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Terrain Modeling

Overview

•  Overview of terrain algorithms.

•  Categories of terrain algorithms: discrete and continuous LODs.

•  Issues in terrain generation and modeling.

•  Classes of Continuous LODs: regular grids & heighfields, TINs, and voxel-based LODs.

•  LEA algorithm.

•  ROAM algorithm.

•  Diamond-square algorithm.

•  Final considerations.
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Terrain Modeling

Introduction

•  Terrain is obviously important to many games

•  As a model, it is very large

•  Creating every point explicitly by hand is not feasible, so automated terrain generation 
methods are common

•  When rendering, some of the terrain is close, and other parts are far away, leading to terrain 
LOD algorithms
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Terrain Modeling

Terrain model: example

triangle mesh texture image
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Types of data structures

®  Triangulated Irregular Networks 
(TIN)

®  Regular Grid + Height Field
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Mesh simplification

•  Why do we need simplify a mesh?

Full Mesh                 Simplified Mesh
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Terrain algorithms: categories

•  Discrete LOD

Generate a handful of LOD meshes for each 
object

•  Continuous LOD

Generate a single mesh for terrain from which a 
spectrum of detail can be extracted.

–  Grid-based: 

•  continuous LOD rendering by Lindstrom

•  Real-time Optimally Adapting Meshes (ROAM)

–  TIN-based
•  progressive meshes

–  Voxel-based
•  marching cubes (transvoxel algorithm, 2010)

®  TIN-based

®  Grid-based

w(v)=(x,y,z(x,y))

v=(x,y,z)
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Issues in terrain modeling

•  Size

–  Terrains are often modeled as huge meshes that may not fit in memory.

•  Popping

–  Terrain (vertex) popping effect as the level of detail changes; 

–  This is particularly notorious for discrete LODs.

•  Cracks

–  Since the terrain consists of varying level of detail regions, when two regions of different detail 
levels meet, their edges do not match up perfectly

–  Cracks may jeopardize the pathfinding algorithms in the sense that a crack may be mistaken as a 
boundary of the game world.

mesh with cracks

ht
tp

://
w

w
w

.g
am

ed
ev

.n
et

/t
op

ic
/4

86
28

6-
te

rr
ai

n-
re

nd
er

in
g-

si
m

pl
e-

st
itc

hi
ng

-a
lg

or
ith

m
-t

o-
av

oi
d-

cr
ac

ks
-p

ic
ts

-a
nd

-p
se

ud
o-

co
de

/



Terrain Modeling

Issues in terrain modeling (cont’d.)

•  Caves, overhangs, and arches

–  Voxel-based terrain systems have been becoming popular because they rid off the topographical 
limitations of traditional elevation-based terrain systems, being so possible to create more 
complex structures like caves, overhangs, and arches..
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Terrain Modeling

Lindstrom et al. (LEA) 
Algorithm 

http://www.gamasutra.com/view/feature/131841/continuous_lod_terrain_meshing_.php?print=1

P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G. Turner. Real-
Time, Continuous Level of Detail Rendering of Height 
Fields. In Proceedings of the ACM SIGGRAPH’96, pp. 109-118,  August 
1996.
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LEA algorithm:�
key concepts
•  Continuous LOD for height fields

•  Uses a binary vertex tree

•  Frame-to-frame coherence

•  Introduced user-controllable screen space 
error threshold

Terrain surface tessellations corresponding to projected
geometric error thresholds of one (top) and four (below) pixels
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LEA:�
bottom-up LOD algorithm
•  The terrain is a heightfield represented by a squared 2D grid elevated from the x-y plane 

•  The surface corresponding to the heightfield (before simplification) is represented as a 
symmetric triangle mesh.

•  We start from the most refined mesh to obtain a coarser mesh è BOTTOM-UP.

•  Simplification algorithm: 

–  We are dealing with very large terrains; for example, a medium size grid 512 x 512 squares comes 
to 262,144 squares, each of which is divided into two triangles for rendering. So, we’re looking at 
524,288 total triangles. Each polygon is made up of three vertices (points), and so we send 
1,572,864 vertices for rendering. That is a lot of data.

2D grid terrain as a heightfield2D symmetric triangle grid
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Terrain Modeling

LEA’s simplification algorithm:�
1st reduction strategy of dataset

•  Criterion: FLATNESS

–  Reduce flat areas into few polygons, and keep complex areas (slopes) with more polygons è  
GLOBAL STRATEGY

–  HOW? è using QUADTREE data structure to represent the recursive partition of the terrain 
into quadrants.

13

The new terrain is 158,000 triangles. 
So, we’ve removed an amazing two-thirds 
of the triangles from the scene.

original 
terrain

optimized 
terrain
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LEA’s simplification algorithm:�
2nd reduction strategy of dataset

•  Criterion: DISTANCE

–  With the distance to the viewer, a lot less polygons are necessary to pipeline into the graphics 
card. We’re all the way down to 65,195 polygons! That is a reduction of about 88% in relation to 
the original terrain.

14158,000 triangles 

original 
terrain

2nd criterion

65,195 triangles 

158,000 triangles 

1st criterion1st criterion

524,288 triangles 
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LEA’s simplification algorithm:�
3rd reduction strategy of dataset

•  Criterion: POSITION

–  Now that we have distance-based polygon reduction, we need the terrain to change whenever the 
user moves around. 

–  As we fly around the terrain, there are little pauses every few seconds. Lots of games have this 
“stuttering” problem from time to time.

–  The problem is that we’re doing the whole terrain in one go. We’re sending the whole mesh to 
graphics system (e.g. OpenGL) at once, which just takes too long. 

–  Solution: We can fix this problem by breaking the terrain into many separate sections and sending 
the terrain over to OpenGL a “visible” section at a time.
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LEA’s simplification algorithm �
in two steps�

•  Coarse-grained simplification 
(block-based simplification)

–  It operates at the quadtree 
level.

–  It serves to determine which 
discrete level of detail is 
needed for each block (or 
terrain region).

•  Fine-grained simplification 
(vertex-based simplification)

–  It operates at the block level.

–  Coaslescence of triangle-
cotriangle pairs into a single 
triangle.

–  Individual vertices are 
considered for removal so 
that their sharing triangles are 
replaced with fewer larger 
triangles.

triangle
(right)

co-triangle
(left)
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LEA’s simplification algorithm:�
vertex-based simplification �

•  Criterion: GEOMETRIC ERROR IN PIXELS

–  It is based on geometric error in pixels. This error measures the change in slope 
between two triangles, i.e. FLATNESS VARIATION (see1st reduction criterion above).

–  EXAMPLE: For triangles ABE and BCE, one computes the delta value of B, which is given by 
vertical distance between B and the midpoint M of A and C; the segment BM is called delta 
segment.

–  As the delta value increases, the chance of triangle coaslescence decreases.

–  The geometric error is just given by the size of the delta segment in number of pixels 
when it is projected on screen.
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ROAM Algorithm 

http://www.cognigraph.com/ROAM_homepage/

https://graphics.llnl.gov/ROAM/roam.pdf

http://lodbook.com/source/

Mark Duchaineau, MurrayWolinsky, David E. Sigeti, Mark C. Millery, 
Charles Aldrich, and Mark B. Mineev-Weinstein. ROAMing Terrain: 
Real-time Optimally Adapting Meshes. In Proceedings of the 
8th Conference on Visualization '97 (VIS'97), IEEE Computer Society 
Press, 1997.



Terrain Modeling

ROAM (Real-Time Optimally Adapting Meshes)

•  Probably the most popular algorithm for terrain 
generation/modeling.

•  Key concepts:

–  Height field (or height map) as for Landstrom et al.

–  Binary triangle tree structure (without cracks).

–  Split and merge operations (to refine and simplify 
the mesh)

•  Other important concepts:

–  Two priority queues

•  One for splits and one for merge

•  Allows for frame-to-frame coherence

–  Error metrics for splits and merges

–  Geo-morphing – introduced, but rarely needed

–  Incremental triangle stripping introduced
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ROAM’s LOD data structure

•  Binary triangle tree (BTT)

–  Each patch is a simple isosceles right triangle. 
Splitting the triangle from its apex to the 
middle of its hypotenuse produces two new 
isosceles right triangles. 

–  The splitting is recursive and can be repeated 
on the children until the desired level of 
detail is reached.

struct TriTreeNode { 
TriTreeNode *LeftChild; 
TriTreeNode *RightChild; 
TriTreeNode *BaseNeighbor; 
TriTreeNode *LeftNeighbor; 
TriTreeNode *RightNeighbor; 

};
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ROAM triangle splitting & merging

•  Three cases exist when attempting 
to split a node:

–  The node is part of a diamond 

•  Action: split the node and its 
base neighbor.

–  The node is on the edge of the 
mesh

•  Action: trivial, only split the 
node.

–  The node is not part of a diamond

•  Action: force split the base 
neighbor.
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This technique does not cause cracks. How?
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ROAM geomorphing: �
a technique to prevent popping effects
•  Visual popping is a side effect of rendering with dynamic levels of detail when triangles are 

inserted or removed from the mesh. 

•  This distortion can be reduced to nearly unnoticeable amounts by vertex morphing, also 
called geomorphing, by gradually changing the rise or fall of a vertex's height from the un-
split position to its new split position over the course of several frames.

•  Geomorphing is given by the following interpolation formula:

€ 

z( fmorph ) = fmorphz final + (1− fmorph )zinitial
with
fmorph ∈[0,1]
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Diamond-Square 
Algorithm 

http://en.wikipedia.org/wiki/Diamond-square_algorithm

http://paulboxley.com/blog/2011/03/terrain-generation-mark-one

Alain Fournier, Don Fussell, and Loren Carpenter (June 
1982). "Computer rendering of stochastic 
models". Communications of the ACM 25 (6): 371–384.
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Diamond-square algorithm: context

•  Also called the cloud fractal, plasma fractal or random midpoint displacement

•  The 2D version of the original midpoint displacement algorithm

–  Therefore it also has a roughness constant

•  The diamond-square algorithm works best if it is run on square grids of width 2^n

–  This ensures that the rectangle size will have an integer value at each iteration
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Diamond-square algorithm

•  The algorithm starts with a 2 x 2 grid 

–  The heights at the corners can be set to 
either zero, a random value or some 
predefined value

•  Diamond step (observe the four diamond 
shape): 

–  This step calculates the midpoint of the grid 
based on its corners and then adding the 
maximum displacement for the current 
iteration

•  Square step:

–  Calculate the midpoints of the edges 
between the corners

–  Since the first iteration is complete, now d is 
reduced by d *= pow(2,-r), where r is the 
roughness constant.

•  Repeat the previous two steps until the 
length of the square gets below a threshold.

E = (A+B+C+D)/4 + Rand(d)

Rand(d) can generate random 
values between -d and +d

wrapping
G = (A+B+E+E)/4 + rand(d)
H = (B+D+E+E) /4 + rand(d)
I = (D+C+E+E)/4 + rand(d)
F = (A+C+E+E)/4 + rand(d)

Non-wrapping
G = (A+B+E)/3 +rand(d)
 same for H,I,F
 

Only in 
height!
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Summary

•  Overview of terrain algorithms.

•  Categories of terrain algorithms: discrete and continuous LODs.

•  Issues in terrain generation and modeling.

•  Classes of Continuous LODs: regular grids & heighfields, TINs, and voxel-based LODs.

•  LEA algorithm.

•  ROAM algorithm.

•  Diamond-square algorithm.

•  Final considerations.


