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AN UNSOLVABLE PROBLEM OF ELEMENTARY NUMBER 

THEORY.= 


1. Introduction. There is a class of problems of elementary number 
theory which can be stated in the form that i t  is required to find an effectively 
calculable function f of n positive integers, such that f (x,, x,, . . . ,x,) =2 
is a necessary and sufficient condition for the truth of a certain proposition of 
elementary number theory involving x,, x,, . . .,x, as free variables. 

An example of such a problem is the problem to find a means of de-
termining of any given positive integer n whether or not there exist positive 
integers 2, y, z, such that xn -/- yn =xn. For this may be interpreted, required 
t o  find an effectively calculable function f, such that f ( n )  is equal to 2 if and 
only if there exist positive integers x, y, z, such that xn + yn =xn. Clearly 
the condition that the function f be effectively calculable is an essential part 
of the problem, since without i t  the problem becomes trivial. 

Another example of a problem of this class is, for instance, the problem 
of topology, to find a complete set of effectively calculable invariants of closed 
three-dimensional simplicia1 manifolds under homeomorphisms. This problem 
can be interpreted as a problem of elementary number theory in view of the 
fact that topological complexes are representable by matrices of incidence. 
I n  fact, as is well known, the property of a set of incidence matrices that i t  
represent a closed three-dimensional manifold, and the property of two sets 
of incidence matrices that they represent homeomorphic complexes, can both 
be described in purely number-theoretic terms. If we enumerate, in a straight- 
forward way, the sets of incidence matrices which represent closed three- 
dimensional manifolds, it will then be immediately provable that the problem 
under consideration (to find a complete set of effectively calculable invariants 
of closed three-dimensional manifolds) is equivalent to the problem, to find 
an effectively calculable function f of positive integers, such that f (m, lz) is 
equal to 2 if and only if the m-th set of incidence matrices and the lz-th set 
of incidence matrices in the enumeration represent homeomorphic complexes. 

Other examples will readily occur to the reader. 

Presented to the American Mathematical Society, April 19, 1935. 
The selection of the particular positive integer 2 instead of some other is, of 

course, accidental and non-essential. 
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The purpose of the present paper is to propose a definition of effective 
calculability which is thought to correspond satisfactorily to the somewhat 
vague intuitive notion in terms of which problems of this class are often stated, 
and to show, by means of an example, that not every problem of this class 
is solvable. 

2. Conversion and A-definability. We select a particular list of sym-
bols, consisting of the symbols { ,), ( ,), X, [ ,1, and an enumerably infinite 
set of symbols a, b, c, . . . to be called variables. And we define the word 
formula to mean any finite sequence of symbols out of this list. The terms 
well-formed formula, free variable, and bound variable are then defined by 
induction as follows. A variable x standing alone is a well-formed formula 
and the occurrence of x in  i t  is an occurrence of x as a free variable in i t ;  
if the formulas F and X are well-formed, { F ) ( X )  is well-formed, and an 
occurrence of x as a free (bound) variable in F or X is an occurrence of x 
as a free (bound) variable in { F )  (X)  ; if the formula M is well-formed and 
contains an occurrence of x as a free variable in M, then hx[M] is well-formed, 
any occurrence of x in  h [ M ]  is an occurrence of x as a bound variable in 
hx[M], and an occurrence of a variable y, other than x, as a free (bound) 
variable in M is an occurrence of y as a free (bound) variable in hx[M]. 

As will appear, this definition of effective calculability can be stated in either 
of two equivalent forms, ( 1 )  that  a function of positive integers shall be called 
effectively calculable if it is h-definable in the sense of $ 2  below, ( 2 )  that  a function 
of positive integers shall be called effectively calculable if i t  is recursive in the sense 
of $ 4 below. The notion of h-definability is due jointly to the present author and 
S. C. Kleene, successive steps towards i t  having been taken by the present author in 
the Annals of Mathematics, vol. 34 (1933), p. 863, and by Kleene in the American 
Journal of Mathematics, vol. 57 (1935), p. 219. The notion of recursiveness in the 
sense of $ 4 below is due jointly to Jacques Herbrand and Kurt  Gijdel, as  is there 
explained. And the proof of equivalence of the two notions is due chiefly to Kleene, 
but also partly to  the present author and to J. B. Rosser, as  explained below. The 
proposal to identify these notions with the intuitive notion of effective calculability 
is first made in the present paper (but see the first footnote to $ 7  below). 

With the aid of the methods of Kleene (American Journal of Mathematics, 1935), 
the considerations of the present paper could, with comparatively slight modification, 
be carried through entirely in terms of X-definability, without making use of the notion 
of recursiveness. On the other hand, since the results of the present paper were 
obtained, i t  has been shown by Kleene (see his forthcoming paper, "General recursive 
functions of natural numbers") that analogous results can be obtained entirely in 
terms of recursiveness, without making use of X-definability. The fact, however, that 
two such widely different and ( in  the opinion of the author) equally natural definitions 
of effective calculability turn out to be equivalent adds to the strength of the reasons 
adduced below for believing that they constitute as  general a characterization of this 
notion as is consistent with the usual intuitive understanding of it. 



AN UNSOLVABLE PROBLEM OF NUMBER THEORY. 347 

We shall use heavy type letters to stand for variable or undetermined 
formulas. And we adopt the convention that, unless otherwise stated, each 
heavy type letter shall represent a well-formed formula and each set of symbols 
standing apart which contains a heavy type letter shall represent a well-
formed formula. 

When writing particular well-formed formulas, we adopt the following 
abbreviations. A formula {F)  (X)  may be abbreviated as F(X)  in  any case where 
F is or is represented by a single symbol. A formula {{F)  ( X ) )  ( Y )  may be 
abbreviated as {F)(X, Y), or, if F is or is represented by a single symbol, as 
F(X, Y) . And {{{F) (X)  ) (Y)  ) ( 2 )  may be abbreviated as {F)  (X, Y, Z) ,  or 
as F(X, Y, Z) ,  and so on. A formula Ax, [I&,[. . . Xx,[M] . . .]] may be 
abbreviated as Ax,x,. . . & .M or as Xx,x, . . . x,M. 

We also allow ourselves at  any time to introduce abbreviations of the 
form that a particular symbol a shall stand for a particular sequence of 
symbols A, and indicate the introduction of such an abbreviation by the nota- 
tion a -+ A, to be read, " a stands for A." 

We introduce at once the following infinite list of abbreviations, 

1 4hub. a (b) ,  
2 -+ Xab . a ( a ( b ) ) ,  
3 -+hub9  a ( a ( a ( b ) ) ) ,  

and so on, each positive integer in Arabic notation standing for a formula 
of the form hab .a (a ( .  . . a ( b )  . . .)). 

The expression S>M I is used to stand for the result of substituting N 
for x throughout M. 

We consider the three following operations on well-formed formulas : 

I. To replace any part h [ M ]  of a formula by hy[S;M I ] ,  where y is 
a variable which does not occur in M. 

11. To replace any part {Ax[M]) (N) of a formula by S;;M I ,  provided 
that the bound variables in M are distinct both from x and from the free 
variables i n  N. 

111. To replace any part S;M I (not immediately following A) of a 
fornzula by {Ax [MI ) (N),  provided that the bound variables in M are distinct 
both from x and from the free variables in N. 

Any finite sequence of these operations is called a conversion, and if B 
is obtainable from A by a conversion we say that A is convertible into B, or, 
" A  conv B." I f  B is identical with A or is obtainable from A by a single 
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application of one of the operations I, 11,111,we say that A is immediately 
convertible into B. 

A conversion which contains exactly one application of Operation 11,and 
no application of Operation 111,is called a reduction. 

A formula is said to be in  normal form, if i t  is well-formed and contains 
no part of the form { h x [ M ] )(N).  And B is said to be a normal form of A 
if B is in normal form and A conv B. 

The originally given order a, b, c, . . . of the variables is called their 
natural order. And a formula is said to be in principal normal form if it is 
in  normal form, and no variable occurs in i t  both as a free variable and as a 
bound variable, and the variables which occur in it immediately following 
the symbol h are, when taken in the order i n  which they occur in the formula, 
in natural order without repetitions, beginning with a and omitting only such 
variables as occur in  the formula as free variable^.^ The formula B is said 
to be the principal normal form of A if B is in principal normal form and 
A conv B. 

Of the three following theorems, proof of the first is immediate, and the 
second and third have been proved by the present author and J. B. Rosser: 

THEOREMI. I f  a formula is in normal form, no reduction of it is 
possible. 

THEOREM11. I f  a formula has a normal form, this normal form is 
unique to within applications of Operation I, and any sequence of reductions 
of the formula must (if continued) terminate i n  the normal form. 

THEOREM111. I f  a formula has a normal form, every well-formed part 
of it has a normal form. 

We shall call a function a function of positive integers if the range of 
each independent variable is the class of positive integers and the range of 
the dependent variable is contained in the class of positive integers. And 
when it is desired to indicate the number of independent variables we shall 
speak of a function of one positive integer, a function of two positive integers, 
and so on. Thus if F is a function of n positive integers, and al, a,, . . . ,a, 
are positive integers, then F(al ,  a,, . . . ,a,) must be a positive integer. 

For example, he formulas Xab . 71 ( a )  and Xa . a (Xc . b (c ) ) are in principal normal 
form, and Xac. c ( a ) ,  and Xbc. c ( b ) ,  and ha .  a(Xa.  b ( a )  ) are in normal form but not 
in principal normal form. Use of the principal normal form was suggested by S. C. 
Kleene as a means of avoiding the ambiguity of determination of the normal form 
of a formula, which is troublesome in certain connections. 

Observe that the formulas 1 ,2 ,3 , .  . . are all in principal normal form. 
Alonzo Church and J. B. Rosser, "Some properties of conversion,'? forthcoming 

(abstract in Bulletin of the American Mathematical Bociety, vol. 41, p. 332). 
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A function P of one positive integer is said to be A-definable if i t  is 
possible to find a formula F such that, if P ( m )  =r and m and r are the 
formulas for which the positive integers m and r (written in  Arabic notation) 
stand according to our abbreviations introduced above, then {F)( m )  conv r. 

Similarly, a function F of two positive integers is said to be A-definable 
if it is possible to find a formula F such that, whenever P ( m ,  n) =y, the 
formula {F)  (m,  n )  is convertible into r (m, n, r being positive integers and 
m, n, r the corresponding formulas). And so on for functions of three or 
more positive integemO 

It is clear that, in the case of any A-definable function of positive 
integers, the process of reduction of formulas to normal form provides an 
algorithm for the effective calculation of particular values of the function. 

3. The Giidel representation of a formula. Adapting to the formal 
notation just described a device which is due to G ~ d e l , ~  associate with we 
every formula a positive integer to represent it, as follows. To each of the 
symbols {, (, [ we let correspond the number 11, to each of the symbols 
), ), ] the number 13, to the symbol A the number 1, and to the variables 
a, b, c,. . . the prime numbers 17, 19, 23,. . . respectively. And with a 
formula which is composed of the n symbols T,, T,, . . ,T, in order we associate 
the number 2t13tz. . .pmtn, where ti is the number corresponding to the symbol 
7 6 ,  and where p, stands for the n-th prime number. 

This number 2t13tz. . . pmt. will be called the Gadel representation of the 
formula TITZ . . . 7%. 

Two distinct formulas may sometimes have the same Godel representation, 
because the numbers 11 and 13 each correspond to three different symbols, 
but i t  is readily proved that no two distinct well-fo~med formulas can have 
the same Gadel yepresentation. It is clear, moreover, that there is an effective 
method by which, given any formula, its Godel representation can be calculated; 
and likewise that there is an effective method by which, given any positive 
integer, it is possible to determine whether i t  is the Godel representation of 3 

well-formed formula and, if i t  is, to obtain that formula. 
I n  this connection the Godel representation plays a r61e similar to that 

Cf. S. C. Kleene, " A  theory of positive integers in formal logic," American Journal 
of Nathematics, vol. 57 (1935), pp. 153-173 and 219-244, where the A-definability of a 
number of familiar functions of positive integers, and of a number of important general 
classes of functions, is established. Kleene uses the term definable, or formally definable, 
in the sense in which we are here using A-definable. 

Kurt  a d e l ,  "uber formal unentscheidbare SBtze der Principia hlathematica und 
verwandter Systeme I," Monatshefte f u r  Mathematik und Physik, vol. 38 (1931), 
pp. 173-198. 
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of the matrix of incidence in combinatorial topology (cf. 5 1 above'). For 
there is, in the theory of well-formed formulas, an important class of problems, 
each of which is equivalent to a problem of elementary number theory obtainable 
by means of the @del representati~n.~ 

4. Recursive functions. We define a class of expressions, which we 
shall call elementary expressions, and which involve, besides parentheses and 
commas, the symbols 1, S, an infinite set of numerical variables x, y, 2 , .  . a ,  

and, for each positive integer n, an infinite set f,, g,, h,, . . . of functional 
variables with subscript n. This definition is by induction as follows. The 
symbol 1or any numerical variable, standing alone, is an elementary expres- 
sion. If A is an elementary expression, then S (A)  is an elementary expres- 
sion. I f  A,, A,, . . . ,A, are elementary expressions and f, is any functional 
variable with subscript n, then f,(A1, A,, . . . ,A,) is an elementary expression. 

The particular elementary expressions 1, # ( I ) ,  S ( S ( 1 )  ), . . . are called 
numerals. And the positive integers I,%,3,. . are said to correspond to the 
numerals 1, X(1), S (S (1 )  ), . . . . 

An expression of the form A =B, where A and B are elementary ex- 
pressions, is called an elementary equation. 

The derived equations of a set E of elementary equations are defined by 
induction as follows. The equations of E themselves are derived equations. 
If A =B is a derived equation containing a numerical variable x, then the 
result of substituting a particular numeral for all the occurrences of z in 
A =B is a derived equation. If A =B is a derived equation containing 
an elementary expression C (as part of either A or B),  and if either C =D 
or D =C is a derived equation, then the result of substituting D for a 
particular occurrence of C in A =B is a derived equation. 

Suppose that no derived equation of a certain finite set E of elementary 
equations has the form k =1 where k and 1 are different numerals, that the 
functional variables which occur in E are f,,l, f,,2,. . .,f,,' with subscripts 
n,, n,, . . . ,n, respectively, and that, for every value of i from 1to r inclusive, 
and for every set of numerals kl" k25 ,  . .,Ic,," there exists a unique numeral kt 
such that f,,"lc," k25. . .,k,," =kk" is a derived equation of E. And let 
F1,B2,.. . ,P be the functions of positive integers defined by the con-

s This is merely a special case of the now familiar remark that, in view of the 
Cadel representation and the ideas associated with it, symbolic logic in general can 
be regarded, mathematically, as a branch of elementary number theory. This remark 
is essentially due to Hilbert (cf. for example, Verhandlungen des dritten internationalen 
Mathematikey-Kongresses in Heidelberg, 1994, p. 185; also Paul Bernays in Die 
Naturwissenschaften, vol. 10 (1922), pp. 97 and 98) but is most clearly formulated 
in terms of the GGdel representation. 



AN UNSOLVABLE PROBLEM OF NUMBER THEORY. 351 

dition that, in  all cases, Fi(mli,  mz" . . . ,mn,() shall be equal to mi, where 
mIi, mZi, . . . ,mn,i, and m h r e  the positive integers which correspond to 
the numerals kli, k,". . . ,knii, and ki respectively. Then the set of equa- 
tions E is said to define, or to be a set of recu~sion equations for, any one 
of the functions Fi, and the functional variable f,,% is said to denote the 
function Fi. 

A function of positive integers for which a set of recursion equations can 
be given is said to be recur~ive.~ 

It is clear that for any recursive function of positive integers there exists 
an algorithm using which any required particular value of the function can be 
effectively calculated. For the derived equations of the set of recursion equa- 
tions B are effectively enumerable, and the algorithm for the calculation of 
particular values of a function Pi, denoted by a functional variable fndi, 
consists in carrying out the enumeration of the derived equations of E until 
the required particular equation of the form fn,i(lcli, k,i, . . . ,IC,,~)=ki is 
f ound.1° 

We call an infinite sequence of positive integers recursive if the function 
F such that F ( n )  is the n-th term of the sequence is recursive. 

We call a propositional function of positive integers recursive if the 
function whose value is 2 or 1, according to whether the propositional function 
is true or false, is recursive. By a recursive property of positive integers we 
shall mean a recursive propositional function of one positive integer, and by 
a recursive relation between positive integers we shall mean a recursive 
propositional function of two or more positive integers. 

This definition is  closely related to, and was suggested by, a definition of recursive 
functions which was proposed by K u r t  Gbdel, in lectures a t  Princeton, N. J., 1934, and 
credited by him in  par t  to  a n  unpublished suggestion of Jacques Herbrand. The 
principal features in which the present definition of recursiveness differs from Gbdel's 
a r e  due to  S. C. Kleene. 

I n  a forthcoming paper by Kleene to be entitled, "General recursive functions of 
na tura l  numbers," (abstract  in Bulletin of the American Mathematical society, vol. 41 ) ,  
several definitions of recursiveness will be discussed and equivalences among them 
obtained. I n  particular, i t  follows readily from Kleene's results in t ha t  paper t ha t  
every function recursive in the  present sense is  also recursive in the sense of Godel 
(1934) and conversely. 

10 The reader may object t ha t  this algorithm cannot be held to  provide an  effective 
calculation of the required particular value of Pi unless the proof is constructive t h a t  
t he  required equation f,,d((k,i, k,c,. . . ,k n i i )  =k i  will ultimately be found. But  if so 
th is  merely means tha t  he should take the existential quantifier which appears in our 
definition of a set of recursion equations in a constructive sense. What  the criterion 
of constructiveness shall be is left to  the reader. 

The same remark applies in connection with the existence of an  algorithm for 
calculating the values of a X-definable function of positive integers. 



352 ALONZO CHURCH. 

A function F, for which the range of the dependent variable is contained 
in the class of positive integers and the range of the independent variable, 
or of each independent variable, is a subset (not necessarily the whole) of the 
class of positive integers, will be called potentially ~ecu~sive,  if i t  is possible 
to find a recursive function 8''of positive integers (for which the range of the 
independent variable, or of each independent variable, is the whole of the class 
of positive integers), such that the value of P agrees with the value of P in 
all cases where the latter is defined. 

By an operation on well-formed formulas we shall mean a function for 
which the range of the dependent variable is contained in the class of well- 
formed formulas and the range of the independent variable, or of each in- 
dependent variable, is the whole class of well-formed formulas. And we call 
such an operation recursive if the corresponding function obtained by replacing 
all formulas by their Cb;del representatioiis is potentially recursive. 

Similarly any function for which the range of the dependent variable is 
contained either in the class of positive integers or in the class of well-formed 
formulas, and for which the range of each independent variable is identical 
either with the class of positive integers or with the class of well-formed 
formulas (allowing the case that some of the ranges are identical with one 
class and some with the other), will be said to be recursive if the corresponding 
function obtained by replacing all formulas by their Godel representations is 
potentially recursive. We call an infinite sequence of well-formed formulas 
recursive if the corresponding infinite sequence of Godel representations is 
recursive. And we call a property of, or relation between, well-formed 
formulas recursive if the corresponding property of, or relation between, their 
Godel representations is potentially recursive. A set of well-formed formulas 
is said to be recursively enumerable if there exists a recursive infinite sequence 
which consists entirely of formulas of the set and contains every formula of 
the set at least once.ll 

I n  terms of the notion of recursiveness we may also define a proposition, 
of elementary number theory, by induction as follows. If + is a recursive 
propositional function of n positive integers (defined by giving a particular 
set of recursion equations for the corresponding function whose values are 2 
and 1) and if x,, x2,. . . ,x, are variables which take on positive integers as 
values, then +(x,, x2, . . . ,x,) is a proposition of elementary number theory. 
If P is a proposition of elementary number theory involving x as a free 

I t  can be shown, i n  view o f  Theorem V below, t h a t ,  i f  a n  inf ini te  set o f  formulas  
is  recursively enumerable i n  th i s  sense, i t  is  also recursively enumerable i n  t h e  sense 
t h a t  there exists  a recursive infiilite sequence which consists entirely o f  formulas o f  
t h e  set and contains every formula o f  t h e  set exactly  once. 
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variable, then the result of substituting a particular positive integer for all 
occurrences of x as a free variable in P is a proposition of elementary number 
theory, and (x) P and (3x ) P  are propositions of elementary number theory, 
where ( x )  and ( 3 s )  are respectively the universal and existential quantifiers 
of x over the class of positive integers. 

It is then readily seen that the negation of a proposition of elementary 
number theory or the logical product or the logical sum of two propositions 
of elementary number theory is equivalent, in a simple way, to another proposi- 
tion of elementary number theory. 

5. Recursiveness of the Kleene @-function. We prove two theorems 
which establish the recursiveness of certain functions which are definable in 
words by means of the phrase, "The least positive integer such that," or, 
"The n-th positive integer such that." 

THEOREMIT. If P is a recursive function of two positive integers, and 
if for every positive integer x there exists a positive integer y such that 
F ( x ,  y )  > 1, then the function F*, such that, for every positive integer x, 
F 4 ( x )  is  equal to the least positive integer y for which F ( x ,  y )  > 1, is 
recursive. 

For a set of recursion equations for P* consists of the recursion equations 
for F together with the equations, 

where the functional variables f z  and f ,  denote the functions P and P* re-
spectively, and 2 and 3 are abbreviations for S ( 1 )  and X(S(1) )  respectively.12 

THEOREM6:. If F is a recursive function of one positive integer, and 
if there exist an infinite number of positive integers x for which F ( x )  > 1, 
then the function Po, such that, for every positive integer n ,  F O ( n )  is equal 
to the n-th positive integer x ( i n  order of increasi~ag magnitude) for which 
F ( x )  > 1, is recursive. 

llSince this result was obtained, i t  has been pointed out t o  the author by S. C. 
Kleene tha t  i t  can be proved more simply by using the methods of the lat ter  in American 
Journal  of Mathematics ,  vol. 57 (1935),  p. 231 e t  seq. His proof will be given in his 
forthcoming paper already referred to. 

8 

mailto:@-function
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For a set of recursion equations for F0 consists of the recursion equations 
for P together with the equations, 

92(1,Y) =g2(f1(fl(y)),  S(Y)) ,  

g2(fl(x), Y) =Y, 

g l ( l >  =k ,  

~ l ( f l ( ~ ) ) 
=gz(1, gl(Y) 1, 

where the functional variables g, and f, denote the functions Po and F 
respectively, and where k is the numeral to which corresponds the least positive 
integer x for which P ( x )  > l.ls 

6. Recursiveness of certain functions of formulas. We list now a 
number of theorems which will be proved in detail in  a forthcoming paper 
by 8. C. Kleene l4 or follow immediately from considerations there given. We 
omit proofs here, except for brief indications in  some instances. 

Our statement of the theorems and our notation differ from Kleene's in  
that we employ the set of positive integers ( I ,&,  3,. . .) in the r81e in which 
he employs the set of natural llumbers (O, l ,&, .  - .). This difference is, of 
course, unessential. We have selected what is, from some points of view, the 
less natural alternative, in  order to preserve the convenience and naturalness 
of the identification of the formula hub . a(b)  with 1 rather than with 0. 

THEOREM VI. The property of a positive integer, that there exists a 
well-formed formula of which i t  is the Godel representation is recursive. 

THEOREMVII.  The set of well-formed form.ulas is recursively enumerable. 

This follows from Theorems V and VI.  

THEOREMVIII .  The function of two variables, whose value, when takefa 
of the well-formed formulas F and X, is the formula {F) (X) ,  is recursive. 

THEOREM IX.  The function, whose value for each of the positive integers 
1,2,3, . . . is the corresponding formula 1,2, 3, . . . , is recursive. 

THEOREMX. A function, whose value for each of the formulas I,&,3, . . . 
is the corresponding positive integer, and whose value for other well-formed 
formulas is a fixed positive integer, is recursive. Likewise the function, whose 
value for each of the formulas 1 ,2 ,3 , .  . . is the corresponding positive integer 

l8 This proof is  due to  Kleene. 
l4 5. C. Kleene, " A-definability and recursiveness," forthcoming (abstract  in 

Bulletilt  of t h e  Amerioult Mathematical  Sooietu, vol. 4 1 ) .  In  connection with many 
of the  theorems listed, see also K u r t  GGdel, Monatshef te  f u r  Muthemat ik  u n d  I 'hysik ,  
vol. 38 (1931) ,  p. 181 e t  seq., observing t h a t  every function which is  recursive in the  
sense in which the word is  there used by Godel is  also recursive in the present more 
general sense. 
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wlus one, and whose value for other well-formed formulas i s  the positive 
integer 1, is  recursive. 

THEOREMX I .  T h e  relation of immediate  convertibility, between well- 
formed formulas, i s  recursive. 

THEOREMX I I .  I t  is  possible to associate simultaneously wi th  every well- 
formed formula a n  enumeration of the  forw~ulus obtainable from it by con-
version, in such a way that  the function of two variables, whose value, when  
taken of a well-formed formula A and a positive integer n, i s  the n - th  formula 
i~ztlze enumeration of the formulas obtainable from A by  conversion, i s  recursive. 

THEOREMX I I I .  T h e  p ~ o p e r t y  o f  a well-formed formula, that  it i s  i n  
principal normal form, i s  recursive. 

THEOREM T h e  set of well-formed formulas which are in p ~ i ~ z c i p a lX I V .  
normal form i s  recursivejy e~zumerable. 

This follows from Theorems V,V I I ,  X I I I .  

THEOREMX V .  T h e  set of well-formed formulas which have a normal 
form i s  recursively enumerab1e.l5 

For by Theorems X I 1  and X I V  this set can be arranged in an infinite 
square array which is recursively defined (i. e. defined by a recursive function 
of two variables). And the familiar process by which this square array is 
reduced to a single infinite sequence is recursive (i. e. can be expressed by 
means of recursive functions). 

THEOREMX V I .  E v e r y  recursive fu~zct ion of positive integers is  
A-definable.16 

THEOREMX V I I .  Every  A-definable function of positive integers i s  
r e ~ u r s i v e . ~ ~  

For functions of one positive integer this follows from Theorems I X ,  
V I I I ,  X I I ,  X I I I ,  I V ,  X .  For functions of more than one positive integer 

l6 This theorem was first proposed by the present author, with the outline of proof 
here indicated. Details of i ts proof are due to Kleene and will be given by him in his 
forthcoming paper, "A-definability and recursiveness." 

10This,theorem can be proved as  a straightforward application of the methods 
introduced by Kleene in the Amer iea~z  J o u r ~ t a l  o f  Mathematics  ( loc.  c i t . ) .  In  the form 
here given i t  was first obtained by Kleene. The related result had previously been 
obtained by J. B. Rosser that, if we modify the definition of well- formed by omitting 
the requirement that M contain ~x as a free variable in order that Xx[M] be well- 
formed, then every recursive function of positive integers is X-definable in the resulting 
modified sense. 

I' This result was obtained independently by the present author and S. C. Kleene 
a t  about the same time. 
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i t  follows by the same method, using a generalization of Theorem IV to 
functions of more than two positive integers. 

7. The notion of effective calculability. We now define the notion, 
already discussed, of an effectively c~~lculable function of positive integers by 
identifying i t  with the notion of a recursive function of positive integers l8 
(or of a A-definable function of positive integers). This definition is thought 
to be justified by the considerations which follow, so far as positive justification 
can ever be obtained for the selection of a formal definition to correspond to 
an intuitive notion. 

It has already been pointed out that, for every function of positive 
integers which is effectively calculable in the sense just defined, there exists 
an algorithm for the calculation of its values. 

Conversely it  is true, under the same definition of effective calculability, 
that every function, an algorithm for the calculation of the values of which 
exists, is effectively calculable. For example, in the case of a function P of 
one positive integer, an algorithm consists in a method by which, given any 
positive integer n, a sequence of expressions (in some notation) E,,, E,,, . . . ,E,,,,, 
can be obtained; where Enl is effectively calculable when n is given; where 
E,i is effectively calculable when n and the expressions Enj,j < i, are given; 
and where, when n and all the expressions En(up to and including E,,, are 
given, the fact that the algorithm has terminated becomes effectively known 
and the value of P ( n )  is effectively calculable. Suppose that we set up a 
system of Godel representations for the notation employed in the expressions 
Eni, and that we then further adopt the method of G d e l  of representing a 
finite sequence of expressions Em,,E,,, . . . ,E,i by the single positive integer 
i?en13enz.. . pienz where e,,, e,,, . . .,en< are respectively the Godel representa- 
tions of E,,, E,,, . . .,E,i (in particular representing a vacuous sequence of 
expressions by the positive integer 1) .  Then we may define a function G 
of two positive integers such that, if x represents the finite sequence. 
E,,, E,,, . . .,Erik, then G(n, 2) is equal to the Godel representation of E%i, 
where i = k + 1, or is equal to 10 if k =r, (that is if the algorithm has 
terminated with E,&), and in any other case G(n, x) is equal to 1. And 

we may define a function H of two positive integers, such that the value of 
H(n ,  x) is the same as that of G(n, x),  except in the case that G(n, x) =10, 
in which case H(n ,  x) =P ( n ) .  If the interpretation is allowed that the 

The question of the relationship betwen effective calculability and recursiveness 
(which i t  is  here proposed t o  answer by identifying the two notions) was raised by 
G d e l  in conversation with the author. The corresponding question of the relationship 
between effective calculability and A-definability had previously been proposed by the 
author independently. 
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requirement of effective calculability which appears in our description of an 
algorithm means the effective caIculabiIity of the functions G and H,19 and 
if we take the effective calculability of G and H to mean recursiveness 
(A-definability), then the recursiveness (A-definability) of F follows by a 
straightforward argument. 

Suppose that we are dealing with some particular system of symbolic logic, 
which contains a symbol, =, for equality of positive integers, a symbol 
{ } ( ) for the application of a function of one positive integer to its argu- 
ment, and expressions 1,2, 3 , .  . . to stand for the positive integers. The 
theorems of the system consist of a finite, or enumerably infinite, list of 
expressions, the formal axioms, together with all the expressions obtainable 
from them by a finite succession of applications of operations chosen out of 
a given finite, or enumerably infinite, list of operations, the rules of procedure. 
If the system is to serve at all the purposes for which a system of symbolic 
logic is usually intended, i t  is necessary that each rule of procedure be an 
effectively calculable operation, that the complete set of rules of procedure 
(if infinite) be effectively enumerable, that the complete set of formal axioms 
(if infinite) be effectively enumerable, and that the relation between a positive 
integer and the expression which stands for i t  be effectively determinable. 
Suppose that we interpret this to mean that, in terms of a system of Godel 
representations for the expressions of the logic, each rule of procedure must 
be a recursive operation,2O the complete set of rules of procedure must be 
recursively enumerable (in the sense that there exists a recursive function @ 

such that @(n, x) is the representation of the result of applying the n-th rule 
of procedure to the ordered finite set of formulas represented by x),  the 
complete set of formal axioms must be recursively enumerable, and the relation 
between a positive integer and the expression which stands for i t  must be 
recursive.21 And let us call a function F of one positive integer 22 calculable 
within the logic if there exists an expression f in the logic such that {f) ( "p)= v 

is a theorem when and only when F ( m )  =n is true, p and v being the ex- 
pressions which stand for the positive integers m and n. Then, since the 

l8If this interpretation or some similar one is not allowed, it is  difficult to  see 
how the notion of a n  algorithm can be given any exact meaning a t  all. 

AS a matter of fact, in known systems of symbolic logic, e. g. in t ha t  of P ~ i n c i p i a  
Mathernatica, the stronger statement holds, t ha t  the relation of immedia te  consequence 
( u n m i t t e l b a ~ e  B'olge) is  recursive. Cf. Gjjdel, loc. cit., p. 185. I n  any case where the  
relation of immediate consequence is  recursive i t  is possible to  find a set of rules 
of procedure, equivalent to  the original ones, such t h a t  each rule is  a (one-valued) 
recursive operation, and the complete set of rules is  recursively enumerable. 

The author i s  here indebted to GSdel, who, in his 1934 lectures already referred 
to, proposed substantially theae conditions, but i n  terms of t he  more restricted notion 
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complete set of theorems of the logic is recursively enumerable, i t  follows by 
Theorem I V  above that every function of one positive integer which is 
calculable within the logic is also effectively calculable (in the sense of our 
definition). 

Thus i t  is shown that no more general definition of effective calculability 
than that proposed above can be obtained by either of two methods which 

naturally suggest themselves (1)  by defining a function to be effectively 
calculable if there exists an algorithm for the calculation of its values (2 )  by 
defining a function P (of one positive integer) to be effectively calculable if, 
for every positive integer rn, there exists a positive integer n such that 
P ( m )  =n is a provable theorem. 

8. Invariants of conversion. The problem naturally suggests itself to 
find invariants of that transformation of formuIas which we have called con- 
version. The only effectively calculable invariants at present known are the 
immediately obvious ones (e. g. the set of free variables contained in a formula). 
Others of importance very probably exist. But we shall prove (in Theorem 
XIX)  that, under the definition of effective calculability proposed in $ 7, 
no complete set of efectively calculable invariants of conversion exists (cf. $ 1) .  

The resuIts of Kleene (American Journal of Nathematics, 1935) make 
i t  clear that, if the problem of finding a complete,set of effectively calculable 
invariants of conversion were solved, most of the familiar unsolved problems of 
elementary number theory would thereby also be solved. And from Theorem 
XVI above i t  follows further that to find a complete set of effectively calculable 
invariants of conversion would imply the solution of the Entscheidungsproblem 
for any system of symbolic logic whatever (subject to the very general re-
strictions of $ 7). I n  the light of this i t  is hardly surprising that the problem 
to find such a set of invariants should be unsolvable. 

It is to be remembered, however, that, if we consider only the statement 
of the problem (and ignore things which can be proved about i t  by more or 
less lengthy arguments), i t  appears to be a problem of the same class as the 
problems of number theory and topoIogy to which it  was compared in $ 1, 
having no striking characteristic by which it  can be distinguished from them. 
The temptation is strong to reason by analogy that other important problems 
of this class may also be unsolvable. 

of recursiveness which he had employed in 1931, and using the condition that the 
relation of immadiate consequence be recursive instead of the present conditions on the 
rules of procedure. 

22 We confine ourselves for convenience to the case of functions of one positive 
integer. The extension to functions of several positive integers is immediate. 
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LEMMA.The problem, to find a recursive function of two formulas 
A and B whose value is 2 or 1 according as A conv B o r  not, is equivalent 
to the problem, to find a recursive function of one formula C whose value is 
2 or 1according as C has a normal form or not.23 

For, by Theorem X, the formula a (the formula b ) ,  which stands for the 
positive integer which is the Godel representation of the formula A (the 
formula B ) ,  can be expressed as a recursive function of the formula A (the 
formula B ) .  Moreover, by Theorems V I  and XII ,  there exists a recursive 
function F of two positive integers such that, if m is the Godel representation 
of a well-formed formula M, then P ( m ,  n )  is the Godel representation of the 
n-th formula in an enumeration of the formulas obtainable from M by con-
version. And, by Theorem XVI, P is A-definable, by a formula f. If we define, 

21- S(Ax.  x ( I ) ,  I ) ,  
Z z + S  (Axy. S ( X )  - -y , I ) ,  

where 2 is the formula defined by Kleene (American Journal of Mathematics, 
vol. 57 (1935)) p. 226)) then Z1 and Z2 A-define the functions of one positive 
integer whose values, for a positive integer n, are the n-th terms respectively 
of the infinite sequences 1,1,2,1, 2, 3, . . . and 1,2,1, 3, 2,1, . . . . By Theorem 
V I I I  the formula, 

where and 8 are defined as by Kleene (loc. cit., p. 173 and p. 231), is a 
recursive function of A and B, and this formula has a normal form if and 
only if A conv B. 

Again, by Theorem X, the formula c, which stands for the positive 
integer which is the Godel representation of the formula C, can be expressed 
as a recursive function of the formula C. By Theorems V I  and XII I ,  there 
exists a recursive function G of one positive integer such that G(m) =2 
if m is the Godel representation of a formula in principal normal form, and 
G(m) =1in any other case. And, by Theorem XVI, G is A-definable, by a 
formula g. By Theorem V I I I  the formula, 

25 These two problems, in the forms, ( 1 ) to find an effective method of determining 
of any two formulas A and B whether A conv B, ( 2 )  to find an effective method of 
determining of any formula C whether i t  has a normal form, were both proposed by 
Kleene to the author, in the course of a discussion of the properties of the p-function, 
about 1932. Some attempts towards solution of (1) by means of numerical invariants 
were actually made by Kleene a t  about that time. 
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where f is the formula f used in the preceding paragraph, is a recursive func- 
tion of C, and this formula is convertible into the formula 1 if and only if 
C has a normal form. 

Thus we have proved that a formula C can be found as a recursive 
function of formulas A and B, such that C has a normal form if and only 
if A conv B ;  and that a formula A can be found as a recursive function of a 
formula C, such that A conv 1if and only if C has a normal form. From this 
the lemma follows. 

THEOREM XVIII ,  There is no recursive function of a formula C, whose 
value is 2 or 1according as C has a normal form or ~zot. 

That is, the property of a well-formed formula, that i t  has a normal form, 
is not recursive. 

For assume the contrary. 
Then there exists a recursive function H of one positive integer such 

that H ( m )  =2 if m is the Giidel representation of a formula which has a. 
normal form, and H ( m )  =1 in any other case. And, by Theorem XVI, 
H is A-definable by a formula Ij. 

By Theorem XV, there exists an enumeration of the well-formed formulas 
which have a normal form, and a recursive function A of one positive integer 
such that A(n)  is the Godel representation of the n-th formula in this 
enumeration. And, by Theorem XVI, A is A-definable, by a formula a. 

By Theorems VI and VIII ,  there exists a recursive function B of two 
positive integers such that, if m and n are GBdel representations of well-
formed formulas M and N, then B(m, n)  is the Godel representation of 

{M) (N). And, by Theorem XVI, B is A-definable, by a formula 6. 
By Theorems V I  and X, there exists a recursive function C of one positive 

integer such that, if m is the G d e l  representation of one of the formulas 
1,2, 3,. . ., then C(,m) is the corresponding positive integer plus one, and 
in any other case C(m) =1. And, by Theorem XVI, C is A-definable, by a 

formula c.  
By Theorem I X  there exists a recursive function Z-I of one positive 

integer, whose value for each of the positive integers 1,2, 3,. . . is the God~ l  
representation of the c~~responding And, by Theorem formula 1,2, 3, . . . . 

XVI, Z-I is A-definable, by a formula g. 


Let f and g be the formulas f and g used in the proof of the Lemma. 

By Kleene 15111 Cor. (loc. cit., p. 220), a formula b can be found such that, 


b (1) conv Ax . x(1)  

b ( 2 )  convAu.c(f(u,$(hm.g(f(u,m)), 1 ) ) ) .  
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We define, 

e + h n .  b(C(6(a(n) ,3(n))) ,  b(a(n) ,a , (n))) .  

Then if n is one of the formulas 1,2, 3,. . . , e(n)  is convertible into one 
of the formulas 1,2, 3,. . . in accordance with the following rules: (1) if 
6 (a  (n) ,  3 ( n )  ) conv a formula which stands for the Qodel representation of a 
formula which has no normal form, e ( n )  conv 1, (2) if 6 (a  (n ) ,  3 ( n )  ) conv a 

formula which stands for the Gijdel representation of a formula which has a 
principal normal form which is not one of the formulas 1,2,3,. . . ,e ( n )  conv 1, 
(3)  if 6 (a (n) ,  a, ( n )  ) conv a formula which stands for the Gijdel representation 
of a formula which has a principal normal form which is one of the formulas 
1,2,3, . . .,e(n)  conv the next following formula in the list 1 ,2,3, .  . . . 

By Theorem 111, since e(1) has a normal form, the formula e has a 
normal form. Let C$ be the formula which stands for the G6del representation 
of e. Then, if n is any one of the formulas 1,2, 3,. . . ,C$ is not convertible 
into the formula a ( n ) ,because 6 (6 ,3  ( n )  ) is, by the definition of 6, con-
vertible into the formula which stands for the Ciidel representation of e(n) ,  
while 6 (a  (n ) ,  a, ( n )  ) is, by the preceding paragraph, convertible into the 
formula stands for the Godel representation of a formula definitely not con- 
vertible into e(n)  (Theorem 11). But, by our definition of a, i t  must be true 
of one of the formulas n in the list 1,2,3, . . . that a ( n )  conv C$. 

Thus, since our assumption to the contrary has led to a contradiction, the 
theorem must be true. 

I n  order to present the essential ideas without any attempt at exact 
statement, the preceding proof may be outlined as follows. We are to deduce 
a contradiction from the assumption that i t  is effectively determinable of 
every well-formed formula whether or not i t  has a normal form. If this 
assumption holds, i t  is effectively determinable of every well-formed formula 
whether or not i t  is convertible into one of the formulas l ,2 ,3 , .  . . ; for, 
given a well-formed formula R, we can first determine whether or not i t  has 
a normal form, and if i t  has we can obtain the principal normal form by 
enumerating the formulas into which R is convertible (Theorem XI I )  and 
picking out the first formula in principal normal form which occurs in the 
enumeration, and we can then determine whether the principal normal form 
is one of the formulas 1,2, 3,. . . . Let A,, A,, A,, . . . be an effective enumera- 
tion of the well-formed formulas which have a normal form (Theorem XV). 
Let E be a function of one positive integer, defined by the rule that, where 
m and n are the formulas which stand for the positive integers m and n 
respectively, E (n)  =1if {A,) ( n )  is not convertible into one of the formulas 
1,2,3, - and E ( n )  =m + 1 if { A , ) ( n )  conv m and m is one of the. a ,  

formulas 1,2, 3,. . . . The function E is effectively calculable and is there- 
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fore A-definable, by a formula e. The formula e has a normal form, since 
e(1) has a normal form. But e is not any one of the formulas A,, A,, A,, . . . , 
because, for every n ,  e ( n )  is a formula which is not convertible into {A,) ( n ) .  
And this contradicts the property of the enumeration A,, A,, A,, . . . that it 
contains all well-formed formulas which have a normal form. 

COROLLARY1. T h e  set of well-formed formulas which have no  normal 
form is' not recursively e n ~ m e r a b l e . ~ ~  

For, to outline the argument, .the set of well-formed formulas which have 
a normal form is recursively enumerable, by Theorem XV. If the set of those 
which do not have a normal form were aslo recursively enumerable, it would 
be possible to tell effectively of any well-formed formula whether i t  had a 
normal form, by the process of searching through the two enumerations until 
i t  was found in ons or the other. This, however, is contrary to Theorem XVIII .  

This corollary gives us an example of an effectively enumerable set (the 
set of well-formed formulas) which is divided into two non-overlapping sub- 
sets of which one is effectively enumerable and the other not. Indeed, in view 
of the difficulty of attaching any reasonable meaning to the assertion that a 
set is enumerable but not effectively enumerable, i t  may even be permissible 
to go a step further and say that here is an example of an enumerable set 
which is divided into two non-overlapping subsets of which one is enumerable 
and the other non-en~merable.,~ 

COROLLARY2. Let  a function F of one positive integer be defined by 
the rule that  P(7z) shall equal 2 or 1 according as n is  or is  not  the Godel 
representation of a formula which has a normal form. T h e n  F (if i t s  definition 
be admitted as valid at a l l )  is  a n  example of a non-recursive function of posi- 
t ive  integers.26 

This follows at once from Theorem XVIII .  

"This corollary was proposed by J. B. Rosser. 
The outline of proof here given for i t  is open to the objection, recently called to 

the author's attention by Paul Bernays, that  i t  ostensibly requires a non-constructive 
use of the principle of excluded middle. This objection is met by a revision of the 
proof, the revised proof to consist in taking any recursive enumeration of formulas 
which have no normal form and showing that this enumeration is not a complete 
enumeration of such formulas, by constructing a formula e ( n )  such that (1) the 
supposition that  e(n)  occurs in the enumeration leads to contradiction ( 2 )  the sup- 
position that  e ( n )  has a normal form leads to contradiction. 

I V f .  the remarks of the author in The American Mathematical Monthlu, vol. 41 
(1934), pp. 356-361. 

26 Other examples of non-recursive functions have since been obtained by S. C. 
Kleene in a different connection. See his forthcoming paper, "General recursive func- 
tions of natural numbers." 
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Consider the infinite sequence of positive integers, F ( l ) ,  P ( 2 ) ,  P ( 3 ) ,  . . . . 
It is impossible to specify effectively a method by which, given any n, the 
n-th term of this sequence could be calculated. But i t  is also impossible ever 
to select a particular term of this sequence and prove about that term that 
its value cannot be calculated (because of the obvious theorem that if this 
sequence has terms whose values cannot be calculated then the value of each 
of those terms 1 ) .  Therefore it is natural to raise the question whether, in 
spite of the fact that there is no systematic method of effectively calculating 
the terms of this sequence, i t  might not be true of each term individually that 
there existed a method of calculating its value. To this question perhaps the 
best answer is that the question itself has no meaning, on the ground that the 
universal quantifier which it contains is intended to express a mere infinite 
succession of accidents rather than anything systematic. 

There is in consequence some room for doubt whether the assertion that 
the function F exists can be given a reasonable meaning. 

THEOREMXIX. There is no recursive function of two formulas A and 
B, whose value is 2 or 1according as A conv B or not. 

This follows at once from Theorem X V I I I  and the Lemma preceding it. 
As a corollary of Theorem XIX, i t  follows that the Entscheidungs-

problem is unsolvable in the case of any system of symbolic logic which is 
w-consistent (w-widerspruchsfrei) in the sense of Godel (loc. cit., p. 187) and 
is strong enough to allow certain comparatively simple methods of definition 
and proof. For in any such system the proposition will be expressible about 
two positive integers a and b that they are Godel representations of formulas 
A and B such that A is immediately convertible into B. Hence, utilizing the 
fact that a conversion is a finite sequence of immediate conversions, the proposi- 
tion @(a, b) will be expressible that a and b are G'ijdel representations of 
formulas A and B such that A conv B. Moreover if A conv B, and a and b 
are the Gbdel representations of A and B respectively, the proposition *(a, b) 
will be provable in the system, by a proof which amounts to exhibiting, in terms 
of Godel representations, a particular finite sequence of immediate conversions, 
leading from A to B ;  and if A is not convertible into B, the w-consistency 
of the system means that *(a, b) will not be provable. If the Entscheidungs- 
problem for the system were solved, there would be a means of determining 
effectively of every proposition @(a, b) whether i t  was provable, and hence 
a means of determining effectively of every pair of formulas A and B whether 
A conv B, contrary to Theorem XIX.  

I n  particular, if the system of Principia iklathematica be w-consistent, 
its Entscheidungsproblem is unsolvable. 


