Video Games Technologies

11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

0041.000010L00L000LP0L0.00000WL0L00L010L400002111101001020L00112110.0000200%00LLL0L0010

11010101010L1101000041000010100%010010010%000 LDLLD].EI[]LDIDLL)U[][]E‘LL].LLDLD[]LDL

ULULULULUP% lL%ULDDEMHDLDDL 1,11, 01001 Qroepoesnse

Chap. | | — Pathfinding

Partially based on slides of the course:
CS134: Computer Game Design and Programming
Author: Soon Tee Teoh

Chapter | |: Pathfinding

Outline

— Introduction

— Definitions: pathfinder, graph
— Graph traversal algorithms in games

— BFS, DFS, Dijkstra, and A*

Chapter | |: Pathfinding
Introduction
'l

Why do we need pathfinding in games?

— In computer games, it is necessary for characters to make decisions about how to
get from A to B.

— This is easy for people, but requires intelligence to solve.

— For example, in RTS games, you click the mouse on a location on the map and the
entity must figure out the most efficient way to get there:

Chapter | |: Pathfinding
Introduction(contd.)

830000

Well, this may involve: and also:
— Going over mountains (slower?). — Opening doors.
— Negotiating buildings. — Moving other entities out of the way.
— Negotiating bridges (or swimming?). — In computer games, this is almost

always achieved using the A*
algorithm!

— Climbing ladders

What is a pathfinder?

— It is a graph traversal algorithm.

— It allows us to find the lowest cost path through a graph.

— Lowest cost does not mean necessarily the following:

" the shortest path

" the path with the fewest nodes

Google Mapsis a big

graph, whose edges Hospital Santa Mana@ 5 Pibeo . PSIQ
represent streets and 7 >
vertices represent N Ji
crossings. q"e %
SN “3%

Iguesa Z

sinema X %

ly closed @Tivoli Avenida Liberdade
But, pathfinding does Q .
not work directly on X N

. \,

geometry. Instead, it is a . Avenida %
simplified abstraction ° : =

of movement
possibilities in a graph. 3
J

nNacionar ae Apoio a...

S A e YN

Embaixada de Itélia @

m R. Mariz

Carvoaria Jacto
QA Marisqueira/do Lis/ #
8 Campo Santana = J—

Casa Independente 9

Associagao de
Estudantes da NOVA...

Senhora do Monte

Palma

Chapter | |: Pathfinding

v

%)
ae \
Y sa

ae E
,

“ B8 5]

/5

=]

s B8 g g

Be

9 Pingo Doce Graca
a

R.Beatas *
a Gragd
* puado sol a6

What is a graph?

A graph G = (V, E)

V = set of vertices, E = set of edges

Dense graph: |E| =~ |V|%; Sparse graph: |E|
~ V]

Undirected graph:
= Edge (u,v) = Edge (v,u)
= No self-loops
Directed graph (or digraph):

= Edge (u,v) goes from vertex u to vertex
v, notated u—v

A weighted graph associates weights with
either the edges or the vertices

Chapter | |: Pathfinding

Shortest path (A, C,E, D, F)
between vertices A and F in
the weighted directed graph

https://en.wikipedia.org/wiki/Shortest_path_problem

Chapter | |: Pathfinding
Graph traversal

Algorithms:
— Breath first search (BFS):

" Least number of nodes
— Depth first search (DFS):

= Exists!
— Dijkstra’s algorithm:

" Lowest cost path to all other nodes
— AT

" |Lowest cost path to a destination

Chapter | |: Pathfinding
Breadth-first search

source node

Layer 1

Graph traversal:

— First move horizontally and visit all the nodes of the current layer
— Move to the next layer

Remarks:

— The tree is not actually created.

— Instead, we use a queue (first-in-first-out policy) to mimic the behavior of the BFS
on a tree.

https://www.hackerearth.com/practice/algorithms/graphs/breadth-first-search/tutorial/

A feasible BFS implementation:

— A FIFO-policy queue.
— Array of nodes; each node holds indexes of its neighbors in the array.

— Homologous array of booleans, indicating whether each node has been visited or
not.

white node = unvisited node
grey node = visited node
black color = closed node (removed from the queue)

BFS(G, s) {
initialize vertices;
Q = {s}; // Q is a queue (duh); initialize to s

while (Q not empty) {
u = RemoveTop(Q);
for each v € u—>adj {
if (v—>color == WHITE)
v—>color = GREY;

v—=>d = u->d + 1; What does v->d represent?
V=>p = U; What does v—>p represent?
Enqueue(Q, Vv);
I3
u—>color = BLACK;
I3
s
ATTENTION:

* To prevent the appearance of loops, only unvisited nodes are processed,
i.e., the cost function d (e.g., degree or tree level) is computed.
* The field p denotes the node’s parent.

Chapter | |: Pathfinding

Q Oy

Chapter | |: Pathfinding

r S t

)

&

| 4 w X

Chapter | |: Pathfinding

Chapter | |: Pathfinding

Chapter | |: Pathfinding

Chapter | |: Pathfinding

Chapter | |: Pathfinding

Chapter | |: Pathfinding

Chapter | |: Pathfinding
Breadth-first search: pseudocode again

BFS(G.’ .S). {. . Touch every vertex: 0(V)
initialize vertices; —
Q = {s};
while (Q not empty) {
u = RemoveTop(Q); u = every vertex, but only once
for each,v € u->adj { < (Why?)
m»color == WHITE)
So v = every vertex V->color = GREY;
e e i, Y umd el
: . V=>p = Uj
adjacency list Enqueue(O, v):
} What will be the running time?

u—>color = BLACK;
Total running time: O(V+E)

What will be the storage cost
in addition to storing the graph?

Total space used:
O(max(degree(v))) = 0(E)

230000

Chapter | |: Pathfinding

Breadth-first search: properties

BFS calculates the shortest-path distance to the source node

— Shortest-path distance d(s,v) = minimum number of edges from s to v, or « if v not
reachable from s

BFS builds breadth-first tree, in which paths to root represent shortest
paths in G

— Thus can use BFS to calculate shortest path from one vertex to another in O(V+E)
time

Chapter | |: Pathfinding

Representing a graph G(V,E): review

As a network of edges E connecting vertices V
As an adjacency matrix represents the graph as a n x n matrix A:

— AJi,j] = | if edge (i, j) € E (or weight of edge)
=0if edge (i, j) ¢ E
— Storage requirements: O(V?)
" A dense representation

— But, can be very efficient for small graphs

" Especially if store just one bit/edge

® Undirected graph: only need one diagonal of matrix

BFS in gameso Chapter | |: Pathfinding

N srid-based pathfinding

— There is no need to construct a graph or adjacency matrix because a grid-based map is
already represented by a nxm matrix, so adjacency relationships between a node and its
8-neighbor nodes are well defined.

— We only need the queue Q.

— The path between a source (start) node a sink (end) node can be easily reconstructed
since we set the parent node for each node added to Q.

B 3 -
T ; v o

B i Sy R Yo Fepad]] N

Chapter | |: Pathfinding

Deepth First Search (DFS)

Intuition:

— Depth-first search works much like people try to get out from a maze:

" First, we follow a path until we hit a dead end or reach the end of the maze.

" Second, if a given path doesn’t work, we backtrack and take an alternative path from a
past junction, and try that path.

" This means that we replace “neighbor” by “child”.

Comparison with BFS:

— Just like in BFS, to prevent infinite loops, we only want to visit each vertex once.
— As in BFS, we use flags to keep track of the vertices that have already been visited.

— Also, just like in BFS, we can use this search to build a spanning tree. The difference
is that the tree is built in depth rather that in breadth.

recursive_dfs(graph G, vertex v)
{
visit(v);
for each neighbor w of v
if w is unvisited
{
dfs(w);
add edge vw to tree T

Chapter | |: Pathfinding

https://hackernoon.com/graphs-in-cs-and-its-traversal-algorithms-cfee5533f74e

/

Chapter | |: Pathfindingz

Iterative DFS | 1+ e

o.

-
o
e\\ |
GD///
c’\\\

—
-

%terative_dfs(graph G, vertex s) @ @ (5)
let S be stack R SNSRI
S.push(s) //Inserting s in stack
mark s as visited
while (S is not empty)
//Pop a vertex from stack to visit next
v = S.top()
S.pop()
//Push all the neighbours of v in stack that are not visited
for all neighbours w of v in G
if w is not visited
S.push(w)
mark w as visited

https://www.hackerearth.com/practice/algorithms/graphs/depth-first-search/tutori

Chapter | |: Pathfinding

Edsger Wybe Dijkstra

“The question of whether computers
can think is rather like the
question of whether submarines
can swim”

Chapter | |: Pathfinding

A* pathfinding

Problem:

— Given a non-player character (NPC), we intend to find the best path from the
current NPC location to a destination. Obstacles may exist in between.

A%
— We will find the best path (as long as heuristic underestimates the true cost)
= Efficient
— However, it is overkill if line-of-sight exists
— Works in a tiled map

= Or somehow, must model space with finite nodes

Chapter | |: Pathfinding

Astar(graph G, vertex start_node, vertex goal_node)

{
Add start_node to open_list

while (not_empty(open_list))

{
current_node := node from open_list with lowest cost
if (current_node==goal_node)
path complete
else
{
move current_node to closed list
for each node N adjacent to current_node {
if ((N is not in open_list) && (N is not in closed_list))
{
move N to open_list
assign cost to N
I
ks
¥

Chapter | |: Pathfinding

Tracing the path in A%

230000

Astar(graph G, vertex start_node, vertex goal_node)

{
Add start_node to open_list
while (not_empty(open_list))
{
current_node := node from open_list with lowest cost
if (current_node==goal_node
(— g -) At the end, when the path is found, follow
path complete :
the parent pointers to trace out the path.
else
{
move current_node to closed_list
for each node n adjacent to current_node {
if ((n is not in open_list) && (n is not in closed_list))
{ . When a node n is added to the open_list,
move N to open_list , ,
. keep a pointer to its parent_node. Here
assign cost to n .
1 the parent node is current_node.
ks Cost function at location n:
¥ f@) = g(n) + h(n)
} g(n) : distance from the start point to point n

h(n) : estimated distance from point n to the goal point
f(n) : current estimated cost for point n

0000

Iteration |:

Open List:

Closed List:

Chapter | |: Pathfinding

Node: (2,2)
Cost: 5
Distance from start: 0

Empty

Iteration 2:

Open List:

Closed List:

Chapter | |: Pathfinding

Node: (1,2)
Cost: 7
Distance from start: |

Node: (2,1)
Cost: 7
Distance from start: |

Node: (3,2)
Cost: 5
Distance from start: |

Node: (2,3)
Cost: 5
Distance from start: |

Node: (2,2)

Iteration 3:

Open List:

Closed List:

Chapter | |: Pathfinding

Node: (1,2)
Cost: 7
Distance from start: |

Node: (2,1)
Cost: 7
Distance from start: |

Node: (2,3)
Cost: 5
Distance from start: |

Node: (3,3)
Cost: 5
Distance from start: 2

Node: (4,2)
Cost: 5
Distance from start: 2

Node: (3,1)
Cost: 7
Distance from start: 2

Node: (2,2) | | Node: (3,2)

Chapter | |: Pathfinding

A%*: additional notes

Dead ends. If open_list is empty before the goal node is found, it means that there
is a dead end. There does not exist a path between the starting point and the
destination node.

Terrain cost. Simple A* algorithm does not consider terrain cost. If different tiles
are made of different terrain, some of which are harder to cross, we can assign a
cost to each tile according to its terrain. Instead of adding | to the distance from
start, add the cost.

Influence cost. Every time the character gets shot at in a tile, add the influence
cost of the tile, to make it most costly to go that way.

Chapter | |: Pathfinding
Summary:

— Introduction
— Definitions: pathfinder, graph
— Graph traversal algorithms in games

— BFS, DFS, Dijkstra, and A*

https://movingai.com/benchmarks/

https://qiao.github.io/PathFinding.js/visual/

