, in fact, in P. Under 
this approach, there are three signifi-
cant steps remaining: 

1. Prove that the LP relaxation solves 
the integer programming problem for 
Pn in polynomial time; 

2. Find an efficient, simple combi-

provide some insight to the P versus NP 
problem.

Mulmuley and Sohoni have reduced 
a question about the nonexistence of 
polynomial-time algorithms for all NP-
complete problems to a question about 
the existence of a polynomial-time al-
gorithm (with certain properties) for a 
specific problem. This should give us 
some hope, even in the face of problems 
(1)–(3).

Nevertheless, Mulmuley believes it 
will take about 100 years to carry out this 
program, if it works at all.

conclusion
This survey focused on the P versus NP 
problem, its importance, our attempts 
to prove P ≠ NP and the approaches we 
use to deal with the NP-complete prob-
lems that nature and society throws 
at us. Much of the work mentioned 
required a long series of mathemati-
cally difficult research papers that I 
could not hope to adequately cover 
in this short article. Also the field of 
computational complexity goes well 

natorial algorithm for the integer pro-
gramming problem for Pn, and; 

3. Prove that this simple algorithm 
always answers “yes.”

Since the polygons Pn are algebro-geo-
metric in nature, solving (1) is thought to 
require algebraic geometry, representa-
tion theory, and the theory of quantum 
groups. Mulmuley and Sohoni have giv-
en reasonable algebro-geometric condi-
tions that imply (1). These conditions 
have classical analogues that are known 
to hold, based on the Riemann Hypoth-
esis over finite fields (a theorem proved 
by André Weil in the 1960s). Mulmuley 
and Sohoni suggest that an analogous 
Riemann Hypothesis-like statement is 
required here (though not the classical 
Riemann Hypothesis).

Although step (1) is difficult, Mulmu-
ley and Sohoni have provided definite 
conjectures based on reasonable math-
ematical analogies that would solve 
(1). In contrast, the path to completing 
steps (2) and (3) is less clear. Despite 
these remaining hurdles, even solving 
the conjectures involved in (1) could I
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beyond just the P versus NP problem 
that I haven’t discussed here. In “Fur-
ther Reading,” a number of references 
are presented for those interested in a 
deeper understanding of the P versus 
NP problem and computational com-
plexity.

The P versus NP problem has gone 
from an interesting problem related to 
logic to perhaps the most fundamental 
and important mathematical question 
of our time, whose importance only 
grows as computers become more pow-
erful and widespread. The question has 
even hit popular culture appearing in 
television shows such as The Simpsons 
and Numb3rs. Yet many only know of 
the basic principles of P versus NP and 
I hope this survey has given you a small 
feeling of the depth of research inspired 
by this mathematical problem.

Proving P ≠ NP would not be the end 
of the story, it would just show that NP-
complete problem, don’t have efficient 
algorithms for all inputs but many ques-
tions might remain. Cryptography, for 
example, would require that a problem 
like factoring (not believed to be NP-
complete) is hard for randomly drawn 
composite numbers.

Proving P ≠ NP might not be the start 
of the story either. Weaker separations 
remain perplexingly difficult, for exam-
ple showing that Boolean-formula Satis-
fiability cannot be solved in near-linear 
time or showing that some problem 
using a certain amount of memory can-
not be solved using roughly the same 
amount of time.

None of us truly understands the P 
versus NP problem, we have only begun 
to peel the layers around this increas-
ingly complex question. Perhaps we will 
see a resolution of the P versus NP prob-
lem in the near future but I almost hope 
not. The P versus NP problem continues 
to inspire and boggle the mind and con-
tinued exploration of this problem will 
lead us to yet even new complexities in 
that truly mysterious process we call 
computation.

further Reading
Recommendations for a more in-depth 
look at the P versus NP problem and the 
other topics discussed in this article:

Steve Homer and I have written a  ˲

detailed historical view of computation-
al complexity.14

The 1979 book of Garey and John- ˲

son still gives the best overview of the P 
versus NP problem with an incredibly 
useful list of NP-complete problems.16

Scott Aaronson looks at the unlikely  ˲

possibility that the P versus NP problem 
is formally independent.1

Russell Impagliazzo gives a wonder- ˲

ful description of five possible worlds of 
complexity.22

Sanjeev Arora and Boaz Barak have  ˲

a new computational complexity text-
book with an emphasis on recent re-
search directions.5

The  ˲ Foundations and Trends in Theo-
retical Computer Science journal and the 
Computational Complexity columns of 
the Bulletin of the European Association 
of Theoretical Computer Science and SI-
GACT News have many wonderful sur-
veys on various topics in theory includ-
ing those mentioned in this article.

Read the blog Computational Com- ˲

plexity and you will be among the first to 
know about any updates of the status of 
the P versus NP problem.13
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