
PROJECT #A: PIXELWISE OPERATOR

ABEL GOMES

This project aims at fostering the interest of students in image processing techniques. In
practice, each student must to design and implement the project whose number matches
the rightmost digit of his/her student number. For example, the student with the number
20768 must pursue the project labelled as A-8.

Project A-0 and Project A-5

This project aims at implementing the operator

enlargeImage(s, inputImage)

which enlarges the input image inputImage by some integer factor s. Enlarging an image
is useful for magnifying small details in an image. There are various ways to enlarge a given
image. We will use a simple method: to enlarge an image by a given factor s, we must repli-
cate pixels such that each pixel in the input image becomes an s×s block of identical pixels
in the output image. This technique is most easily implemented by iterating over pixels of
the output image and computing the coordinates of the corresponding input image pixel.

Project A-1 and Project A-6

This project aims at implementing the operator

shrinkImage(s, inputImage)

which shrinks the input image inputImage by some integer factor s. Shrinking an image
is useful, for example, to reduce a large image in size so that it fits on the screen. There
are various ways to shrink a given image. Here, we will use a simple method: to shrink an
image by a scale factor s, we must sample every s-th pixel in the horizontal and vertical
dimensions and ignore the others. Again, this technique is most easily implemented by

Date: Assigned: November 03, 2013; Due: November 15, 2012 (in class); Visual Computing and Multi-
media, Fall 2013-2014.

1



2 ABEL GOMES

iterating over pixels of the output image and computing the coordinates of the correspond-
ing input image pixel.

Project A-2 and Project A-7

This project aims at implementing the operator

reflectImage(flag, inputImage)

which reflects the input image inputImage along the horizontal or vertical directions (de-
termined by the boolean flag). Reflection along either direction can be performed by
simply reversing the order of pixels in the rows or columns of the image.

Project A-3 and Project A-8

This project aims at implementing the operator

translateImage(t, inputImage)

which translates the input image inputImage by some amount t. The translation process
can be performed with the following equations:

(1) r∗ = r + t

(2) c∗ = c + t

where t is an integer. Note that displacement in the horizontal and vertical directions may
be different.
Besides, there is a practical difficulty with the direct application of the translation equa-
tions (1) and (2). When translating, what is done with the“leftover” space? For example,
if we move everything one row down, what do we put in the top row? One solution is to
fill the top row with a constant value value (typically black (0) or white (255)). Can you
think of a better solution?

Project A-4 and Project A-9

This project aims at implementing the operator

rotateImage(theta, inputImage)



PROJECT #A: PIXELWISE OPERATOR 3

which rotates the input image inputImage by some angle theta. The rotation process
requires the use of the following equations:.

(3) r∗ = r.cos(theta) − c.sin(theta)

(4) c∗ = r.sin(theta) + c.cos(theta)

where theta is the angle of rotation (positive values correspond to counterclockwise rota-
tion). Although the above formula is the basis of rotation, it only gets you halfway there
because it will rotate an image about point (0,0). In most cases, what we really want is to
rotate an image about its center. The following equations rotate an image about its center:

(5) r∗ = r0 + (r − r0).cos(theta) − (c− c0).sin(theta)

(6) c∗ = c0 + (r − r0).sin(theta) + (c− c0).cos(theta)

There are some practical difficulties implementing rotation using (3)-(4) or (5)-(6). Let
us consider what happens to pixel (0,100) after a 90 degrees rotation using equations (3)-
(4):

(7) r∗ = r.cos(90) − c.sin(90) = −100

(8) c∗ = r.sin(90) + c.cos(90) = 0

In this case, the pixel moves to coordinates (-100,0). This is clearly a problem since pixels
cannot have negative coordinates.

Let us now consider what happens to pixel (50,0) after a 35 degrees rotation:

(9) r∗ = r.cos(35) − c.sin(35) = 40.96

(10) c∗ = r.sin(35) + c.cos(35) = 28.68

The coordinates calculated by the transformation equations are not integers, and therefore
do not index a pixel in the output image.

The first problem can be resolved by testing coordinates to check that they lie within
the bounds of the output image before attempting to copy pixels. A simple solution to the
second problem is to find the nearest integers to r? and c? and use these as the coordinates
of the transformed pixel.

Also note that the C++ math functions cos() and sin() require that the angle is given
in radians (enter ”man cos” or ”man sin” from the command line to get a description of
these functions). So, you need to convert degrees to radians.


