These notes were taken from a variety of sources including text book,
Wikipedia, various Maya references, and SIGGRAPH articles

Video Game Technologies
6931: MSc in Computer Science and Engineering

004100001.0L0020L00 0001111101001010100211%010000L00104LL10L00L0

11010101010011010000410000%0100L0100L00L01000 LDLLDLDDLDIDLHDDDE‘LLLLLDLDDLDL

|Dl%ﬂlﬂlﬂ&mmn 0100101110100 O sfpr

Chap. 9 — Particle Systems

Particle Systems

Overview

* Introduction.

* A bit of history of particle systems.

« Definitions: particle and particle system.

» Attributes of particles and particle systems.

* Particle/particle system: data structures.

* Assumptions on particle system (W. Reeves).

* Collision avoidance.

* Particle emission, dynamics (Verlet integration), and rendering.

* Particle Life Cycle.

* Particle system: general algorithm.

* Final considerations.

Particle Systems

Introduction

* Particle systems are a Monte-Carlo style technique which uses thousands (or millions) or tiny
graphical artifacts to create large-scale visual effects.

* Particle systems are used for hair, fire, fireworks, smoke, water, waterfalls, spray,
foam, clouds, crowds, herds, explosions (smoke, flame, chunks of debris), energy
glows, in-game special effects and much more. Widely used in movies as well as games.

* The basic idea:

“If lots of little dots all do something the same way, our brains will see the thing they do and
not the dots doing it.”

Screenshot from the
game Command and
Conquer 3 (2007) by
Electronic Arts; the
“lasers” are particle
effects.

= A particle system
created with 3dengfx,
from wikipedia.

W. Reeves: "Particle Systems — A Technique for Modelling a Class of Fuzzy Objets", .
Computer Graphics, 17(3), pp. 359-376, 1983 Particle SYStems

A bit of history of particle systems

Spacewar

* 1962: Ships explode into pixel clouds in
“Spacewar!”, the 2" video game ever.

* 1978: Ships explode into broken lines in
“Asteroid”.

 1982: The Genesis Effect in “Star Trek Il:
The Wrath of Khan”, William Reeves

Star Trek 1l Asteroid

el
Fanboy note: OMG. You can play the original Spacewar!
at http://spacewar.oversigma.com/- the actual original game,
running in @ PDP-1 emulator inside a Java applet.

Particle Systems

Defl n Itlons - Metaballs are spheres that blend together to form surfaces.

- By representing particles as metaballs blobby surfaces can be created.

» Particle. A particle is a point in 3D space.

- Other shape representations: lines, polygons,
metaballs, etc.

- Particle physics:

— Forces (e.g. gravity or wind) accelerate a particle.

— Acceleration changes velocity. Particles are generated in various shapes: points,
lines, polygons, and even 3D models. Point
— Velocity changes position shapes, for example, are used for generating

smoke, lines shapes for a waterfall effect, and
gons for snow effect, or 3D models for a flock

. . ! . . ol
Particle system. A particle system is a collection gf e

of a number of individual elements or particles.

— Particle systems control a set of particles that act
autonomously but share some common attributes.

— A particle system is dynamic, particles changing form
and moving with the passage of time. gl

— A particle system is not deterministic, its shape and
form are not completely specified.

— The shape of a particle system chgndges over time.

L0

6631 Video Games Technologies

Attributes

Particle Systems

» Attributes of a Particle

Position
Velocity
Life Span (birth/dead)

Size (InitialSize = MeanSize + Rand() x
VarSize)

Weight
Representation
Color

Owner

e

=4 ~ — =

Particle List
Position
Emission Rate
Forces
Current State
Blending

Representation

L0011 11
IR NITEN AR aTaIaTaR N

Particle/particle system: data structures

Particle Systems

struct Particle{

Vector3
Vector3
Vector3
Vector3

float
float
float

float
float
float
float

}i

pos; // current position of the particle

prevPos; // last position of the particle

velocity; // direction and speed

acceleration; // acceleration

energy; // determines how long the particle is alive
size; // size of particle

sizeDelta; // amount to change the size over time
weight; // determines how gravity affects the particle
weightDelta; // change over time

color[4]; // current color of the particle
colorDelta[4]; // how the color changes with time

class ParticleSystem{

public:

ParticleSystem(int maxParticles, Vector3 origin);

virtual
virtual
virtual
virtual
virtual
protected:
virtual
Particle
int
int
Vector3
float
Vector3

void
void
int

void
void

void

Update(float elapsedTime) = 0;
Render () = 0;
Emit(int numParticles);
InitializeSystem();

KillSystem();

InitializeParticle(int index) = 0;

*particleList; // particles for this emitter
maxParticles; // maximum number of particles in total
numParticles; // indicies of all free particles
origin; // center of the particlersystem

accumulatedTime;//track. when-waslast particle emitted

force; // force (gravity, wind, etc.) acting on the system

.01, L

=10

W. Reeves: "Particle Systems — A Technique for Modelling a Class of Fuzzy Objets", .
Computer Graphics, 17(3), pp. 359-376, 1983 Particle SYStems

Assumptions on particle system

(W. Reeves)
* |st Assumption: * Example: Grass
— Particles do not collide with each other; — Entire trajectory of a particle over its
o ' g Assiiintian ::fzg:n is rendered to produce a static

— Particles do not cast shadows on other

: . : — Green and dark green colors assigned to
particles, just on environment;

the particles which are shaded on the

» 3rd Assumption: basis of the scene’s light sources.

— Each particle becomes a blade of grass

— Particles do not reflect light; modeled as
point light sources.

white.sand by Alvy Ray Smith
(he was also working at Lucasfilm)

Particle Systems

Collision avoidance

* Test for collision with bounding sphere:

— s=|C-P]
— k=(C-P) VI/V|
— t=sqrt(s?-k?)

— If (€ < radius), penetration of bounding
sphere occurs on current path

* Avoidance calculation:
— let [=¢5°+¢
{kz =5>+(C-P|-1)°
— Solving for t
k*=r’-t*+(C-P|-1)’
=2 —*+|C-P[-2C-Plt+ 7

t__kz—r2—|C—P|2
- 1 2C — P

— Hence

6631 Video Games Technologies Particle Systems

Collision avoidance: new trajectory

* Calculation of B:

— Given

kK*=r*=|C-P|
2|C - P|

s=r’-1

— From the figure on the right hand-side, we

t=-

see that
U - C-P
C - P|
] UxV)xU
U xv)xU|
— So

B=P+(C-P|-t)U +sW

Bodl

Particle system: how does it work?

« Emission: Particles are generated from an
emitter.

* Move: Time ticks; at each tick, particles
move.

* Rendering: Particles are rendered.

Particle Systems

Particle Systems

Particle emission

* Particles are generated using processes with an
element of randomness.

* Two usual emission techniques:

— emission per frame

— emission per screen area

* Emission per frame. Constrain the average number
of particles generated per frame:

new particles = average # particles per frame

+ rand() . variance

- Emission per screen area. Constrain the average
number of particles per screen area:

new particles = average # particles per area
Transient vs persistent particles

+ rand() . variance . screen area emitted to create a ‘hair’ effect
(source:Wikipedia)

N R
o

—

Other attributes can vary over time as well, such as color, transparency and size.
These rates of change can be global or they can be stochastic for each particle.

6631 Video Games Technologies Particle Systems

Particle dynamics (move)

* A particle’s position is found by simply
adding its velocity vector (speed and
direction) to its position vector. This can
be modified by forces such as gravity.

* You now have a choice of integration
technique:

— Stateless integration

— lterative integration

« Stateless integration. Evaluate the
particles at arbitrary time t as a closed-
form equation for a stateless system.

* Iterative (numerical) integration:

B

Particle dynamics: two integration shortcuts s nensey when simiaing

 Closed-form function

Represent every particle as a
parametric equation; store only the
initial position p,, initial velocity v,
and some fixed acceleration (such as
gravity g.)

p(t)=p,ytvot+'agt?

* No storage of state

Very limited possibility of interaction

Best for water, projectiles, etc—non-
responsive particles.

Particle Systems

This is called Verlet integration and is

molecular dynamics, or to emulate air
friction in computer games.
Discrete integration

— Remember your physics—integrate
acceleration to get velocity):

vV=v+a.At
— Integrate velocity to get position:
p’=p +v.At

— Collapse the two, integrate acceleration
to position:

p”=2p-p + a . At
Timestep

— It must be nigh-constant; collisions
are hard.

Acceleration

— It is computed using Newton’s law
f=ma (where f is the accumulated
force acting on the particle).

http://en.wikipedia.org/wiki/Verlet_integration

6631 Video Games Technologies Particle Systems

Particle rendering

Image by nvidia

A particle system can render particles as points,
textured polygons, or primitive geometry

— Minimize the data sent down the pipe!

— Polygons with alpha-blended images make
pretty good fire, smoke, etc

* Transitioning one particle type to another creates
realistic interactive effects

— Ex: a ‘rain’ particle becomes an emitter for
‘splash’ particles on impact

* Particles can be the force sources for a blobby
model implicit surface

— This is an effective way to simulate liquids

* Particles can obscure other objects behind them,
can be transparent, and can cast shadows on other

objects.
|:ll

All of these 4 parameters can also be defined by applying a texture to them (typically a .
fractal texture). Many systems offer the user some “predefined” particle library settings Particle SYStems
for obtaining a particular look and feel.

Rendering parameters

Images by nvidia

» Color

— After choosing the color of the particles, some software will allow
you to animate it as well.

— Example: Color of a fire particle changes as it moves away from
the fire; flames near a log are orange near the flame source, darker
red at the top of the flame, and black as they move farther away.

» Transparency

— Mist — very transparent. Smoke — more opaque

Blur

— Sparks — distinct; no blur. Smoke — blur to a point that the viewer
can’t see individual particles The amount of blur is related to a
particles trail life. As a particle moves through space, it may
leave a visible trail behind. The longer the life of the trail, the

longer the trail will become and the more visible it will be. This is
normally measured in seconds.

* Glow

— Makes particles look mcandescerify increasing their brightness
and color saturation. Ul

6631 Video Games Technologies Particle Systems

Particle Life Cycle

— Generation. Particles are generated randomly within a predetermined location of the fuzzy
object (i.e., particle system). This generator is termed the generation shape of the fuzzy object, and
this generation shape may change over time. Each particle’s attribute is given an initial value, which
may be fixed or may be determined by a stochastic process.

— Dynamics. The attributes of each particle may vary over time. For example, the color of a
particle in an explosion may get darker as it gets further from the center of the explosion,
indicating that it is cooling off. In general, each particle’s attribute can be specified by a parametric
equation with time as the parameter. Particle attributes can be functions of both time and other
particle attributes. For example, particle position is going to be dependent on previous particle
position and velocity as well as time.

— Death. Each particle has two attributes dealing with length of existence: age and lifetime. Age is
the time that the particle has been alive (measured in frames), this value is always initialized to 0
when the particle is created. Lifetime is the maximum amount of time that the particle can live
(measured in frames). When the particle age matches it's lifetime it is destroyed. In addition there
may be other criteria for terminating a particle prematurely:

* Running out of bounds - If a particle moves out of the viewing area and will not reenter it, then there is g
reason to keep the particle active.

* Hitting the ground - It may be assumed that particles that run into the ground burpa
be seen.

. Some attribute reaches a threshold - For exampled

1,01,00001,00101,1,1

Tilalala 010010

0L

I D U].].uml.n].unmmnmu 1 lmmm,nr
01,00

6631 Video Games Technologies Particle Systems

Particle system: general algorithm

|. Inject any new particles into the system and assign them their individual attributes

There may be one or more sources

e Particles might be generated at random (clouds), in a constant stream (waterfall), or according to
a script (fireworks)

2. Remove any particles that have exceeded their lifetime

. May have a fixed lifetime, or die on some condition
3. Move all the current particles according to their script

e Script typically refers to the neighboring particles and the environment
4. Render all the current particles

* Many options for rendering

01L.00L1.01L.00L0L0

Particle Systems

Further reading

~=__http://en.wikipedia.org/wiki/ Particle_systen_]___________._-———/

Alex Benton, University of Cambridge — A.Benton@damtp.cam.ac.uk, “Advanced Graphics”, Lecture 7 -
Implicit Surfaces, Voxels, and Particle Systems.

Rahul Malhotra, Lecture on Particle Systems, CS536.

Peter Capelluto, “Advanced Graphics”, Lecture on Particle Systems, CS551.
http://www.particlesystems.org/
http://www.2ld.de/gdc2007/EverythingAboutParticleEffectsSlides.pdf
www.evl.uic.edu/aej/527/lecture05.html
mit.edu/groups/el/projects/spacewar/

http://www.mirwin.net/

http://www.javaworld.com/javaworld/jw-05-2006/jw-0529-funandgames.html!page=1

William T. Reeves, “Particle Systems - A Technique for Modeling a Class of Fuzzy Objects”, Computer
Graphics 17:3 pp. 359-376, 1983 (SIGGRAPH 83). ,

Lutz Latta, Building a Million Particle System, http://www.2ld.de/gdc2004/MegaParticl€s 3 2004
——

o

Particle Systems

Summary

* Introduction.

* A bit of history of particle systems.

« Definitions: particle and particle system.

» Attributes of particles and particle systems.

* Particle/particle system: data structures.

* Assumptions on particle system (W. Reeves).

* Collision avoidance.

* Particle emission, dynamics (Verlet integration), and rendering.

* Particle Life Cycle.

* Particle system: general algorithm.

* Final considerations.

