
Real-Time Rendering
 Ad-hoc Shadows

CSE 781
Prof. Roger Crawfis

Ad-Hoc and Custom Shadows

l Fake proxy geometry.
l Projection of model to a plane.
l Projection of a texture to a plane.

Fake Proxy Shadow

l Shadows are simple hand-drawn
polygons or textures.

Images from TombRaider. ©Eidos Interactive.

Fake Proxy Shadow

l Neither static lighting or dynamic lighting –
it is faked.

l Do not care whether it is a static or dynamic
occluder.

l  Typically a single object (occluder) to a
single, and simple, object (receiver).

l Hard and soft (fake) shadows are easily
supported.

l  For certain cases works great!

Fake Proxy Shadow

l  Approximation of
shadow position and
shape based on
object’s typical use.

l  Typically assumes
overhead lighting.

l  Typically assumes a
single flat ground
plane as a receiver.

l  E.g., draw the bottom
of the bounding box.

Fake Proxy Shadow

l Consider this model
of a desk with a fake
shadow using an
ellipse:

l Know where the shadow is going to be.
l Will change some depending on the light

placement in the room, but good enough!
l  The ellipse is part of the model.

Fake Proxy Shadow

Fake Proxy Shadow

l  Quite complex
model.

l  Know it will sit
on a flat floor.

l  Will fail if we
place another
object behind or
underneath it.

Projected Occluder

l  Shadows for large
planar receivers
l  Ground plane
l  Walls

l  Use mathematics to
flatten (splat) the
object to the plane.

Projected Occluder

l Works for:
l  Static or dynamic occluders.
l  Only planar receivers.

l  A wall and a floor can be shadowed separately.
l  Static or dynamic light sources.
l  Mainly hard shadows.
l  Usually a single light source.

Projected Occluder

l Projection of a vertex, v, to a plane with
normal, n, and coefficient d.

l Could be done in shader, but also leads

to a 4x4 matrix.

)(
)(

0

lv
lvn
lndlv

dxn
!!!!!

!!!!

!!

−
−•

•+
−=ʹ′

=+•

Projected Occluder

l Example: xz plane at y=0

yy

yzzy
z

yy

yxxy
x

vl
vlvl

p

vl
vlvl

p

−

−
=

−

−
=

v
p

l=(lx,ly,lz)

y=0

y

Projected Occluder

l Transformation as a 4 by 4 matrix

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

−

−

=

1010
00
0000
00

z

y

x

y

yz

xy

v
v
v

l
ll

ll

p!

Projected Occluder

l Basic algorithm
l  Render scene (full lighting)
l  For each receiver plane

l  Compute projection matrix M
l  Multiply with actual transformation (modelview)

l  Note, even though this is a projection.
l  Need to flatten it in world space.

l  Render selected (occluder) geometry
l  Darken/Black

Projected Occluder Problems

l  Z-Fighting
l  Use bias when

rendering shadow
polygons

l  Use stencil buffer (no
depth test)

Z fighting

Projected Occluder Problems

l  Bounded receiver
polygon
l  Use stencil buffer

(restrict drawing to
receiver area)

extends off ground region

Projected Occluder Problems

l  Shadow polygon
overlap
l  Use stencil count

(only the first pixel
gets through)

double blending

Projected Occluder - Fixed

Projected Occluder Algorithm

l Stencil buffer algorithm (1bit stencil)
1.  Render scene without receiver polygon
2.  Clear stencil buffer
3.  Render receiver plane

l  Set the stencil buffer for all visible pixels
4.  Render occluder polygons

l  No depth testing
l  Check if stencil buffer is set
l  Use the stencil operation ‘clear’
l  Blend in the polygons (darken)

Projected Occluder Problems

l  Wrong Shadows & Anti-Shadows
l  Objects behind light source
l  Objects behind receiver

occluder behind receiver

receiver

light

occluder behind light

receiver

light

Projected Occluder

l Summary
l  Only practical for very few, large receivers
l  Easy to implement
l  Use stencil buffer (z fighting, overlap,

receiver)
l  Requires occluder geometry to be redrawn

for each light source.
l  Can use a simplified model (proxy occluder

geometry).

Projected Shadow Texture

l Sky layers
l Cast shadows

Projective Textures

l  Textures can be
projected like a slide
projector.

l  Before we talk about
this projective
textures let’s look at
texture interpolation.

Source: Wolfgang Heidrich [99]

Perspective-Correct Texturing

l While we think of 2D texture mapping
using only the (s, t) coordinates, doing
this will lead to errors.

l The texture will swim.
l A fix for this is needed

for regular 2D texture
mapping.

Perspective-Correct Texturing

l  Interpolation in screen space is not the
same as interpolation in 3-space
l  Problem is perspective
l  Need to interpolate in the plane of the

triangle.

Interpolation in
screen space

Interpolation in
plane

Visualizing the Problem

Notice that uniform steps on the image plane do
not correspond to uniform steps along the edge.

Perspective-Correct Texturing

l  2D perspective-correct texture mapping
l  (s, t) should be interpolated linearly in eye-space.
l  Compute per-vertex s/w, t/w, and 1/w
l  Linearly interpolate these three

parameters over the polygon.
l  Per-fragment compute:

s’ = (s/w) / (1/w)
t’ = (t/w) / (1/w)

l  There is an OpenGL hint to indicate
perspective texture interpolation.
l  This is on by default with modern hardware.

Projective Textures

l  Similar to projecting objects to the screen.
l  Now project the scene to the light source.
l  Use this projection from the receivers as their texture

coordinates (a texture parameterization).

camera

Slide projector

image plane

Receiver geometry

Projective Textures

l  Texture Coordinates – Project the objects to
the “image plane” of the projector and use the
projector’s NDC to calculate the texture
coordinates

projector

objects

Texture

projector

objects

Projection

Projective Textures

l The receiver’s need to know about the
projected texture, the light does not
automatically apply to objects and is not
an OpenGL state.

l OpenGL allows 4D
texture coordinates,
which can handle
the projection.

Projective Texturing

l  Tricking hardware into doing projective
textures
l  By interpolating q/w (perspective correction),

hardware computes per-fragment
l  (s/w) / (q/w) = s/q
l  (t/w) / (q/w) = t/q

l  Net result: Projective texturing
l  OpenGL (glTexGen) or a vertex shader, specifies the

texture parameterization. Typically want this in world
space, but like headlights can be done in eye space.

Projective Texture Shadows

Light’s point-of-view Shadow projective
texture (modulation
image or light-map)

Eye’s point-of-view,
projective texture
applied to ground-

plane

Projective Texture Shadows

l  Two-pass approach
l  For each light source:

l  Create a light camera that encloses shadowed
area (bounding box of the occluder).

l  Render shadow casting objects into light’s view.
l  Use a simple shader (set fragment color to black).

l  Create projective texture from light’s view
l Render Scene using the projective textures.

l  Render fully-lit shadow receiving objects.
l  Modulate light contribution with the projective-texture

for that light.
l  Render fully-lit shadow casting objects

Projected Texture Problems

l Similar problems to the projected
occluders:
l  Receiver is behind the projector.
l  Occluder is behind receiver.

P
ro

je
ct

ed
 T

ex
tu

re
 M

ap
pi

ng
,

C
as

s
E

ve
rit

t,
nV

id
ia

Projected Texture Problems

l Precision issues:
l  Occluder very close to light (wide frustum).
l  Projector frustum faces the viewing frustum

(sampling rate needed varies greatly).

Projected Texture Mapping,
Cass Everitt, nVidia

Projective Texture Shadows

l  Texture can easily be projected onto multiple
receivers.

l  Receivers do not need to be planar.
l  Static scenes only or you need to regenerate

textures.
l  A sky layer can however

move its shadow image
with the clouds.

l  No self shadowing.
l  No area light sources (you can blur the texture though

for a fake effect).

Ad-Hoc Shadow Summary

l  A common theme of these methods is that the
occluders and/or receivers were predetermined.

l  For Fake shadows, the occluder was part of the
model. Any receiver rendered before it would be
darkened.

l  For the projection-based techniques, either the
occluder had a priori knowledge of the receiver
(projected occluders) or the receiver had a priori
knowledge of the occluder(s) (projected shadow
textures).

l  The occluder must also be different than the
receiver (no self-shadowing).

