
E-Id Authentication and Uniform Access to Cloud
Storage Service Providers

João Gouveia,
Paul Andrew Crocker

IT & DI
Universidade da Beira Interior
6201-001 Covilhã, Portugal
Email: m4861|crocker@ubi.pt

Simão Melo de Sousa
LIACC & DI

Universidade da Beira Interior
6201-001 Covilhã, Portugal
Email: desousa@ubi.pt

Ricardo Azevedo
PT Inovação, SA,

Rua Eng. José Ferreira Pinto Basto
3810 - 106 Aveiro, Portugal

Email: ricardo-a-pereira@ptinovacao.pt

Abstract—This article describes an architecture for
authentication and uniform access to protected data
stored on popular Cloud Storage Service Providers.
This architecture takes advantage of the OAuth au-
thentication mechanism and the strong authentication
mechanism of the National Electronic Identity (E-Id)
Cards , in our case the Portuguese E-Id card or Cartão
de Cidadão (CC). We shall present a comparison of
authentication mechanisms and access to popular cloud
storage providers, comparing the different authentica-
tion mechanisms OAuth 1.0, OAuth 1.0a and OAuth
2.0. Using the proposed architecture we have developed
an implementation of this architecture that provides
a uniform web based access to popular Cloud Storage
Service Providers such as Dropbox, Skydrive, Cloudpt
and Google Drive using the authentication mechanism
of the E-Id card as a unique access token. In order
to provide a uniform access to these services we shall
describe the differences in the various REST APIs for
the targeted providers. Finally the web application that
allows users that hold E-Id cards a single point of access
to their various cloud storage services will be presented.

I. Introduction

With the exponential growth of the internet and similar
increase in the number of services available to users the
spread of digital identities has become endemic. In the
most recent period of the history of the internet a huge
effort has been made to find solutions that help solve
the problems related to the explosion of the number of
identities that any single user may have. The greater use
of cloud services in recent years has simply added to an
already known problem and it is therefore imperative for
the research community to investigate new and innovative
ways for users to secure their data whilst coping with
multiple identities.

Identity management systems have emerged as a mech-
anism for users to manage their multiple identities. These
systems have as main features the ability to manage in-
dividual identities, manage authentication, authorization,
roles and privileges for a given service or set of services.
These systems are able to provide easy access to protected
data to third parties, without being required to share
sensitive information such as your user name or pass-
word. The hope is that this new paradigm will fix several
problems of multiplicity of identities, authentication, and

confidentiality. OAuth and openID are examples of this
type of systems that manage a particular form of the
identity of a user. If the strong authentication of Electronic
identity (E-Id) authentication could be combined with one
of these protocols then a user can have guarantees of
having a robust two-factor authentication system where
an important component in the process of authentication
is the fact of owning a physical element and knowing the
PIN code and only through this mechanism can a user
access services where he is registered with any number of
varying identities.

The proposed architecture uses the concept of identity
management systems and the concept of authentication
with the Portuguese Citizen Card and applies them in
Cloud environments, mainly in the most popular storage
providers that support OAuth. The final implementation
presented is aimed at the following providers: Dropbox,
Skydrive and Cloudpt. In this way we have included and
studied the behaviour of the various REST APIs offered
by these providers and also shown how can we deal with
all the versions of the OAuth Protocol.

The remainder of this article is organized into the
following seven sections. In section II the contribution
of this article will be presented. In section III related
work shall be presented. In section IV the authentication
aspect of the Portuguese E-ID card is explained and its
integration into the proposed architecture detailed. In the
following section V the OAuth protocol and its various
versions are discussed. In section VI the various REST
APIs of the targeted cloud storage service providers are
discussed. In section VII the web application developed
based on our proposed architecture and API is presented.
Finally in section VIII conclusion and future work are
described.

II. Contribution

The architecture proposed in this article has the objec-
tive of aggregating different cloud providers. The main con-
tribution of this paper is the architecture and mechanisms
developed so that users authenticated with a National E-Id
card are given transparent access to their cloud providers
by interacting with their services using the authentication
and authorization provided by the OAuth protocol. Al-
though there are already various platforms that aggregate

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.71

487

cloud services, there is no platform doing this by combining
the strong authentication present in national E-Id smart
cards. In order to implement such an architecture it was
also necessary to design and develop a new API and
provide news mechanisms to interact with the different
versions of the OAuth protocol that are transparent to
the end user. The architecture has been implemented and
tested for holders of Portuguese E-Id Cards. Cloud service
providers using different authentication technologies for
authenticating users means customers must deal with mul-
tiple login credentials. Another contribution of this papers
is the way that this problem is partially solved by providing
a single point of access secured with a smart card and
authentication pin number.

III. Related Work

The management of multiple identities (username and
password) is not only a nuisance, but also one of the
main weaknesses of the security model of the Internet.
The majority of the services has its own registration form
and requires the client to register to gain access to their
services. Worse than this is the fact that whenever a user
registers at one of these services he/she will do so using
a username and password the same or nearly identical
to already existing usernames/passwords that he/she cur-
rently use, which is a bad practice but unfortunately very
common.

In 2005, the first major efforts to correct this problem
appeared, with the appearance of identity management
systems based on community wide open standards. In the
group of open standards one can include SAML, openID
and OAuth as the principle standards for the single sign-
on processes, authentication and authorization. Although
these systems offer part of the solution, there are still some
security flaws in them [9].

Pascal Urien in [16] describes a scheme almost identical
to the scheme that will be applied in this article, based
on the openID authentication protocol and a system of
authentication based on smartcards. The main difference
between this scheme and the one proposed in this article is
based on the fact that the system is oriented to authenti-
cation with smart cards for any service that requires user
authentication and supports openID, while the ultimate
goal of the proposed work involves the authentication with
smart cards and subsequent authorization of this entity
to access protected resources. Whilst Urien is based on
openID protocol because this only needs to authenticate to
a specific service, Simploud 1 is based on OAuth protocol
because it requires pseudo-authentication allied to the
authorizing access to protected resources stored in cloud
providers which support OAuth.

Also in [1] [2], Al-Sinani describes a scheme that inte-
grates information card systems, such as Cardspace (this
project has been discontinued) and Higgins, and authenti-
cation and authorization protocols, including openID and
OAuth.

In this article we shall consider national E-Id smart
cards, such as the Portuguese Cartão de Cidadão (CC),

1https://spocs.it.ubi.pt:444/simploud/

which allow strong authentication in public and private
electronic systems. National E-ID cards such as the CC are
already used as authentication tokens in diverse systems
such as the Tax Services Portal, e-Health for health card
professionals [10], and even a federated identity manage-
ment system [13].

Hyuck Han et al. [11] proposed a scheme that intro-
duces REST in cloud infrastructures. In [3], Giuseppina
Cretella e Beniamino Di Martino, propose a methodology
and techniques for the semantic analysis of this type of
cloud architecture and infrastructure. Toby and Anthony
Velte, and Robert Elsenpeter, in [17], analyse the cloud
infrastructure, as well as all its component architectures
including REST and JSON.

In this article we shall present a new architecture and
implementation based on these previous works and that
makes use of National Electronic identity (E-Id) cards.

IV. E-Id Cards

Electronic identity (E-Id) cards permit the holder to
prove his identity, physically or digitally. This type of
card contains human and machine readable information
including photograph and often biometric information such
as fingerprint template. The card is based on sovereign
state governmental systems that include many levels of
public government departments and national Public Key
Infrastructure (PKI) for managing the system.

The initial concept of the Portuguese E-Id card was
to merge various identification documents into a single
electronic smart card and permit the maximum of inter-
operability between the various entities. Other objectives
include permitting and enabling greater electronic interac-
tion with the Portuguese government, simplifying the ac-
cess to electronic services, providing a legal and electronic
infrastructure for validating electronic documents and for
the creation of innovative applications.

The Portuguese E-Id Card (CC) is a Java smart card
that follows the international recommended norms to be
officially recognized as an identification and travel docu-
ment. This is in line with the current guidelines of the
European Union, in particular with the working group for
the European Citizen Card (ECC) and by standards set by
the International Organization for Standardization (ISO
7501 and ISO 7810). This means that the results of this
paper can be applied in the context of all other electronic
identification cards that follow the same standards, requir-
ing only the installation of the root certificates of the other
cards in the server where the system is running.

The card contains information written onto the card
in several formats: visual human readable information, a
bar-code type machine-readable zone and also information
in electronic form on the chip. The chip contains the
personnel information about the citizen, such as name
and address, photographic image and biometric fingerprint
template. Cryptographic keys and digital certificates, each
one of these has an asymmetric RSA key pair, created by
the Portuguese PKI of the Portuguese Ministry of Justice
are also included.

488

For instance in order to use the digital authentication
service and access the RSA public key the card holder
must introduce his/her PIN, note that all cryptographic
operations are made inside the cards chip and the private
keys are never exposed outside of the card. With the CC
card it is possible for the user with a computer and smart
card reader to authenticate on suitably configured web
sites over SSL/TLS.

A. Certificate Authority

The Certificate Authority (CA) of the Portuguese
state that issues the certificates of the Portuguese E-Id
card is responsible not only for the issue but also the
validation and verification of them. This verification is
fully supported by two specific methods: CRL (Certificate
Revocation List) and OCSP (Online Certificate Status
Protocol). The entity that wants to check the validity and
reliability of a certificate will have to perform one of these
two methods and contact appropriate service supplied by
the CA.

The CA also has the ability to issue a new certificate
with an expiration date included. This mechanism is im-
portant for the same certificate is not indefinitely associ-
ated with the same entity. Thus, the CA has the freedom to
manage certificate validity, and if for any reason it becomes
necessary to revoke a certificate CA can do it. Whenever
one of these processes is unleash, the entity that owns
the revoked or expired certificate have in his possession a
useless certificate. To solve this problem it will be necessary
that this entity make a request to obtain a new certificate.
This is important because the authentication process on
Simploud proceeds through authentication certificates, if
they have been revoked or expired, the user will be unable
to perform the authentication process.

V. OAuth Authentication Protocols

As referred to by Leiba [12], OAuth is an open standard
authentication protocol that is part of the category of
identity management systems, since these systems allow
resource sharing amongst electronic services. The OAuth
Core 1.0 final draft was released in 2007, the latest revision
was published in [5] 2010 as the OAuth 1.0 Protocol and
was published as RFC 5849. The OAuth 2.0 Authorization
Framework was published in 2012.

The choice of OAuth as the principle authentication
protocol to be used in our work and not openID lies in the
fact that whilst openID is only an authentication protocol
OAuth has a larger scope, it is capable of supplying au-
thorization and give access to private data to third parties
[14]. However one of the main reasons was that the targeted
cloud platforms for our application all use this protocol for
authentication and authorization.

The operating mode of OAuth is relatively simple and is
based on the possibility that a third party, given previous
access consent, may access users data stored by some
service without being necessary for the user to provide his
access credentials (usually designated by the username and
password pair).

A simple use case is allowing a print service (consumer
service) to access a users private photos that are stored by
some other service provider without it being necessary for
the consumer service to demand that the user supplies his
or her credentials of the service provider.

Figure 1 illustrates the process flow of the protocol,
basically divided into three principal phases: The consumer
makes an authorization request to the owner of the re-
sources. The response of the resource owner is eventually
returned in the form of a token or authorization grant.
Next, the consumer sends a new request that includes this
token in order to be authorized to access the private data of
the resource owner to the resource server. If the resource
owner has permitted the sharing of data with this third
party, a new definitive token, known as access token, is
issued and then until this token is revoked or deleted by the
resource owner or server, the consumer will have access to
the resource owners protected data, with the given consent
of the resource owner. Note that all requests and responses
of this protocol must run over ssl.

Fig. 1. OAuth protocol mechanism

As well as version 1.0 of the protocol two other versions
exist [6] and [4].

Version 1.0a of the protocol OAuth resolved a specific
problem due to a session fixation attack against the OAuth
Request Token [7]. The attacker was able to interrupt
the protocol save the authorization request URI (which
includes the Request Token) and then if he can later
convince a victim to click on a link consisting of the
authorization request URI to approve access to the victims
Protected Resources to the (honest) Consumer he was
able to (after the victim grants approval) use the saved
Request Token to complete the authorization flow, and
access the victims Resources at the consumer service. This
error gravelly affected all the OAuth mechanism, however
it was detected before actual attacks were made.

Version 1.0a corrected this problem by simply intro-
ducing a verification code between the authorization re-
quest and the request to obtain the final access token in
order that the server that authenticates the final consumer
knows if it is the same consumer that made all the requests.

The most recent version of OAuth is version 2.0. It in-
troduces new security considerations for token generation.
The principal alterations to the protocol allow the intro-
duction of different scopes and the concept of a Refresh
Token [15].

489

The introduction of scopes in the protocol was impor-
tant as it enabled a user to supply limited access to third
parties, for instance to specific parts of data held by a
resource server. A practical example of this situation is
the Microsoft Live API, where a user may only wish to
share data from his email account or maybe only the data
held on Skydrive.

The concept of refresh token was important in the sense
that it helps to prevent session attacks. While to obtain
an access token the user only needed to send the token
previously granted, for the refresh token a client ID and a
client secret (OAuth parameters) are also required. Using
refresh tokens the problem of session attacks was resolved,
when a token expires the user only has to use a refresh
request to get a new token and continue with the access
granted previously. This way the danger of session attacks
was limited since whenever a token expires the user only
has to issue a refresh request in order to obtain a new token
and continue with the access already granted.

VI. REST APIs

Recently, the REpresentational State Transfer (REST)
architecture has been proposed as an alternative to existing
web services [8]. In this era of cloud and internet services
this architecture has been widely adopted, mainly due to
the increased number of mobile devices and to the ever
increasing number of mobile internet services.

While designing any distributed hypermedia system
(modern web architecture), various factors such as scalabil-
ity, simplicity, visibility, etc. should be ensured. Existing
network architectural styles do ensure these factors, but
there are no existing styles that integrate all these factors
and desired properties. REST evolved by identifying the
strengths and weakness of the existing network styles.
The network styles that compose REST are Client-Server,
Stateless, Cacheable, Layered System, Code on Demand
and Uniform Interface.

Since this is a protocol based on HTTP requests and re-
sponses, often the services that implement REST also im-
plement JSON format for all responses from these services.
The JSON format is native from JavaScript language and
is based on Attribute : value notation where attribute is
the name with which we identify some property and value
is the actual value of this property. Although born with
JavaScript, this format has gained prominence, primarily
due to the fact that it can work comfortably with different
data structures.

For instance many of the cloud storage services feature
their own REST APIs, services such as Dropbox, Skydrive,
Google Drive, Cloudpt, which are subject of detailed anal-
ysis for this article.

All these providers implemented their own proprietary
APIs, their own objects and JSON format. This compli-
cates the task of constructing an API that covers all these
platforms. The different versions of the OAuth protocol
that these service providers use further complicates the
construction of a single API for all of them. However there
are parameters common to all of these APIs which are
identified below:

• All the request execute over the SSL protocol;

• The APIs are all built around a REST architecture
and the replies come in the JSON format;

• In spite of the fact that the structure of the URL
requests be different for each provider, the steps
that compose the process of authentication and
authorization until the access to the data and files
is identical;

• They all implement the basic cloud storage op-
erations, such as download, upload, listing, shar-
ing, copying, renaming, version recovery, move and
delete.

VII. Implementation

The basic objectives for designing an architecture for
E-Id Authentication and Uniform Access to Cloud Storage
Service Providers was to provide users with a single point
of access to all their cloud storage services and allow the
possibility that third party applications could use this
platform to access private data and files. In particular
the architecture was designed to include an identity based
encryption (IBE) system that enables users to encrypt
their data on the cloud also using an IBE encryption
service permits the definition of modifiable file access
policies (sticky policies) when sharing data between users
on such a system.

This case study was suggested and supported by PT
Inovação, SA, included in the project PRICE - Privacy,
Reliability and Integrity in Cloud Environments 2.

Considering the previous sections we therefore needed
an architecture based on the following:

• A single point of access to multiple cloud storage
service providers;

• Authentication using the strong authentication
characteristic of an E-Id card;

• Authorization on the users (citizens) cloud
providers using the OAuth protocol;

• A multi-platform API for the three cloud storage
service providers that we targeted.

A Web Application 3 was developed to implement this
architecture. The basic components of this application are:

• Development of a single REST API to interact
with the three service providers;

• Authentication on the Web Site using the E-id
card;

• Integrate the authentication on the Web Site with
authentication and authorization on the cloud stor-
age service providers via the OAuth protocol.

In order to implement authentication on the web site
using the Cartão de Cidadão it is necessary to configure
the server with the following steps:

2http://spocs.it.ubi.pt/price
3https://spocs.it.ubi.pt:444/simploud/

490

• Configure the Web Application server for SSL
client certificate authentication which requires ob-
taining a valid and trusted server certificate and
configuring the server, in our case IIS, to require
client certificates;

• Configure the server to request and accept as valid
certificates form the Portuguese E-Id cards;

• The server application must validate the certificate
against a chain of intermediate and root certificates
and of course check certificate integrity, expiry date
and other parameters that can be extracted from
the certificate;

• Check that the certificate has not been revoked
using either CRL (Certificate Revocation List) or
OCSP (Online Certificate Status Protocol).

If the authentication certificate from the smart card
presents an invalid state (expired, suspended or revoked)
all tokens linked to this card stored on the database will be
removed to ensure the security, integrity and consistency
of data. The card owner should resolve the situation on-
line, if possible, or presentially at a trusted entity for the
purpose.

The API 4 developed in this work was based on the
aggregation of all considered providers and uniform in-
teraction with its REST APIs. As explained in section
VI, each provider applies their own version of OAuth
protocol, defines its objects and JSON formats returned in
responses. All these parameters lead to small changes that
make the task of building this API careful but necessary.

Considering only the targeted service providers it was
necessary to identify the differences between each one:

• Dropbox: Implements version 1.0 of OAuth and
two types of different JSON responses, one to
characterize the account details and one to store
information about files and directories.
The difference between the file and directory ob-
ject is the contents attribute which is present in
the directory object and represent a list of the
directory content. Access to a users content is
made using the path notation, specify a unique file
location.

• Cloudpt: Implements version 1.0a of OAuth which
implies some changes to the responses in the
authentication mechanism. Version 1.0a contains
an additional field, OAuth verifier, an additional
security code which our application must be aware
of. Concerning the JSON responses, the formats
actually uses by Cloudpt are identical to the pre-
vious provider, one type for file and one type for
directory responses.

• Skydrive: Implements version 2.0 of OAuth and
makes use of all the changes implemented in ver-
sion 2.0 such as the concepts of refresh token and
scopes.

4http://spocs.it.ubi.pt/price/api

Fig. 2. Application Architecture

When the protocol is initiated its necessary to
specify what are the scopes for the application.
After this, and after successful authentication, the
application has been explicitly authorized by the
user and the consumer gets access to the desig-
nated scopes. With this version, and looking at this
provider in particular, the access tokens obtained
contain an expiry date, of an hour, and at the
end of this time its necessary to refresh the access
of the consumer to the service. Using the refresh
mechanism of the OAuth we are able to obtain a
new token without the user noticing the process.
Concerning the JSON responses, Microsoft Live
Connect possess objects to specify activity, album,
application, audio, calendar, comment, contact, er-
ror, event,file, directory, friend, permission, photo,
quota, tag, user and video. Although all these pa-
rameters are referred to in the Live Connect library
only some of them are necessary for Skydrive.
Our application only requires the file, directory ,
quota and user. The last two are necessary in order
to extract the email of the user and information
about how much space the user has used and how
much space is still available. One last detail that
distinguishes this provider to the other two is the
content access, which instead of using a path type
object uses an id property which can be obtained
for a file or directory object.

Figure 2 illustrates the different components in our
system and indicates the different interactions between the
components. The first step (1) is authentication via the
smart card on the Web Application. The user must insert
their smart card into the reader and enter the authen-
tication pin to ensure the authenticity of the presented
certificate. Having said this, the service sends a certificate
validation request for the respective CA (2). If the answer
is affirmative, the user successfully terminates authenti-
cation process with smart card, otherwise he will not be
allowed to enter in the restricted area of the application.

After successful authentication the application collects
some public data (name and civil id number and also
issuer, serial number and public key of the public authen-
tication certificate) and stores this data (3).

491

The user can then choose which service provider he
wishes to access and after clicking the appropriate icon
initiates the OAuth mechanism with this provider. This
mechanism implies that the user has an account registered
on the chosen provider and valid login to allow Simploud’s
access to their protected data. If the process is successful a
token is returned which guarantees access to the protected
data of the user (4). This token is stored (5) by the
application together with the users public certificate (6).
This means a user with the same CC Card on a subsequent
return to the application does not need to initiate a new
OAuth authorization process, at least while the access
token is valid and has not been revoked or eliminated by
the user. When a user with a CC is in possession of an
access token the user is able to access and manipulate all
the data that is associated with the obtained token (7).

VIII. Conclusions

Identity management systems are one factor in helping
to solve the problem of the propagation of multiple iden-
tities of the same user and helps to make it possible to
share data between different services without necessarily
implying the exchange of authentication credentials such
as username and password. However the propagation of
multiple services all implementing different varieties of
underlying authentication and authorization protocols as
well as servicing information via REST in varying formats
makes it difficult to design a system where the user is able
to access these services from a single entry point. Also
competing authentication schemes such as using smart
cards or username and passwords often confuse the users.

For those users who desire strong authentication and
wish to use their E-Id cards to access ever more diverse
services our application makes this possible. The archi-
tecture, APIs and developed application described in this
article have shown how it’s possible to combine the strong
authentication of E-Id smartcards with authentication in
services that are based on the OAuth protocol and also
aggregate these services into a single uniform access which
helps to mitigate the usual problems of authentication via
multiple identities in these different services.

References

[1] Haitham S. Al-Sinani. Browser Extension-based Interoperation
Between OAuth and Information Card-based Systems. Royal
Holloway, University of London, September 2011.

[2] Haitham S. Al-Sinani. Integrating oauth with information card
systems. In IAS, pages 198–203, 2011.

[3] Giuseppina Cretella and Beniamino Di Martino. Semantic web
annotation and representation of cloud apis. In Proceedings of
the 2012 Third International Conference on Emerging Intel-
ligent Data and Web Technologies, EIDWT ’12, pages 31–37,
Washington, DC, USA, 2012. IEEE Computer Society.

[4] Ed. D. Hardt. The oauth 2.0 authorization framework. http:
//tools.ietf.org/html/rfc6749, October 2012.

[5] Ed. E. Hammer-Lahav. The oauth 1.0 protocol. http://tools.
ietf.org/html/rfc5849, April 2010.

[6] et al. Eran Hammer-Lahav. Oauth core 1.0 revision a. http:
//OAuth.net/core/1.0a/, June 2009.

[7] et al. Eran Hammer-Lahav. Oauth security advisory: 2009.1.
http://OAuth.net/advisories/2009-1/, April 2009.

[8] Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, University
Of California, 2000.

[9] Eghbal Ghazizadeh, Jamalul-lail Ab Manan, Mazdak Zamani,
and Abolghasem Pashang. A survey on security issues of
federated identity in the cloud computing. In Proceedings of
the 2012 IEEE 4th International Conference on Cloud Com-
puting Technology and Science (CloudCom), CLOUDCOM ’12,
pages 532–565, Washington, DC, USA, 2012. IEEE Computer
Society.

[10] Helder Gomes, João Paulo Cunha, and André Zúquete. Authen-
tication architecture for ehealth professionals. In Proceedings of
the 2007 OTM confederated international conference on On the
move to meaningful internet systems: CoopIS, DOA, ODBASE,
GADA, and IS - Volume Part II, OTM’07, pages 1583–1600,
Berlin, Heidelberg, 2007. Springer-Verlag.

[11] Hyuck Han, Shingyu Kim, Hyungsoo Jung, Heon Y. Yeom,
Changho Yoon, Jongwon Park, and Yongwoo Lee. A rest-
ful approach to the management of cloud infrastructure. In
Proceedings of the 2009 IEEE International Conference on
Cloud Computing, CLOUD ’09, pages 139–142, Washington,
DC, USA, 2009. IEEE Computer Society.

[12] Barry Leiba. Oauth web authorization protocol. IEEE Internet
Computing, 16(1):74–77, 2012.

[13] Frank Pimenta, Claudio Teixeira, and Joaquim Sousa Pinto.
Globalid - privacy concerns on a federated identity provider
associated with the users’ national citizen’s card. In Proceedings
of the 2010 Third International Conference on Advances in
Human-Oriented and Personalized Mechanisms, Technologies
and Services, CENTRIC ’10, pages 16–21, Washington, DC,
USA, 2010. IEEE Computer Society.

[14] Laurie Rae, David Recordon, and Chris Messina. OpenID: the
Definitive Guide. Oreilly & Associates Inc, 1st edition, 2012.

[15] M. McGloin P. Hunt T. Lodderstedt, Ed. Oauth 2.0 threat
model and security considerations. http://tools.ietf.org/html/
rfc6819, January 2013.

[16] Pascal Urien. An openid provider based on ssl smart cards. In
Proceedings of the 7th IEEE conference on Consumer commu-
nications and networking conference, CCNC’10, pages 444–445,
Piscataway, NJ, USA, 2010. IEEE Press.

[17] Toby Velte, Anthony Velte, and Robert Elsenpeter. Cloud
Computing, A Practical Approach. McGraw-Hill, Inc., New
York, NY, USA, 1 edition, 2010.

492

