
Terrain Modeling

Video Game Technologies
11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

Chap. 6 — Terrain Modeling

Terrain Modeling

Overview

•  Overview of terrain algorithms.

•  Categories of terrain algorithms: discrete and continuous LODs.

•  Issues in terrain generation and modeling.

•  Classes of Continuous LODs: regular grids & heighfields, TINs, and voxel-based LODs.

•  LEA algorithm.

•  ROAM algorithm.

•  Diamond-square algorithm.

•  Final considerations.

ht
tp

://
w

w
w

.c
s.

ut
ah

.e
du

/v
is

si
m

/t
er

ra
in

.h
tm

l

Terrain Modeling

Introduction

•  Terrain is obviously important to many games

•  As a model, it is very large

•  Creating every point explicitly by hand is not feasible, so automated terrain generation
methods are common

•  When rendering, some of the terrain is close, and other parts are far away, leading to terrain
LOD algorithms

ht
tp

://
w

w
w

.v
te

rr
ai

n.
or

g/
LO

D
/P

ap
er

s/

Terrain Modeling

Terrain model: example

triangle mesh texture image

Terrain Modeling

Types of data structures

®  Triangulated Irregular Networks
(TIN)

®  Regular Grid + Height Field

Terrain Modeling

Mesh simplification

•  Why do we need simplify a mesh?

Full Mesh Simplified Mesh

Terrain Modeling

Terrain algorithms: categories

•  Discrete LOD

Generate a handful of LOD meshes for each
object

•  Continuous LOD

Generate a single mesh for terrain from which a
spectrum of detail can be extracted.

–  Grid-based:

•  continuous LOD rendering by Lindstrom

•  Real-time Optimally Adapting Meshes (ROAM)

–  TIN-based
•  progressive meshes

–  Voxel-based
•  marching cubes (transvoxel algorithm, 2010)

®  TIN-based

®  Grid-based

w(v)=(x,y,z(x,y))

v=(x,y,z)

Terrain Modeling

Issues in terrain modeling

•  Size

–  Terrains are often modeled as huge meshes that may not fit in memory.

•  Popping

–  Terrain (vertex) popping effect as the level of detail changes;

–  This is particularly notorious for discrete LODs.

•  Cracks

–  Since the terrain consists of varying level of detail regions, when two regions of different detail
levels meet, their edges do not match up perfectly

–  Cracks may jeopardize the pathfinding algorithms in the sense that a crack may be mistaken as a
boundary of the game world.

mesh with cracks

ht
tp

://
w

w
w

.g
am

ed
ev

.n
et

/t
op

ic
/4

86
28

6-
te

rr
ai

n-
re

nd
er

in
g-

si
m

pl
e-

st
itc

hi
ng

-a
lg

or
ith

m
-t

o-
av

oi
d-

cr
ac

ks
-p

ic
ts

-a
nd

-p
se

ud
o-

co
de

/

Terrain Modeling

Issues in terrain modeling (cont’d.)

•  Caves, overhangs, and arches

–  Voxel-based terrain systems have been becoming popular because they rid off the topographical
limitations of traditional elevation-based terrain systems, being so possible to create more
complex structures like caves, overhangs, and arches..

ht
tp

://
w

w
w

.te
ra

th
on

.c
om

/v
ox

el
s/

Terrain Modeling

Lindstrom et al. (LEA)
Algorithm

http://www.gamasutra.com/view/feature/131841/continuous_lod_terrain_meshing_.php?print=1

P. Lindstrom, D. Koller, W. Ribarsky, L. Hodges, N. Faust, and G. Turner. Real-
Time, Continuous Level of Detail Rendering of Height
Fields. In Proceedings of the ACM SIGGRAPH’96, pp. 109-118, August
1996.

Terrain Modeling

LEA algorithm:�
key concepts
•  Continuous LOD for height fields

•  Uses a binary vertex tree

•  Frame-to-frame coherence

•  Introduced user-controllable screen space
error threshold

Terrain surface tessellations corresponding to projected
geometric error thresholds of one (top) and four (below) pixels

Terrain Modeling

LEA:�
bottom-up LOD algorithm
•  The terrain is a heightfield represented by a squared 2D grid elevated from the x-y plane

•  The surface corresponding to the heightfield (before simplification) is represented as a
symmetric triangle mesh.

•  We start from the most refined mesh to obtain a coarser mesh è BOTTOM-UP.

•  Simplification algorithm:

–  We are dealing with very large terrains; for example, a medium size grid 512 x 512 squares comes
to 262,144 squares, each of which is divided into two triangles for rendering. So, we’re looking at
524,288 total triangles. Each polygon is made up of three vertices (points), and so we send
1,572,864 vertices for rendering. That is a lot of data.

2D grid terrain as a heightfield2D symmetric triangle grid

ht
tp

://
w

w
w

.s
ha

m
us

yo
un

g.
co

m
/t

w
en

ty
si

de
dt

al
e/

?p
=

14
1

Terrain Modeling

LEA’s simplification algorithm:�
1st reduction strategy of dataset

•  Criterion: FLATNESS

–  Reduce flat areas into few polygons, and keep complex areas (slopes) with more polygons è
GLOBAL STRATEGY

–  HOW? è using QUADTREE data structure to represent the recursive partition of the terrain
into quadrants.

13

The new terrain is 158,000 triangles.
So, we’ve removed an amazing two-thirds
of the triangles from the scene.

original
terrain

optimized
terrain

Terrain Modeling

LEA’s simplification algorithm:�
2nd reduction strategy of dataset

•  Criterion: DISTANCE

–  With the distance to the viewer, a lot less polygons are necessary to pipeline into the graphics
card. We’re all the way down to 65,195 polygons! That is a reduction of about 88% in relation to
the original terrain.

14158,000 triangles

original
terrain

2nd criterion

65,195 triangles

158,000 triangles

1st criterion1st criterion

524,288 triangles

Terrain Modeling

LEA’s simplification algorithm:�
3rd reduction strategy of dataset

•  Criterion: POSITION

–  Now that we have distance-based polygon reduction, we need the terrain to change whenever the
user moves around.

–  As we fly around the terrain, there are little pauses every few seconds. Lots of games have this
“stuttering” problem from time to time.

–  The problem is that we’re doing the whole terrain in one go. We’re sending the whole mesh to
graphics system (e.g. OpenGL) at once, which just takes too long.

–  Solution: We can fix this problem by breaking the terrain into many separate sections and sending
the terrain over to OpenGL a “visible” section at a time.

Terrain Modeling

LEA’s simplification algorithm �
in two steps�

•  Coarse-grained simplification
(block-based simplification)

–  It operates at the quadtree
level.

–  It serves to determine which
discrete level of detail is
needed for each block (or
terrain region).

•  Fine-grained simplification
(vertex-based simplification)

–  It operates at the block level.

–  Coaslescence of triangle-
cotriangle pairs into a single
triangle.

–  Individual vertices are
considered for removal so
that their sharing triangles are
replaced with fewer larger
triangles.

triangle
(right)

co-triangle
(left)

Terrain Modeling

LEA’s simplification algorithm:�
vertex-based simplification �

•  Criterion: GEOMETRIC ERROR IN PIXELS

–  It is based on geometric error in pixels. This error measures the change in slope
between two triangles, i.e. FLATNESS VARIATION (see1st reduction criterion above).

–  EXAMPLE: For triangles ABE and BCE, one computes the delta value of B, which is given by
vertical distance between B and the midpoint M of A and C; the segment BM is called delta
segment.

–  As the delta value increases, the chance of triangle coaslescence decreases.

–  The geometric error is just given by the size of the delta segment in number of pixels
when it is projected on screen.

Terrain Modeling

ROAM Algorithm

http://www.cognigraph.com/ROAM_homepage/

https://graphics.llnl.gov/ROAM/roam.pdf

http://lodbook.com/source/

Mark Duchaineau, MurrayWolinsky, David E. Sigeti, Mark C. Millery,
Charles Aldrich, and Mark B. Mineev-Weinstein. ROAMing Terrain:
Real-time Optimally Adapting Meshes. In Proceedings of the
8th Conference on Visualization '97 (VIS'97), IEEE Computer Society
Press, 1997.

Terrain Modeling

ROAM (Real-Time Optimally Adapting Meshes)

•  Probably the most popular algorithm for terrain
generation/modeling.

•  Key concepts:

–  Height field (or height map) as for Landstrom et al.

–  Binary triangle tree structure (without cracks).

–  Split and merge operations (to refine and simplify
the mesh)

•  Other important concepts:

–  Two priority queues

•  One for splits and one for merge

•  Allows for frame-to-frame coherence

–  Error metrics for splits and merges

–  Geo-morphing – introduced, but rarely needed

–  Incremental triangle stripping introduced

ht
tp

://
w

w
w

.g
am

as
ut

ra
.c

om
/v

ie
w

/fe
at

ur
e/

31
88

/r
ea

lti
m

e_
dy

na
m

ic
_l

ev
el

_o
f_

de
ta

il_
.p

hp

Terrain Modeling

ROAM’s LOD data structure

•  Binary triangle tree (BTT)

–  Each patch is a simple isosceles right triangle.
Splitting the triangle from its apex to the
middle of its hypotenuse produces two new
isosceles right triangles.

–  The splitting is recursive and can be repeated
on the children until the desired level of
detail is reached.

struct TriTreeNode {
TriTreeNode *LeftChild;
TriTreeNode *RightChild;
TriTreeNode *BaseNeighbor;
TriTreeNode *LeftNeighbor;
TriTreeNode *RightNeighbor;

};

ht
tp

://
w

w
w

.g
am

as
ut

ra
.c

om
/v

ie
w

/fe
at

ur
e/

31
88

/r
ea

lti
m

e_
dy

na
m

ic
_l

ev
el

_o
f_

de
ta

il_
.p

hp

Terrain Modeling

ROAM triangle splitting & merging

•  Three cases exist when attempting
to split a node:

–  The node is part of a diamond

•  Action: split the node and its
base neighbor.

–  The node is on the edge of the
mesh

•  Action: trivial, only split the
node.

–  The node is not part of a diamond

•  Action: force split the base
neighbor.

ht
tp

://
w

w
w

.g
am

as
ut

ra
.c

om
/v

ie
w

/fe
at

ur
e/

31
88

/r
ea

lti
m

e_
dy

na
m

ic
_l

ev
el

_o
f_

de
ta

il_
.p

hp

This technique does not cause cracks. How?

Terrain Modeling

ROAM geomorphing: �
a technique to prevent popping effects
•  Visual popping is a side effect of rendering with dynamic levels of detail when triangles are

inserted or removed from the mesh.

•  This distortion can be reduced to nearly unnoticeable amounts by vertex morphing, also
called geomorphing, by gradually changing the rise or fall of a vertex's height from the un-
split position to its new split position over the course of several frames.

•  Geomorphing is given by the following interpolation formula:

€

z(fmorph) = fmorphz final + (1− fmorph)zinitial
with
fmorph ∈[0,1]

Terrain Modeling

Diamond-Square
Algorithm

http://en.wikipedia.org/wiki/Diamond-square_algorithm

http://paulboxley.com/blog/2011/03/terrain-generation-mark-one

Alain Fournier, Don Fussell, and Loren Carpenter (June
1982). "Computer rendering of stochastic
models". Communications of the ACM 25 (6): 371–384.

Terrain Modeling

Diamond-square algorithm: context

•  Also called the cloud fractal, plasma fractal or random midpoint displacement

•  The 2D version of the original midpoint displacement algorithm

–  Therefore it also has a roughness constant

•  The diamond-square algorithm works best if it is run on square grids of width 2^n

–  This ensures that the rectangle size will have an integer value at each iteration

Terrain Modeling

Diamond-square algorithm

•  The algorithm starts with a 2 x 2 grid

–  The heights at the corners can be set to
either zero, a random value or some
predefined value

•  Diamond step (observe the four diamond
shape):

–  This step calculates the midpoint of the grid
based on its corners and then adding the
maximum displacement for the current
iteration

•  Square step:

–  Calculate the midpoints of the edges
between the corners

–  Since the first iteration is complete, now d is
reduced by d *= pow(2,-r), where r is the
roughness constant.

•  Repeat the previous two steps until the
length of the square gets below a threshold.

E = (A+B+C+D)/4 + Rand(d)

Rand(d) can generate random
values between -d and +d

wrapping
G = (A+B+E+E)/4 + rand(d)
H = (B+D+E+E) /4 + rand(d)
I = (D+C+E+E)/4 + rand(d)
F = (A+C+E+E)/4 + rand(d)

Non-wrapping
G = (A+B+E)/3 +rand(d)
 same for H,I,F

Only in
height!

Terrain Modeling

Summary

•  Overview of terrain algorithms.

•  Categories of terrain algorithms: discrete and continuous LODs.

•  Issues in terrain generation and modeling.

•  Classes of Continuous LODs: regular grids & heighfields, TINs, and voxel-based LODs.

•  LEA algorithm.

•  ROAM algorithm.

•  Diamond-square algorithm.

•  Final considerations.

