
Culling

Video Games Technologies
11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

Chap. 7 — Culling

Chapter 7: Culling

Outline

Procedurally generated model of Pompeii: ~1.4 billion polygons.
Image from [Mueller06]

…:

– Introduction: massive models.

– Motivation. Culling definition & types.

– Back-face culling.

– View frustum culling.

– Speeding-up techniques.

– Computation of bounding volumes.

– Occlusion culling.

– Portal culling.

Chapter 7: Culling

Massive models: trends & goal

Trends

– No upper bound on model complexity

§ Procedural generation

§ Laser scans

§ Aerial imagery

– High GPU throughput

§ At least 10-200 million triangles/second

– Widen gap between processor and
memory performance

– CPU – GPU bottleneck

Goal:

– Output-sensitivity: Performance as a
function of the number of pixels
rendered, not the size of the model

Boeing 777 model: ~350 million polygons.
Image from http://graphics.cs.uni-
sb.de/MassiveRT/boeing777.html

Chapter 7: Culling

Culling: Motivation

The leading idea: don’t render what can’t be seen

– Off-screen: view-frustum culling

– Occluded by other objects: occlusion culling

The obvious question: why bother? (When the graphics system already gives this for
granted?)

– Off-screen geometry:
solved by clipping

– Occluded geometry:
solved by Z-buffer

The (obvious) answer: efficiency

– In fact, clipping and Z-buffering are of linear time complexity, i.e., take time linear to
the number of primitives

– So, let us see a number of techniques to speed up rendering.

As any other rendering acceleration technique, the goal is to avoid rendering redundant geometry

Chapter 7: Culling

Culling: definition & types

Definition:

– The term ‘culling’ means removing from a group.

– In graphics, it means to determine which objects in the scene are not visible

– It is more productive to think about it as determining which objects are visible

Types of culling:

– View frustrum culling (in object space)

– Visibility culling (in object space)

§ Backface culling

§ Portal culling

§ Textured-depth mesh culling

– Occlusion culling (in image space)

§ Hierarchical occlusion maps (HOM)

§ Hierarchical Z-buffer

§ Occlusion planes

As any other rendering acceleration technique, the goal is to avoid rendering redundant geometry

Chapter 7: Culling

Back-face culling

– Backface culling is not really part of
scene management − it is a lower
level feature usually built into the
rendering layer.

– We do not draw polygons facing the
other direction

– Test z component of surface normals.
If negative – cull, since normal points
away from viewer.

– Or, if n�v > 0, we are not viewing the
back face so polygon is obscured.

n
n

n�v<0
culled faces

v

n�v>0

visible faces

Chapter 7: Culling

View frustum culling

– View frustum (view volume) is defined by six planes, namely the front, back, left, right,
top, and bottom clipping planes, which together form a cut pyramid.

– Total visibility: If an object is entirely inside the current view frustum are drawn.

– Partial visibility: If it is partially inside, it is clipped to the planes, clipping its outside parts.

– Total invisibility: If an object is entirely outside the pyramid, it is not visible and is thus
discarded.

 3

 A plane C is mathematically represented by a four-dimensional vector of the form

 , , ,x y zN N N � �C N Q , (1)

where N is the normal vector pointing away from the front side of the plane, and Q is any
point lying in the plane itself. A homogeneous point , , ,x y z wP P P P P lies in the plane if
and only if the four-dimensional dot product �C P is zero. If the normal vector N of a
plane C is unit length and 1wP , then the dot product �C P measures the signed perpen-
dicular distance from the point P to the plane C.
 A plane is a covariant vector, and therefore must be transformed from one coordinate
system to another using the inverse transpose of the matrix that transforms ordinary
points (which are contravariant vectors). This is particularly important when transforming
planes with the projection matrix since it is generally nonorthogonal. Given a camera-
space point P and a camera-space plane C represented by four-component column vec-
tors, the projection matrix M produces a clip-space point cP and a clip-space plane cC as
follows.

 � �1 T�

c

c

P MP
C M C (2)

Inverting these equations allows us to transform from clip space to camera space.
 Recall that in OpenGL camera space, the camera lies at the origin and points in the z�
direction, as shown in Figure 1. To complete a right-handed coordinate system, the x-axis
points to the right, and the y-axis points upward. Vertices are normally transformed from
whatever space in which they are specified into camera space by the model-view matrix.
In this paper, we do not worry about the model-view matrix and assume that vertex posi-
tions are specified in camera space.

Figure 1. Camera space and the standard view frustum. The near and far planes are perpendicular
to the z-axis and lie at the distances n and f from the camera, respectively.

z n= −

z f= −
O

x

y

z

Full model
1.7 Mtris View frustum culling

1.4 Mtris

source: https://www.cs.unc.edu/~dm/UNC/COMP236/LECTURES/Lecture03.ppt

Chapter 7: CullingSpeeding up the view frustum culling:
using bounding volumes

– Bounding volume: Every object in the
world should be enclosed in a bounding
volume in order to speed up the view
frustum culling. There are 3 possible
results:

§ Totally visible

§ Totally invisible

§ Partially visible (may require clipping)

– Bounding volume types:

§ Sphere, cylinder, hot dog / capsule /
losenge

§ AABB: axis-aligned bounding box

§ OBB: oriented bounding box

§ Convex polyhedron

lozenge

sphere

capsule

Chapter 7: CullingSpeeding up the view frustum culling:
using bounding volumes

http://youtu.be/fNa_Gh5gFWY

1.5 million polygons

Chapter 7: Culling

Computation of bounding volumes

– Spheres?

– Bounding boxes?

– etc.?

– Step 1: Compute average point of all
vertices as the center of the bounding
sphere.

– Step 2: Find the farthest vertex from the
center, setting the radius as the distance
between them.

Chapter 7: CullingSpeeding up further the view frustum culling:
using a bounding volume hierarchy

– Compare the scene hierarchically against
the view frustum

– When a bounding volume is found to be
outside the view frustum then all objects
inside it can be safely discarded

– If a bounding volume is fully inside then
render without clipping

– What is the difference with clipping?

Chapter 7: Culling

Portal culling

Culling service:

– Construct BSP tree, removing then areas
of the world that cannot be seen.

– Can work in conjunction with BVH and
other culling algorithms.

Application/Usefulness:

– To handle in-door scenes (e.g., buildings),
but also applies to giant scenes like cities.

Scene modeling:

– Scene is divided into cells (rooms,
corridors, etc.)

– Transparent portals connect cells
(doorways, entrances, windows, etc.)

– Cells only see other cells through portals
• Average: culled 20-50% of the polys in view

• Speedup: from slightly better to 10 times

ht
tp

://
w

w
w

.c
s.

vi
rg

in
ia

.e
du

/~
gf

x/
C

ou
rs

es
/2

00
2/

R
ea

lT
im

e.
fa

ll.
02

/

Chapter 7: Culling

Portal culling (contd.)

Data structure: scene as a adjacency scene graph

– Nodes: Cells. The scene is divided into cells that
usually correspond to rooms and hallways in a building
connected by rectangular portals.

– Edges: Portals. Portals are doors and windows that
connect adjacent rooms (and/or hallways).

– Every object in a cell and the walls of the cell are
stored in a data structure that is associated to the cell.

– Adjacency graph: potentially visible set (PVS)

Goal: revisited

– Quickly eliminate large portions of the scene which will
not be visible in the final image

– Not exact visibility solution, but a quick-and-dirty
conservative estimate of which primitives are visible;

– Z-buffer& clip this for the exact solution

Cells enumerated from A to H, and
portals are openings that connect the
cells. Only geometry seen through the
portals is rendered.

EC

D

A

B G

F

H

Chapter 7: Culling

Portal culling (contd.)

A
D

H

FCB

E

G

A
D

H

E

A
D

H

FCB

E

G

A
D

CB

E

G

H will never see F

C can only see A, D, E, and H

view-independent visibility: example 1

view-independent visibility: example 1I

The leading idea:

– Cells form the basic unit of PVS
– Create an adjacency graph of cells
– Starting with cell containing eyepoint,

traverse graph, rendering visible cells
– A cell is only visible if it can be seen through

a sequence of portals along a line of sight
Questions:

– How is a given cell visible from a given
viewpoint?

– How can we detect view-independent
visibility between cells?

Solutions?:

– These problems reduce to eye-portal and
portal-portal visibility

Chapter 7: Culling

Portal culling: research contributions

Airey (1990): view-independent only

– Portal-portal visibility determined by ray-
casting
§ Non-conservative portal-portal test

resulted in occasional errors in PVS

– Slow preprocess
– Order-of-magnitude speedups
Teller & Sequin (1991): view-
independent + view-dependent

– Portal-portal visibility calculated by line
stabbing using linear program
§ Cell-cell visibility stored in stab trees
§ View-dependent eye-portal visibility stage

further refines PVS at run time

– Slow preprocess
– Elegant, exact scheme

Luebke & Georges (1995): view-
dependent only

– Eye-portal visibility determined by
intersecting cull boxes

– No preprocess (integrate w/ modeling)

– Quick, simple hack

– Public-domain library: pfPortals

ht
tp

://
pf

po
rt

al
s.

cs
.v

ir
gi

ni
a.

ed
u/

pf
Po

rt
al

s.
ht

m
l

Chapter 7: CullingCells and Portals:
Teller & Sequin algorithm (SIG’91)

– Cells form the basic unit of PVS
– Decompose space into convex cells
– For each cell, identify its boundary edges

into two sets: opaque or portal
– Pre-compute visibility among cells
– During viewing (eg, walkthrough phase), use

the pre-computed potentially visible polygon
set (PVS) of each cell to speed-up rendering

A
D

H

FCB

E

G

A
D

CB

E

G

I

ED

F

H

I

B

A

C G

Chapter 7: CullingTeller & Sequin algorithm (SIG’91)
For each cell find stabbing tree

The stabbing tree of each cell is found
using:

– Adjacency relationships of its neighbor
cells through portals

– Sightlines (or stab lines) according to the
criterion on next transparency

A
D

H

FCB

E

G

A
D

CB

E

G

I

ED

F

I

stabbing tree of cell F

ED

F

H

IA

C G

stabbing tree of cell E

Chapter 7: CullingTeller & Sequin algorithm (SIG’91)
Compute cells visible from each cell

€

S • L ≥ 0, ∀L∈L
S • R ≤ 0, ∀R∈R

Find_Visible_Cells(cell C, portal sequence P, visible cell set V)
V=V È C
for each neighbor N of C

for each portal p connecting C and N
orient p from C to N
P’ = P concatenate p
if Stabbing_Line(P’) exists then

Find_Visible_Cells (N, P’, V)

Labeling L and R

A sightline can stab a portal
sequence if and only if the
point sets L and R are linearly
separable;

ht
tp

://
dl

.a
cm

.o
rg

/c
ita

tio
n.

cf
m

?d
oi

d=
12

27
18

.1
22

72
5

Chapter 7: CullingTeller & Sequin algorithm (SIG’91)
Eye-to-cell visibility

The eye-to-cell visibility of any
observer is a subset of the cell-to-cell
visibility for the cell containing the
observer.

– This is so because the field of view of the
cell-to-cell visibility procedure is
implicitly 360º, while that one of the
observer is less than 180º.

A cell is visible if all of the following
are true:

– cell is in view volume (VV)
– all cells along stab tree are in VV
– all portals along stab tree are in VV
– sightline within VV exists through portals.

ht
tp

://
w

w
w

.c
s.

ta
u.

ac
.il

/~
dc

or
/o

nl
in

e_
pa

pe
rs

/p
ap

er
s/

vi
si

bi
lit

y-
su

rv
ey

-ie
ee

.p
dfAn observer with a 360º view cone

An observer with a 60º view cone

Chapter 7: CullingLuebke & Georges algorithm (I3D’95)
Image space cells and portals

– Instead of pre-processing all the PVS
calculation, it is possible to use image-
space portals to make the computation
easier

– pfPortals algorithm: Depth-first
adjacency graph traversal:
§ Render cell containing viewer
§ Treat portals as special polygons

⎮ If portal is visible, render adjacent cell

⎮ But clip to boundaries of portal!
⎮ Recursively check portals in that cell

against new clip boundaries (and render)

§ Each visible portal sequence amounts to a
series of nested portal boundaries
⎮ Kept implicitly on recursion stack

ht
tp

://
pf

po
rt

al
s.

cs
.v

ir
gi

ni
a.

ed
u/

• Average: culled 20-50% of the polys in view

• Speedup: from slightly better to 10 times

Top View Showing the Recursive
Clipping of the View Volume

Chapter 7: Culling

Portal issues

– Imposters
– Portal clipping
– Camera location
– Combining with bounding volume culling
– Moving objects
– Dynamic portals (opening & closing

doors)
– Procedurally generating portals

Top View Showing the Recursive
Clipping of the View Volume

• Average: culled 20-50% of the polys in view

• Speedup: from slightly better to 10 times

Chapter 7: Culling

Further reading

http://comp.utm.my/pars/files/2013/04/Bounding-Volume-Hierarchy-for-Avatar-Collision-
Detection-Design-Considerations.pdf

http://archive.gamedev.net/archive/reference/articles/article1212.html

http://www.cse.chalmers.se/~uffe/vfc_bbox.pdf

https://web.fe.up.pt/~aas/pub/Aulas/RVA/AcelRendering.pdf

http://cg.ivd.kit.edu/publications/2012/RBVH/RBVH.pdf

Chapter 7: Culling

Summary:

…:

– Introduction: massive models.

– Motivation. Culling definition & types.

– Back-face culling.

– View frustum culling.

– Speeding-up techniques.

– Computation of bounding volumes.

– Occlusion culling.

– Portal culling.

