
Spatial Data Structures

Video Games Technologies
11498: MSc in Computer Science and Engineering
11156: MSc in Game Design and Development

Chap. 5 — Spatial Data Structures

Chapter 4: Spatial Data Structures

Outline

…:

– Introduction.

– Taxonomy of spatial data structures.

– K-d trees: overview, construction, and complexity.

– K-d trees: rectangular range query, nearest neighbor search.

– Point quadtrees: overview, construction, and complexity.

– Point quadtrees: point insertion, point deletion, rectangular range query, nearest
neighbor search.

– Region quadtrees.

Based on:
https://courses.cs.washington.edu/courses/cse373/02wi/

Chapter 4: Spatial Data Structures

Spatial data structures: introduction

Leading idea:

– Spatial organization of points, lines, planes, etc., in support of faster processing.

Applications:

– Map information

– Graphics - computing object intersections

– Data compression - nearest neighbor search

– Decision Trees - machine learning

Taxonomy:

– K-d trees

– Quadtrees

– BSP trees

Chapter 4: Spatial Data Structures

K-d Trees

Chapter 4: Spatial Data Structures

K-d trees

Contribution:

– They were introduced by Jon Bentley while an undergraduate (1975).

Utilities:

– Nearest neighbor search.

– Range queries.

– Fast look-up

Complexity:

– k-d tree are log2 n depth where n is the number of points in the set.

– Traditionally, k-d trees store points in d-dimensional space which are equivalent to
vectors in d-dimensional space.

Trees used to store spatial data.

Chapter 4: Spatial Data Structures

Range queries

x

a
b

f

c

g
h

ed

i

x

y

a
b

f

c

g
h

ed

i

Rectangular query Circular query

y

Chapter 4: Spatial Data Structures

Nearest neighbor search

a
b

f

c

g
h

ed

i

query

Nearest neighbor is e.

x

y

Chapter 4: Spatial Data Structures

K-d tree construction

1. If there is just one point, form a leaf with such a
point.

2. Otherwise, divide the points in half by a line
perpendicular to one of the axes.

3. Recursively construct k-d trees for the two sets
of points.

Division strategies (step 2 above):

– divide points perpendicular to the axis with
widest spread.

– divide in a round-robin fashion (x first, then
y)

Tree node representation: A node has 5 fields:
axis (splitting axis), value (splitting value), left
(subtree), right (subtree), point (holds a point if
left and right children are null)

Algorithm outline:

a
b

c

g
h

ed

i

s1

s2

s3

s4

s5

s6

s7

s8

f

x

y

Chapter 4: Spatial Data Structures

K-d tree construction (contd.)

a
b

c

g
h

ed

i

s1

s2

s3

s4

s5

s6

s7

s8

f

x

y
x
s1

s2
y y

s6

s3
x

s4
y

s7
y

s8
y

s5
xa b

d e

g c f h i

Chapter 4: Spatial Data StructuresK-d tree splitting
(using widest spread)

• Sort points in each dimension

• max spread is the max of
fx -ax and iy – ay.

• In the selected dimension the
middle point in the list splits the
data.

• To build the sorted sublists for the
other dimensions, scan the sorted
list adding each point to one of two
sorted lists.

1 2 3 4 5 6 7 8 9
a d g b e i c h f
a c b d f e h g i

x
y

a
b

f

c

g
h

ed

i

x

y

Chapter 4: Spatial Data Structures

K-d tree splitting (contd.)

• Sorted points in each dimension.

• Indicator for each set

• Scan sorted points in y dimension
and add to correct set

1 2 3 4 5 6 7 8 9
a d g b e i c h f
a c b d f e h g i

x
y

a
b

f

c

g
h

ed

i

x

y

a b c d e f g h i

0 0 1 0 0 1 0 1 1

a b d e g c f h iy

Chapter 4: Spatial Data Structures

K-d tree construction complexity

First sort the points in each dimension.

– O(d.n.log n) time and d.n storage.

– These are stored in A[1..d,1..n]

Finding the widest spread and equally divide into two subsets can be done in O(d.n) time.

We have the recurrence:

– T(n,d) < 2T(n/2,d) + O(dn)

Constructing the k-d tree can be done in O(d.n.log n) and d.n storage

Chapter 4: Spatial Data Structures

Rectangular range query

- Recursively search every cell that intersects the rectangle.

- Thus, this problem reduces to another problem: box-box intersection.

a
b

c

g
h

ed

i

s1

s2

s3

s4

s5

s6

s7

s8

f

x

y
x
s1

s2
y y

s6

s3
x

s4
y

s7
y

s8
y

s5
xa b

d e

g c f ih

Chapter 4: Spatial Data Structures

Rectangular range query (contd.)

Algorithm 1 (box-box intersection):

1) Determine the center of the 2nd box (blue);
2) Add the length of the 2nd box (blue)to the length of

the 1st box (red);
3) Add the height of the 2nd box (blue)to the height of

the 1st box (red);
4) Check whether the center of the 2nd box (blue) is

inside the 1st augmented box (point-box membership)

Algorithm 2 (point-box membership):
IN: point P
IN: left-bottom corner L
IN: right-top corner R
OUT: boolean value (either true or false)
1) if
2) (
3) (p.x > L.x) and (p.x < R.x)
4) and
5) (p.y > L.y) and (p.y < R.y)
6))
7) return TRUE;
8) else
9) return FALSE;

Chapter 4: Spatial Data Structures

K-d tree nearest neighbor search
Search recursively to find the point in the same cell as the query.

On the return search each subtree where a closer point than the one you already know
about might be found.

a
b

c

g
h

ed

i

s1

s2

s3

s4

s5

s6

s7

s8

f

x

y
x
s1

s2
y y

s6

s3
x

s4
y

s7
y

s8
y

s5
xa b

d e

g c f h i

query point

Chapter 4: Spatial Data Structures

Further notes on k-d NNS

Has been shown to run in O(log n) average
time per search in a reasonable model.

Storage for the k-d tree is O(n).

Preprocessing time is O(n log n) assuming d
is a constant.

Worst-case for NNS:

• Half of the points visited for a query

• Worst case O(n)

• But: on average (and in practice) nearest
neighbor queries are O(log N)

y

query point

x

Chapter 4: Spatial Data Structures

Quad Trees

Motivation for studying quadtrees:
• Allows efficient querying of points in multidimensional space by pruning the search space.
• Applications:
− photon mapping
− point cloud processing

Chapter 4: Spatial Data Structures

Point quadtrees
Spatial decomposition at data points.

Chapter 4: Spatial Data Structures

Point insertion

An optimized point quadtree is constructed such that for any node x, the number of
nodes in any of its quadrants will not exceed half the total number of nodes in the subtree
rooted at x.

Procedure for constructing optimized point quadtrees:

(1) Sort points by x-value.

(2) Assign median point m as root of tree.

(3) By choosing m, remaining points get divided into 4 groups.

(4) Repeat procedure on each group.

1
2

3
4

1
2

3
4

Unbalanced	Point	Quadtree Optimized	Point	Quadtree

1

2

3

4

1
2

3
4

2

1 3

4
Order of data point insertion matters:

Chapter 4: Spatial Data Structures

Point deletion

Naïve approach: Remove node x and re-insert nodes in subtree(x). This is supposedly
very inefficient.

Smart approach: The general idea is to pick a replacement node that minimizes the
number of nodes requiring re-insertion. As illustrated below, in a good scenario, we only
need to replace node x without having to restructure the tree.

delete this

Chapter 4: Spatial Data Structures

Rectangular range query (search)

To query a quadtree for items that are inside a particular rectangle, the tree is traversed.
Each quad is tested for intersection with the query area.

1. Quads that do not intersect are not traversed, allowing large regions of the spatial index
to be rejected rapidly.

2. Quads that are wholly contained by the query region have their sub-trees added to the
result set without further spatial tests: this allows large regions to be covered without
further expensive operations.

3. Quads that intersect are traversed, with each sub-quad tested for intersection
recursively.

When a quad is found with no sub-quads, its contents are individually tested for intersection
with the query rectangle.

ht
tp

://
w

w
w

.c
od

ep
ro

je
ct

.c
om

/A
rt

ic
le

s/
30

53
5/

A
-S

im
pl

e-
Q

ua
dT

re
e-

Im
pl

em
en

ta
tio

n-
in

-C

Chapter 4: Spatial Data Structures

Nearest neighbor search
Problem:
Given a point quadtree T and a point P, find the node in T that is the closest to P.
Idea:
Traverse the quadtree maintaining a priority list, candidates, based on the distance from P to the
quadrants containing the candidate nodes.

P(95,15)

Chapter 4: Spatial Data Structures

PR (point region) quadtrees

Space subdivided repeatedly into congruent quadrants until all quadrants contain no more
than one data point

The bucket PR quadtree allows no more than some b > 1 number of data points per
quadrant.

Chapter 4: Spatial Data Structures

Quadtree comparison

Point Quadtree

– Pros:

§ Compact, because number of tree nodes equals number of data points

§ Shorter search paths (~log4N) compared to kd-trees (~log2N)

– Cons:

§ Deletion of a node involves finding a suitable replacement and rearranging the
nodes of its subtree.

§ Tree shape depends on order of data point insertion. Inserting at arbitrary
order may result in unbalanced trees.

PR Quadtree

– Pros:

§ Tree shape independent of order of data point insertion. It depends only on
arrangement of data points in space

§ Deletion is straightforward, since all data points reside in leaf nodes.
– Cons:

§ Certain quadrants may require many subdivisions to separate densely clumped
points, leading to a deep search paths.

Chapter 4: Spatial Data Structures

Relevant references on quadtrees

Samet’s webpage: Contains a cool Java Applet showing how various data structures work.
http://donar.umiacs.umd.edu/quadtree/

D.T. Lee and C. K. Wong. Worst-Case Analysis for Region and Partial Region Searches in
Multidimensional Binary Search Trees and Balanced Quad Trees

Samet. Deletion in Two-Dimensional Quad Trees

Finkel and Bentley. Quad Trees: A Data Structure for Retrieval on Composite Keys.

http://en.wikipedia.org/wiki/Quadtree

http://www.xnawiki.com/index.php/QuadTree

Chapter 4: Spatial Data Structures

Summary:

…:

– Introduction.

– Taxonomy of spatial data structures.

– K-d trees: overview, construction, and complexity.

– K-d trees: rectangular range query, nearest neighbor search.

– Point quadtrees: overview, construction, and complexity.

– Point quadtrees: point insertion, point deletion, rectangular range query, nearest
neighbor search.

– Region quadtrees.

