
Pathfinding

Video Games Technologies
11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

Chap. 11 — Pathfinding
Partially based on slides of the course:
CS134: Computer Game Design and Programming
Author: Soon Tee Teoh

Chapter 11: Pathfinding

Outline
…:

– Introduction

– Definitions: pathfinder, graph

– Graph traversal algorithms in games

– BFS, DFS, Dijkstra, and A*

Chapter 11: Pathfinding

Introduction

Why do we need pathfinding in games?

– In computer games, it is necessary for characters to make decisions about how to
get from A to B.

– This is easy for people, but requires intelligence to solve.

– For example, in RTS games, you click the mouse on a location on the map and the
entity must figure out the most efficient way to get there:

Chapter 11: Pathfinding

Introduction(contd.)

Well, this may involve:

– Going over mountains (slower?).

– Negotiating buildings.

– Negotiating bridges (or swimming?).

– Climbing ladders

and also:

– Opening doors.

– Moving other entities out of the way.

– In computer games, this is almost
always achieved using the A*
algorithm!

Chapter 11: Pathfinding

What is a pathfinder?

– It is a graph traversal algorithm.

– It allows us to find the lowest cost path through a graph.

– Lowest cost does not mean necessarily the following:

§ the shortest path

§ the path with the fewest nodes

Google Maps is a big
graph, whose edges
represent streets and
vertices represent
crossings.

But, pathfinding does
not work directly on
geometry. Instead, it is a
simplified abstraction
of movement
possibilities in a graph.

Chapter 11: Pathfinding

What is a graph?

A graph G = (V, E)

– V = set of vertices, E = set of edges

– Dense graph: |E| » |V|2; Sparse graph: |E|
» |V|

– Undirected graph:

§ Edge (u,v) = Edge (v,u)

§ No self-loops

– Directed graph (or digraph):

§ Edge (u,v) goes from vertex u to vertex
v, notated u®v

– A weighted graph associates weights with
either the edges or the vertices

Shortest path (A, C, E, D, F)
between vertices A and F in
the weighted directed graph

ht
tp

s:
//e

n.
w

ik
ip

ed
ia

.o
rg

/w
ik

i/S
ho

rte
st

_p
at

h_
pr

ob
le

m

Chapter 11: Pathfinding

Graph traversal

Algorithms:

– Breath first search (BFS):

§ Least number of nodes

– Depth first search (DFS):

§ Exists!

– Dijkstra’s algorithm:

§ Lowest cost path to all other nodes

– A*:

§ Lowest cost path to a destination

Chapter 11: Pathfinding

Breadth-first search

Graph traversal:

– First move horizontally and visit all the nodes of the current layer

– Move to the next layer

Remarks:

– The tree is not actually created.

– Instead, we use a queue (first-in-first-out policy) to mimic the behavior of the BFS
on a tree.

A feasible BFS implementation:

– A FIFO-policy queue.

– Array of nodes; each node holds indexes of its neighbors in the array.

– Homologous array of booleans, indicating whether each node has been visited or
not.

ht
tp

s:
//w

w
w

.h
ac

ke
re

ar
th

.c
om

/p
ra

ct
ic

e/
al

go
rit

hm
s/

gr
ap

hs
/b

re
ad

th
-fi

rs
t-s

ea
rc

h/
tu

to
ria

l/

Chapter 11: Pathfinding

Breadth-first search: pseudocode

BFS(G, s) {
initialize vertices;
Q = {s}; // Q is a queue (duh); initialize to s
while (Q not empty) {

u = RemoveTop(Q);
for each v Î u->adj {

if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue(Q, v);

}
u->color = BLACK;

}
}

What does v->d represent?
What does v->p represent?

white node = unvisited node
grey node = visited node
black color = closed node (removed from the queue)

ATTENTION:
• To prevent the appearance of loops, only unvisited nodes are processed,

i.e., the cost function d (e.g., degree or tree level) is computed.
• The field p denotes the node’s parent.

Chapter 11: Pathfinding

Breadth-first search: example

¥

¥

¥

¥

¥

¥

¥

¥

r s t u

v w x y

Chapter 11: Pathfinding

Breadth-first search: example

¥

¥

0

¥

¥

¥

¥

¥

r s t u

v w x y

sQ:

Chapter 11: Pathfinding

Breadth-first search: example

1

¥

0

1

¥

¥

¥

¥

r s t u

v w x y

wQ: r

Chapter 11: Pathfinding

Breadth-first search: example

1

¥

0

1

2

2

¥

¥

r s t u

v w x y

rQ: t x

Chapter 11: Pathfinding

Breadth-first search: example

1

2

0

1

2

2

¥

¥

r s t u

v w x y

Q: t x v

Chapter 11: Pathfinding

Breadth-first search: example

1

2

0

1

2

2

3

¥

r s t u

v w x y

Q: x v u

Chapter 11: Pathfinding

Breadth-first search: example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

Chapter 11: Pathfinding

Breadth-first search: example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

Chapter 11: Pathfinding

Breadth-first search: example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

Chapter 11: Pathfinding

Breadth-first search: example

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

Chapter 11: Pathfinding

Breadth-first search: pseudocode again

BFS(G, s) {
initialize vertices;
Q = {s};
while (Q not empty) {

u = RemoveTop(Q);
for each v Î u->adj {

if (v->color == WHITE)
v->color = GREY;
v->d = u->d + 1;
v->p = u;
Enqueue(Q, v);

}
u->color = BLACK;

}
}

Touch every vertex: O(V)

u = every vertex, but only once
(Why?)

So v = every vertex
that appears in
some other vert’s
adjacency list

What will be the running time?
Total running time: O(V+E)

What will be the storage cost
in addition to storing the graph?

Total space used:
O(max(degree(v))) = O(E)

Chapter 11: Pathfinding

Breadth-first search: properties

BFS calculates the shortest-path distance to the source node

– Shortest-path distance d(s,v) = minimum number of edges from s to v, or ¥ if v not
reachable from s

BFS builds breadth-first tree, in which paths to root represent shortest
paths in G

– Thus can use BFS to calculate shortest path from one vertex to another in O(V+E)
time

Chapter 11: Pathfinding

Representing a graph G(V,E): review

As a network of edges E connecting vertices V

As an adjacency matrix represents the graph as a n x n matrix A:

– A[i, j] = 1 if edge (i, j) Î E (or weight of edge)
= 0 if edge (i, j) Ï E

– Storage requirements: O(V2)

§ A dense representation

– But, can be very efficient for small graphs

§ Especially if store just one bit/edge

§ Undirected graph: only need one diagonal of matrix

Chapter 11: PathfindingBFS in games:
grid-based pathfinding

– There is no need to construct a graph or adjacency matrix because a grid-based map is
already represented by a nxm matrix, so adjacency relationships between a node and its
8-neighbor nodes are well defined.

– We only need the queue Q.

– The path between a source (start) node a sink (end) node can be easily reconstructed
since we set the parent node for each node added to Q.

Chapter 11: Pathfinding

Deepth First Search (DFS)

Intuition:

– Depth-first search works much like people try to get out from a maze:

§ First, we follow a path until we hit a dead end or reach the end of the maze.

§ Second, if a given path doesn’t work, we backtrack and take an alternative path from a
past junction, and try that path.

§ This means that we replace “neighbor” by “child”.

Comparison with BFS:

– Just like in BFS, to prevent infinite loops, we only want to visit each vertex once.

– As in BFS, we use flags to keep track of the vertices that have already been visited.

– Also, just like in BFS, we can use this search to build a spanning tree. The difference
is that the tree is built in depth rather that in breadth.

Chapter 11: Pathfinding

Recursive DFS

recursive_dfs(graph G, vertex v)
{

visit(v);
for each neighbor w of v

if w is unvisited
{

dfs(w);
add edge vw to tree T

}
}

ht
tp

s:
//h

ac
ke

rn
oo

n.
co

m
/g

ra
ph

s-
in

-c
s-

an
d-

its
-tr

av
er

sa
l-a

lg
or

ith
m

s-
cf

ee
55

33
f7

4e

Chapter 11: Pathfinding

Iterative DFS

iterative_dfs(graph G, vertex s)
{

let S be stack
S.push(s) //Inserting s in stack
mark s as visited
while (S is not empty)

//Pop a vertex from stack to visit next
v = S.top()
S.pop()
//Push all the neighbours of v in stack that are not visited
for all neighbours w of v in G

if w is not visited
S.push(w)
mark w as visited

}

ht
tp

s:
//w

w
w

.h
ac

ke
re

ar
th

.c
om

/p
ra

ct
ic

e/
al

go
rit

hm
s/

gr
ap

hs
/d

ep
th

-fi
rs

t-s
ea

rc
h/

tu
to

ria
l/

Chapter 11: Pathfinding

Edsger Wybe Dijkstra

“The question of whether computers
can think is rather like the
question of whether submarines
can swim”

Chapter 11: Pathfinding

A* pathfinding

Problem:

– Given a non-player character (NPC), we intend to find the best path from the
current NPC location to a destination. Obstacles may exist in between.

A*:

– We will find the best path (as long as heuristic underestimates the true cost)

§ Efficient

– However, it is overkill if line-of-sight exists

– Works in a tiled map

§ Or somehow, must model space with finite nodes

Chapter 11: Pathfinding

A*

Astar(graph G, vertex start_node, vertex goal_node)
{

Add start_node to open_list

while (not_empty(open_list))
{

current_node := node from open_list with lowest cost
if (current_node==goal_node)

path complete
else
{

move current_node to closed_list
for each node N adjacent to current_node {

if ((N is not in open_list) && (N is not in closed_list))
{

move N to open_list
assign cost to N

}
}

}
}

Chapter 11: Pathfinding

Tracing the path in A*

Astar(graph G, vertex start_node, vertex goal_node)
{

Add start_node to open_list

while (not_empty(open_list))
{

current_node := node from open_list with lowest cost
if (current_node==goal_node)

path complete
else
{

move current_node to closed_list
for each node n adjacent to current_node {

if ((n is not in open_list) && (n is not in closed_list))
{

move N to open_list
assign cost to n

}
}

}
}

When a node n is added to the open_list,
keep a pointer to its parent_node. Here
the parent node is current_node.

At the end, when the path is found, follow
the parent pointers to trace out the path.

Cost function at location n:
𝑓(𝑛) 	= 	𝑔(𝑛) 	+ 	ℎ(𝑛)

𝑔(𝑛)	: distance from the start point to point 𝑛
ℎ 𝑛 	: estimated distance from point 𝑛 to the goal point
𝑓(𝑛)	: current estimated cost for point 𝑛

Chapter 11: Pathfinding

A* example

Start

End

5

4

3

2

1

1 2 3 4 5

Iteration 1:

Open List:

Closed List: Empty

Node: (2,2)
Cost: 5
Distance from start: 0

Chapter 11: Pathfinding

A* example

7

5

Start

7

5

End

5

4

3

2

1

1 2 3 4 5

Iteration 2:

Open List:

Closed List:

Node: (1,2)
Cost: 7
Distance from start: 1

Node: (2,1)
Cost: 7
Distance from start: 1

Node: (3,2)
Cost: 5
Distance from start: 1

Node: (2,3)
Cost: 5
Distance from start: 1

Node: (2,2)

Chapter 11: Pathfinding

A* example

7

5

Start

7

End

5

4

3

2

1

1 2 3 4 5

Iteration 3:

Open List:

Closed List:

Node: (1,2)
Cost: 7
Distance from start: 1

Node: (2,1)
Cost: 7
Distance from start: 1

Node: (2,3)
Cost: 5
Distance from start: 1

Node: (3,3)
Cost: 5
Distance from start: 2

Node: (2,2)

5

5

5

Node: (4,2)
Cost: 5
Distance from start: 2

Node: (3,1)
Cost: 7
Distance from start: 2

Node: (3,2)

Chapter 11: Pathfinding

A*: additional notes

– Dead ends. If open_list is empty before the goal node is found, it means that there
is a dead end. There does not exist a path between the starting point and the
destination node.

– Terrain cost. Simple A* algorithm does not consider terrain cost. If different tiles
are made of different terrain, some of which are harder to cross, we can assign a
cost to each tile according to its terrain. Instead of adding 1 to the distance from
start, add the cost.

– Influence cost. Every time the character gets shot at in a tile, add the influence
cost of the tile, to make it most costly to go that way.

Chapter 11: Pathfinding

Summary:

…:

– Introduction

– Definitions: pathfinder, graph

– Graph traversal algorithms in games

– BFS, DFS, Dijkstra, and A*

https://qiao.github.io/PathFinding.js/visual/

https://movingai.com/benchmarks/

