Video Games Technologies

11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

0041.000010L00L000LP0L0.00000WL0L00L010L400002111101001020L00112110.0000200%00LLL0L0010

11010101010L1101000041000010100%010010010%000 LDLLD].EI[]LDIDLL)U[][]E‘LL].LLDLD[]LDL

DLULULULU UUILLL%ULDDI;HDLDDL#LLLDL I

Chap. 7 — Culling

Chapter 7: Culling

Outline

— Introduction: massive models.

— Motivation. Culling definition & types.
— Back-face culling.

— View frustum culling.

— Speeding-up techniques.

— Computation of bounding volumes.

— Occlusion culling.

— Portal culling.

Procedurally generated model of Pompeii: ~1.4 billion polygons.
Image from [Mueller06]

aq

o

Trends

Goal:

Chapter 7: Culling

Source 3D data provided by and used with permission of the Boeing Company.

Boeing 777 model: ~350 million polygons.
Image from http://graphics.cs.uni-
sb.de/MassiveRT/boeing777 .html

Chapter 7: Culling

As any other rendering acceleration technique, the goal is to avoid rendering redundant geometry

The leading idea: don’t render what can’t be seen

— view-frustum culling

— occlusion culling

The obvious question: why bother? (When the graphics system already gives this for
granted?)

solved by clipping

solved by Z-buffer

The (obvious) answer: efficiency

— In fact, clipping and Z-buffering are of linear time complexity, i.e., take time linear to
the number of primitives

— So, let us see a number of techniques to speed up rendering.

Chapter 7: Culling

Culling: definition & types

As any other rendering acceleration technique, the goal is to avoid rendering redundant geometry

Definition:

— The term ‘culling’ means removing from a group.

— In graphics, it means to determine which objects in the scene are not visible

— It is more productive to think about it as determining which objects are visible
Types of culling:

— View frustrum culling (in object space)

— Visibility culling (in object space)

= Backface culling
= Portal culling

" Textured-depth mesh culling

— Occlusion culling (in image space)

= Hierarchical occlusion maps (HOM)
= Hierarchical Z-buffer

= Occlusion planes

Back-face culling

830000

— Backface culling is not really part of
scene management — it is a lower
level feature usually built into the
rendering layer.

— We do not draw polygons facing the
other direction

— Test z component of surface normals.
If negative — cull, since normal points
away from viewer. g v

— Or, if n*v > 0, we are not viewing the
back face so polygon is obscured.

visible faces

Chapter 7: Culling

nev>0

culled faces

Chapter 7: Culling

3100

View frustum culling

— View frustum (view volume) is defined by six planes, namely the front, back, left, right,
top, and bottom clipping planes, which together form a cut pyramid.

— Total visibility: If an object is entirely inside the current view frustum are drawn.

— Partial visibility: If it is partially inside, it is clipped to the planes, clipping its outside parts.

— Total invisibility: If an object is entirely outside the pyramid, it is not visible and is thus
discarded.

Full model
|.7 Mtris View frustum culling

|.4 Mtris

source: https://www.cs.unc.edu/~dm/UNC/COMP236/LECTURES/Lecture03.ppt

Speeding up the view frustum culling:
using bounding volumes

830000

Bounding volume: Every object in the
world should be enclosed in a bounding
volume in order to speed up the view
frustum culling. There are 3 possible
results:

= Totally visible
" Totally invisible

» Partially visible (may require clipping)

Bounding volume types:

" Sphere, cylinder, hot dog / capsule /
losenge

= AABB: axis-aligned bounding box
= OBB: oriented bounding box

" Convex polyhedron

O
®

Chapter 7: Culling

lozenge

sphere

capsule

Chapter 7: Culling

Speeding up the view frustum culling:
using bounding volumes

http://youtu.be/fNa_Gh5gFWY

1.5 million polygons

The visible area has the shape
of a frustum. Anything outside
the frustum does not have to
be drawn.

APa
Sl g
” \-‘?‘.,.

L
=g A AL Oy
11 iy o] L
Wy N
& el

Chapter 7: Culling
Computation of bounding volumes

— Spheres!?

— Step I: Compute average point of all
vertices as the center of the bounding
sphere.

— Step 2: Find the farthest vertex from the
center, setting the radius as the distance
between them.

— Bounding boxes!?

— etc.!

Speeding up further the view frustum culling:

using a bounding volume hierarchy

— Compare the scene hierarchically against
the view frustum

— When a bounding volume is found to be
outside the view frustum then all objects
inside it can be safely discarded

— If a bounding volume is fully inside then
render without clipping

— What is the difference with clipping?

_/

N

Chapter 7: Culling

root

NN

A+B C D+E F

View volume

0000

Culling service:

Application/Usefulness:

Scene modeling:

Chapter 7: Culling

http://www.cs.virginia.edu/~gfx/Courses/2002/Real Time.fall.02/

* Average: culled 20-50% of the polys in view
» Speedup: from slightly better to 10 times

B Portal culling (contd.)

Data structure: scene as a adjacency scene graph

Nodes: Cells. The scene is divided into cells that
usually correspond to rooms and hallways in a building
connected by rectangular portals.

Edges: Portals. Portals are doors and windows that
connect adjacent rooms (and/or hallways).

Every object in a cell and the walls of the cell are
stored in a data structure that is associated to the cell.

Adjacency graph: potentially visible set (PVS)

Goal: revisited

Quickly eliminate large portions of the scene which will
not be visible in the final image

Not exact visibility solution, but a quick-and-dirty
conservative cstimate of which primitives are visible;

Z-buffer& clip this for the exact solution

Chapter 7: Culling

Cells enumerated from A to H, and
portals are openings that connect the
cells. Only geometry seen through the
portals is rendered.

eye

830000

Chapter 7: Culling

Portal culling (contd.)

| view-independent visibility: example | l

The leading idea:

— Caells form the basic unit of PVS
— Create an adjacency graph of cells

— Starting with cell containing eyepoint,
traverse graph, rendering visible cells

— A cell is only visible if it can be seen through C can only see A, D, E, and H

a sequence of portals along a line of sight
Questions:

view-independent visibility: example 11

— How is a given cell visible from a given
viewpoint!?

— How can we detect view-independent
visibility between cells?

Solutions?:

— These problems reduce to eye=-portal and
portal-portal visibility

H will never see F

Chapter 7: Culling

Portal culling: research contributions

Airey (1990): view-independent only

— Portal-portal visibility determined by ray-
casting

= Non-conservative portal-portal test
resulted in occasional errors in PVS

— Slow preprocess
— Order-of-magnitude speedups

Teller & Sequin (1991): view-
independent + view-dependent

— Portal-portal visibility calculated by line
stabbing using linear program

" Cell-cell visibility stored in stab trees

" View-dependent eye-portal visibility stage
further refines PVS at run time

— Slow preprocess

— Elegant, exact scheme

Luebke & Georges (1995): view-
dependent only

— Eye-portal visibility determined by
intersecting cull boxes

— No preprocess (integrate w/ modeling)

— Quick, simple hack

— Public-domain library: pfPortals

http://pfportals.cs.virginia.edu/pfPortals.html

Chapter 7: Culling

8 Cells and Portals:
| Teller & Sequin algorithm (SIG’91)

— Cells form the basic unit of PVS
— Decompose space into convex cells

— For each cell, identify its boundary edges
into two sets: opaque or portal

— Pre-compute visibility among cells

— During viewing (eg, walkthrough phase), use
the pre-computed potentially visible polygon
set (PVS) of each cell to speed-up rendering

Teller & Sequin algorithm (SIG°91) Chapter 7: Culling
For each cell find stabbing tree

The stabbing tree of each cell is found
using:

— Adjacency relationships of its neighbor
cells through portals

— Sightlines (or stab lines) according to the
criterion on next transparency

b o8
@ @ stabbing tree of cell F

stabbing tree of cell E

Teller & Sequin algorithm (SIG°91) Chapter 7: Culling
Compute cells visible from each cell

122718.122725

m |- - -r
T
1
-
o =--r
X mmymm—
-
1
'
o
o U ol
http://dl.acm.org/citation.cfm?doid

SeL=0, VLEL
S*R=<O0, VRER

Find_Visible_Cells(cell C, portal sequence P, visible cell set V)

V=V u C
for each neighbor N of C A sightline can stab a portal
for each portal p connecting C and sequence if and only if the
Labeling L and R RN b from C to N point sets L and R are linearly
P’ = P concatenate p separable;

if Stabbing Line(P’) exists then
Find_Visible_Cells (N, P’, V)

Teller & Sequin algorithm (SIG°91) Chapter 7: Culling
Eye-to-cell visibility

The eye-to-cell visibility of any
observer is a subset of the cell-to-cell
visibility for the cell containing the
observer.

— This is so because the field of view of the
cell-to-cell visibility procedure is
implicitly 360°, while that one of the
observer is less than 180°.

A cell is visible if all of the following
are true:

— cell is in view volume (VV)

— all cells along stab tree are in VV

— all portals along stab tree are in VV

— sightline within VV exists through portals.

http://www.cs.tau.ac.il/~dcor/online_papers/papers/visibility-survey-ieee.pdf

30000

Luebke & Georges algorithm (13D’95)

Instead of pre-processing all the PVS
calculation, it is possible to use image-
space portals to make the computation
easier

pfPortals algorithm: Depth-first
adjacency graph traversal:

" Render cell containing viewer
" Treat portals as special polygons
| If portal is visible, render adjacent cell

I But clip to boundaries of portal!

I Recursively check portals in that cell
against new clip boundaries (and render)

= [Each visible portal sequence amounts to a
series of nested portal boundaries

I Kept implicitly on recursion stack

Chapter 7: Culling

Top View Showing the Recursive
Clipping of the View Volume

Average: culled 20-50% of the polys in view
Speedup: from slightly better to 10 times

http://pfportals.cs.virginia.edu/

Chapter 7: Culling
Portal issues

Top View Showing the Recursive
Clipping of the View Volume

0000

— Imposters
— Portal clipping
— Camera location

— Combining with bounding volume culling

— Moving objects

— Dynamic portals (opening & closing
doors)

— Procedurally generating portals

* Average: culled 20-50% of the polys in view
« Speedup: from slightly better to 10 times

Chapter 7: Culling
Further reading

http://comp.utm.my/pars/files/20 | 3/04/Bounding-Volume-Hierarchy-for-Avatar-Collision-
Detection-Design-Considerations.pdf

http://archive.gamedev.net/archive/reference/articles/article 1212.html
http://www.cse.chalmers.se/~uffe/vfc_bbox.pdf
https://web.fe.up.pt/~aas/pub/Aulas/RVA/AcelRendering.pdf
http://cg.ivd.kit.edu/publications/2012/RBVH/RBVH.pdf

Summary:

Introduction: massive models.

Motivation. Culling definition & types.

Back-face culling.

View frustum culling.

Speeding-up techniques.
Computation of bounding volumes.
Occlusion culling.

Portal culling.

Chapter 7: Culling

