

Visua l Comput ing and Mul t imedia

Abel J. P. Gomes

 LAB. 2

IMAGE PROCESSING

1. Objectives
2. PGM files
3. Exercises
4. Homework

Departamento de Informática
Universidade da Beira Interior

Portugal
2011

Copyright 2011 All rights reserved.

Lab. 2

IMAGE PROCESSING

 1 . Object ives

 1 .1 . Genera l Ob ject ives

In general terms, the idea of this labwork is to lead students to write C++ code to read, write, and
manipulate images. The general objectives are then the following:
- Familiarize student himself/herself with reading/writing images from/to a file.
- Introduce and learn about some simple image processing algorithms.
- Improve student’s skills with mastering object-oriented programming in C++, namely manipulating

arrays and implementing constructors, destructors, copy-constructors, as well as overloading
various operators.

- To have a first contact with C++ STL (Standard Template Library).
- Learn to document and describe programs.

 1 .2 . Spec i f i c Ob ject ives

More specifically, student has to write a package to implement the image data type using C arrays and
C++ arrays (STL). The image data type should allow you to:
- Read an image from a file.
- Save an image to a file.
- Get the info of an image.
- Set the value of a pixel.
- Get the value of a pixel.
- Extract a sub-image from an image.
- Compute the average gray-level value of an image.
- Enlarge an image by some factor s.
- Shrink an image by some factor s.
- Reflect an image in the horizontal or vertical directions.
- Translate an image by some amount t.
- Rotate an image by some angle theta.
- Compute the sum of two images.
- Compute the difference of two images.
- Compute the negative of an image.

 2 . Spec i f i ca t ion o f Image C lass and i ts Methods/Funct ions

You will have to write a program that interacts with the above image data type and the user. The user
should have the option to choose anyone of the above options in any order. Your program should be able
to handle various user input errors.

Image type spec i f icat ion:

class Image
{
 public:
 constructor // default - no parameters
 constructor // with parameters
 destructor
 copy_constructor
 operator= //overload assignment
 getImageInfo
 getPixelVal
 setPixelVal
 inBounds
 getSubImage
 meanGray
 enlargeImage
 shrinkImage
 reflectImage
 translateImage
 rotateImage
 operator+ //overload addition for images
 operator- //overload subtraction for images
 reflect
 translate
 rotate
 negateImage

 private:
 int N; // no of rows
 int M; // no columns
 int Q; // no gray-level values
 int **pixelVal;
};

 3 . Exerc ises

Let us then design and implement the following class functions for PGM images:

1) readImage(f i leName, image) Reads in an image from a file. The pixel values are stored in an
array and the image width, height, and number of gray-levels is recorded in the appropriate fields. A
NOT-PGM exception should be raised if the image file to be read is not in PGM format (image is an
object of type ImageType).

2) wr i te Image(f i leName, image): Writes out an image to a file in the appropriate format (image is

an object of type ImageType).

3) get ImageInfo(noRows, noCols , maxVal) : It returns the height (no. of rows) of the image, the
width (no. of columns) of the image, and the max pixel value (should be returned using "call by
reference").

4) in t getPixe lVa l(r , c) : Returns the pixel value at (r, c) location. An OUT-OF-BOUNDS exception
should be raised if (r, c) falls outside the image.

5) setPixe lVa l(r , c , va lue): Sets the pixel value at location (r, c) to value. An OUT-OF-BOUNDS
exception should be raised if (r, c) falls outside the image.

6) bool inBounds(r , c) : Returns true if the pixel (r, c) is inside the image.

7) getSubImage(ULr , ULc, LRr , LRc, o ld Image): It crops a rectangular area within oldImage.
Often, for image analysis, we want to investigate more closely a specific area within the image, called a
Region of Interest (ROI). They are used to limit the extent of image processing operations to some
small part of the image. The ROI is a rectangular area within the image, defined either by the
coordinates of its upper-left (UL) and lower-right (LR) corners or by the coordinates of its upper-left
corner and its dimensions. You can obtain the pixel coordinates of the UL and LR corners using xv by
moving the cursor on the desired positions and by pressing the middle button (Warning: the first
number displayed corresponds to c and the second to r). An OUT- OF-BOUNDS exception should be
raised if UL or LR fall outside the image.

8) in t meanGray() : Computes the average gray level value of an image (returns the results as an
integer by truncating it).

9) enlargeImage(s, o ld Image): Enlarges the input image oldImage by some integer factor s.
Enlarging an image is useful for magnifying small details in an image. There are various ways to
enlarge a given image. Here, we will use a simple method: to enlarge an image by a given factor s, we
must replicate pixels such that each pixel in the input image becomes an sxs block of identical pixels in
the output image. This technique is most easily implemented by iterating over pixels of the output
image and computing the coordinates of the corresponding input image pixel.

10) shr ink Image(s, o ld Image): Shrinks the input image oldImage by some integer factor s. Shrink-
ing an image is useful, for example, to reduce a large image in size so that it fits on the screen. There
are various ways to shrink a given image. Here, we will use a simple method: to shrink an image by a
scale factor s, we must sample every sth pixel in the horizontal and vertical dimensions and ignore the
others. Again, this technique is most easily implemented by iterating over pixels of the output image
and computing the coordinates of the corresponding input image pixel.

11) re f lect Image(f lag, o ld Image): Reflects the input image oldImage along the horizontal or vertical
directions (determined by the boolean "flag"). Reflection along either direction can be performed by
simply reversing the order of pixels in the rows or columns of the image.

12) t rans late Image(t , o ld Image): Translates the input image oldImage by some amount t. The
translation process can be performed with the following equations:

 rʹ′ = r + t (1)

 cʹ′ = c + t (2)

where t is an integer (note: the translation amounts in the horizontal and vertical directions can be
different in general). There are some practical difficulties implementing translation using the above
equations (see question 3 below).

13) rotate Image(theta, o ld Image): Rotates the input image oldImage by some angle theta. The
rotation process requires the use of the following equations:

rʹ′ = r cos(theta) − c sin(theta) (3)

cʹ′ = r sin(theta) + c cos(theta) (4)

where theta is the angle of rotation (positive values correspond to counterclockwise rotation).
Although the above formula is the basis of rotation, it only gets you halfway there because it will rotate
an image about point (0,0). In most cases, what we really want is to rotate an image about its center.
The following equations rotate an image about its center:

rʹ′ = r0 + (r − r0) cos(theta) − (c − c0) sin(theta) (5)

cʹ′ = c0 + (r − r0) sin(theta) + (c − c0) cos(theta) (6)

There are some practical difficulties implementing rotation using (3)-(4) or (5)-(6). Let us consider
what happens to pixel (0,100) after a 90 degrees rotation using equations (3)-(4):

rʹ′ = r cos(90) − c sin(90) = −100 sin(90) = −100

cʹ′ = r sin(90) + c cos(90) = 0 sin(90) = 0

In this case, the pixel moves to coordinates (-100,0). This is clearly a problem since pixels cannot have
negative coordinates. Let’s now consider what happens to pixel (50,0) after a 35 degrees rotation:

rʹ′ = r cos(35) − c sin(35) = 50 cos(35) = 40. 96

cʹ′ = r sin(35) + c cos(35) = 50 sin(35) = 28. 68

The coordinates calculated by the transformation equations are not integers, and therefore do not
index a pixel in the output image.

The first problem can be resolved by testing coordinates to check that they lie within the bounds of the
output image before attempting to copy pixels. A simple solution to the second problem is to find the
nearest integers to rʹ′ and cʹ′ and use these as the coordinates of the transformed pixel.

Please note that the C++ math functions cos() and sin() require that the angle is given in radians

(enter "man cos" or "man sin" from the command line to get a description of these functions). To
convert degrees to radians, use the following formula:

θrad = θdeg ×π / 180.0 (7)

To use these functions successfully, you need to include the following header file in your program:

#include <math.h>

Also, you need to "link" your program to the math library (this can be done during compilation by
appending -lm at the end of the command you are using to compile your program). There are some
practical difficulties implementing rotation using the above equations (see question 4 below).

14) operator+: Computes the sum of two images. Addition is used to combine the information in two
images. For example, you can implement simple "image morphing" using image addition (e.g., try
adding together the following images from the image gallery: person1.pgm, person2.pgm,
person3.pgm). If we add two 8-bit images, then pixels in the resulting image can have values in the
range 0-510. One way to deal with this problem is by choosing a 16-bit representation (i.e., set
Q=510) for the output image. Another way is to use the formula shown below:

O(r, c) = aI1(r, c) + (1 − a)I2(r, c) (8)

where a is a constant in the interval [0,1] (addition is a special case when a = 0. 5)

15) operator- : Computes the difference of two images. The main application of image subtraction is in
change detection. If we make two observations of a scene and compute their difference, then changes
will be indicated by pixels in the difference image that have non-zero values. If we subtract two 8-bit
images, then pixels in the resulting image can have values between -255 and +255. This necessitates
the use of 16 bit signed integers in the output image. However, the sign is usually unimportant and we
just consider the absolute difference in which case we just need 8 bit integers:

O(r, c) = |I1(r, c) − I2(r, c)| (9)

16) negateImage: Computes the negative of an image. This can be done by the following transformation:

O(r, c) = − I(r, c) + 255 (10)

where I(r,c) is the input image (i.e., a grayscale image with 255 possible gray levels) and O(r, c) is the
output image.

 4 . Homework

Instruct ions

You should have three source code files: one for the application program containing the main function
(main.cpp), one header file image.h that specifies the image data type, and a file image.cpp that actually

implements the image data type.

Describe the implementation of each function in detail. Each function should be discussed into a separate
section with the title of each section being the same as the name of the function. The sections should be
clearly separated from each other.

Quest ions:

Answering the following questions does not require that you have prior knowledge of image processing.
Just spend some time thinking about them and give us your best possible answers along with some
justification.

You do not have to do any extra coding regarding these questions but you are encouraged to do so.
Interesting ideas which are implemented and demonstrated will get extra credit !!

Document in your report any extens ions you might have made and let the TA know
dur ing the demo.

1. (2pts extra) The algorithm you have to implement in this assignment to enlarge a given image is
actually very simple. Can you think of a better approach? Compare your approach with the approach
suggested in this assignment (i.e., list possible advantages/disadvantages).

2. (2pts extra) The algorithm you have to implement in this assignment to shrink a given image is
actually very simple. Can you think of a better approach? Compare your approach with the approach
suggested in this assignment (i.e., list possible advantages/disadvantages).

3. (2pts extra) There is a practical difficulty with the direct application of the translation equations (1)
and (2). When translating, what is done with the "leftover" space? For example, if we move everything one
row down, what do we put in the top row? One solution is to fill the top row with a constant value value
(typically black (0) or white (255)). Can you think of a better solution?

4. (4pts extra) We have already discussed two practical difficulties associated with rotation: (a) the
case where the transformed pixel coordinates fall outside the image and (b) the case where the
transformed pixel coordinates are not integers. In the first case, we suggested simply ignoring the
transformed pixel coordinates that fall outside the range. This is probably enough in most cases. In the
second case, we suggested finding the nearest integer neighbors to rʹ′ and cʹ′. This approach, however, will
not produce a value for every pixel in the output image. In other words, it will produce numerous "holes" in
the rotated image where no value was computed. Can you suggest a way for dealing with this problem?

5. (2pts extra) This question is regarding image subtraction. By examining the difference image, you
will notice some rather small non-zero values in image areas where there is not really any change (e.g.,
subtract "backg1.pgm" from "backg2.pgm" and look at the values of the difference image). These
differences are due to sensor noise, slight changes in illumination and various other factors. Can you
suggest of a way to deal with this problem?

