Computação Visual e Multimédia

D 77070747077770700047

.001010140000111110100103

0070070777070070

. 1. 1. 0 1. 0 0

10504: Mestrado em Engenharia Informática

Chap. 6 — Image Segmentation

Image Segmentation

••••

- Image segmentation: a reminder
- Image processing pipeline
- Image segmentation techniques
- Edge-based segmentation:
 - Basic algorithm
 - Hough transform
- Thresholding segmentation:
 - Global thresholding
 - Local thresholding

Image segmentation: a reminder

Definition:

- Segmentation is to subdivide an image into its component regions or objects.
- Segmentation should stop when the objects of interest have been isolated.

Goal:

N 16 0000

- Segmentation subdivides an image into its constituent regions or objects that have similar descriptors according to a set of predefined criteria.

Descriptors?

– Intensity, histogram, mean, variance, energy, texture, etc.

Application Dependency:

- Segmentation depends on applications or the problems to solve

Image processing pipeline (steps)

Chapter 6: Image Segmentation

EDGE-BASED SEGMENTATION

Edge detection: another reminder

Usefulness:

- Edge detection is the common approach for detecting meaningful discontinuities.

Edge vs boundary:

- An edge is a set of connected pixels that lie on the boundary between two regions.
- An edge is a "local" concept whereas a region boundary is a more global idea.
- A reasonable definition of "edge" requires the ability to measure gray level (intensity) transitions in a meaningful way.

Ideal edge model:

- An ideal edge has the properties of the step edge model shown above.
- An ideal edge according to this model is a set of connected pixels, each of which is located at an orthogonal step transition in gray level.

Edge detection (cont'd): another reminder

Practical edge model:

- In practice, optics, sampling, and other image acquisition imperfections yield edges that are blurred.
- Consequently, edges are more closely modeled as a "<u>ramp</u>"-like profile.
- The degree of blurring is determined by factors such as the quality of the image acquisition system, the sampling rate, and illumination conditions.
- An edge point is any point contained in the ramp, and an edge would be a set of such points that are connected.
- The "thickness" of the edge is determined by the length of the ramp.
- Blurred edges tend to be thick and sharp edges tend to be thin.

Edge detection (cont'd): still another reminder

Edge detection: essentials

- The magnitude of the <u>first</u> <u>derivative</u> can be used to detect the presence of an edge.
- The sign of the <u>second derivative</u> can be used to determine whether an edge pixel lies on the dark or light side of an edge.
- An imaginary straight line joining the extreme positive and negative values of the second derivative would cross zero near the midpoint of the edge (zero-crossing property)

Edge segments

- We define a point in an image as being an **edge point** if its two-dimensional first-order derivative is greater than a specified threshold.

Edge:

- A set of such points is defined as an **edge** if such pixels are connected according to a predefined criterion of connectedness.

Edge segment:

- The term **edge segment** generically is used if the edge is short in relation to the dimensions of the image.

Segmentation key problem:

How to link edge segments into longer edges?

edge detection \rightarrow edge linking

linking edge segments into longer edges = edge linking

Basic edge linking algorithm:

- One of the simplest approaches for linking edge points is to analyze the characteristics of pixels in a small neighborhood.
- All points that are similar according to a set of predefined criteria are linked.
- Two principal properties (as criteria):
 - The strength of the gradient: $|\nabla f(x,y) \nabla f(x',y')| \le \varepsilon$
 - The <u>direction of the gradient vector</u>: $|\theta(x,y) \theta(x',y')| \le \tau$

Recall that the direction of the edge at (x,y) is perpendicular to the direction of the gradient vector at that point.

Edge linking: finding straight lines

Problem:

- Given *n* points in an image, suppose that we want to find subsets of these points that lie on straight lines.

A possible solution:

- One possible solution is to first find all lines determined by every pair of points,
- then find all subsets of points that are close to particular lines.
- But, this involves finding n(n-1)/2 lines and then performing $n \times n(n-1)/2$ comparisons!

A better solution:

Hough Transform [1962]

Hough transform

0000

- Performed after edge detection.
- Hough transform (1962): generalized template matching technique

Purpose:

- It is a technique to <u>isolate</u> the curves (e.g., straight lines, circles, parabolas, ellipses, etc) of a given shape / shapes in a given image.
- Requires that the curve be specified in some parametric form.

Generalization:

- Generalized HT when a simple analytic description of feature is not possible.

Advantages:

- The Hough Transform is tolerant of gaps in the edges
- It is relatively unaffected by noise
- It is also unaffected by occlusion in the image

Hough transform for straight lines

Problem:

Fit a straight line (or curve) to a set of edge pixels.

Explicit form: y = mx + b

- This representation fails in case of vertical lines.

Normal form: $x\cos\theta + y\sin\theta = \rho$

- The *normal* for a given line is defined to be the shortest segment between the line and the origin.
- The normal form of the equation of a straight line is given by the expression above.
- This parameterization avoids infinite-slope problem.

Hough transform for straight lines (cont'd)

How does it work?:

- Points in the picture correspond to sinusoids in parameter space.
- Points in parameter space correspond to lines in the picture.

Sinusoids corresponding to co-linear points intersecting at an unique point

Hough transform for straight lines: examples

original image

- The HT given by the normal form generates a parameter space matrix whose rows and columns correspond to those ρ and θ values, respectively.
- The value of each matrix element indicates how many points/pixel that lie on the line with the parameters (*rho*, *theta*).
- Therefore, the matrix element with the highest value tells us which line is most represented in the input image.

Hough transform for straight lines: one more example

The Hough space of the original image: the dark red points are the points with the highest number of intersections. Many dark red points are around 90°, i.e., that the image has many horizontal lines.

Hough transform for straight lines: another still *example*

Hough transform algorithm

Outline:

- Voting in the parameter space (Hough space)
- Using directional information
- Error compensation: smoothing

Hough transform algorithm:

quantize parameter space and vote into bins

Algorithm:

- Let $\rho \in [-D,D]$ and $\theta \in [0,\pi)$
- For each edge point (x_i, y_i) , compute:

$$\rho = x_i \cos\theta + y_i \sin\theta \qquad \forall \theta \in [0,\pi)$$

- Accumulator:

$$A(\rho,\theta) = A(\rho,\theta) + 1$$

- Threshold the accumulator values to get parameters for detected lines

Hough transform algorithm <u>reformulated</u>: Chapt using gradient direction to reduce computation load

Let us then reformulate:

0000

- Let $\rho \in [-D,D]$ and $\theta \in [0,\pi)$
- For each edge point (x_i, y_i) , compute: θ

$$\theta = \tan^{-1} \left(\frac{G_Y}{G_X} \right)$$

$$\rho = x_i \cos\theta + y_i \sin\theta$$
$$A(\rho, \theta) = A(\rho, \theta) + 1$$

- For each bin of the accumulator $A(\rho, \theta)$:
 - Search for the maximum value of $A(\rho, \theta)$
 - Calculate the equation of the line
- To reduce the effect of noise more than one element (elements in a neighborhood) in the accumulator array are increased.

Hough transform: recap

In detecting lines:

- The parameters ρ and θ were found relative to the origin (0,0).
- We had a priori knowledge of the shape.

Generalization:

- The idea can be extended to shapes like ellipses, parabolas, etc:

Analytic Form	Parameters	Equation
Line	ρ, θ	$\cos\theta$ +ysin θ = ρ
Circle	$\mathbf{x}_{0},\mathbf{y}_{0}, ho$	$(x-x_{o})^{2}+(y-y_{0})^{2}=r^{2}$
Parabola	$\mathbf{x}_{0},\mathbf{y}_{0}, ho, heta$	$(y-y_0)^2 = 4\rho(x-x_0)$
Ellipse	x_0, y_0, a, b, θ	$(x-x_{o})^{2}/a^{2}+(y-y_{0})^{2}/b^{2}=1$

A classification for image segmentation techniques

- Intensity-based segmentation: Thresholding
- Edge-based segmentation
- Region-based segmentation

Chapter 6: Image Segmentation

THRESHOLDING

(or intensity-based segmentation)

Assumptions for thresholding

Assumptions:

- The intensity values are different in different regions.
- Within each region, which represents the corresponding object in a scene, the intensity values are similar.

Thresholding

000000

How does it work?:

- Thresholding is usually the first step in any segmentation approach.
- Image thresholding classifies pixels into two categories:
 - Those to which some property measured from the image falls below a threshold *T*,
 - and those at which the property equals or exceeds a threshold *T*.
- Thresholding creates a binary image : <u>binarization</u>.

Two big categories:

- **Global** (or fixed) thresholding. The threshold value is held constant throughout the image:

$$g(x,y) = \begin{cases} 0 & f(x,y) < T \\ 1 & f(x,y) \ge T \end{cases}$$

 Local (or dynamic or adaptive) thresholding depends on the position in the image. The image is divided into overlapping sections which are thresholded one by one.

Thresholding: example

Example:

Imagine a poker playing robot that needs to visually interpret the cards in its hand:

original image

thresholded image

- If you get the threshold wrong the results can be disastrous:

threshold too low

threshold too high

Basic global thresholding

How does it work?:

- It is based on the <u>histogram</u> of an image.
- Partition the image histogram using a single global threshold. The success of this technique very strongly depends on how well the histogram can be partitioned.

Algorithm (to obtain T automatically):

- <u>Step I</u>: Select an initial estimate for T (typically the average grey level in the image)
- <u>Step 2</u>: Segment the image using T to produce two groups of pixels: G_1 consisting of pixels with grey levels >T and G_2 consisting pixels with grey levels $\leq T$
- Step 3: Compute the average grey levels of pixels in G₁ to give μ_1 and G₂ to give μ_2
- <u>Step 4</u>: Compute a new threshold value:

$$T = \frac{\mu_1 + \mu_2}{2}$$

- <u>Step 5</u>: Repeat steps 2 – 4 until the difference in T in successive iterations is less than a predefined limit T_{∞} .

010 1010100 10+000010

Basic global thresholding: *example*

Problems with single value thresholding

- Single value thresholding only works for bimodal histograms.
- Images with other kinds of histograms need more than a single threshold.
- Example:

Problem I (single thresholding):

- Let's say we want to isolate the contents of the bottles shown below. Think about what the histogram for this image would look like!?
- What would happen if we used a single threshold value?

Problems with single value thresholding (cont'd)

Problem 2 (illumination):

- Uneven illumination can really upset a single valued thresholding scheme.
- Example:

Basic local thresholding

(also called dynamic or adaptive thresholding)

- An approach to handling situations in which single value thresholding will not work is to divide an image into sub images and threshold these individually
- Since the threshold for each pixel depends on its location within an image this technique is said to *adaptive*.
- Example:
 - The image shown in previous overhead now using adaptive thresholding.
 - The success is mixed, but the result can be imporved by further subdividing the troublesome sub images.

••••

- In this lecture we overview the image processing pipeline.
- We reminded the edge detection techniques.
- We overview the segmentation techniques.
- We approached the edge-based segmentation technique, with a particular focus on Hough transform.
- We saw the basic global thresholding algorithm and its shortcomings.
- We also saw a simple way to overcome some of these limitations using local (adaptive) thresholding.