
Chap. 5
Textures

Mestrado em Engenharia Informática - 1º ano, 2º semestre

Overview
n  Objectives"
n  Notion of texture"
n  Motivation"
n  Texture mapping, texture patterns, and texels"
n  Mapping textures to polygons, texture interpolation"
n  Rasterization: texture application modes"
n  Mapping textures to geometric objects"

¨  planar mapping"
¨  cylindrical mapping"
¨  spherical mapping"
¨  box mapping"

n  Wrapping modes"
n  ..."

Objectives

n  Introduce Mapping Methods
¨  Texture Mapping
¨  Environmental Mapping
¨  Bump Mapping
¨  Light Mapping

n  Consider two basic strategies
¨  Manual coordinate specification
¨  Two-stage automated mapping

Notion of Texture
n  A texture is an image with

red, green, blue and alpha
components..."

n  Texture Mapping: a method
to create complexity in an image
without the overhead of building
large geometric models.

Motivation:
(1) adding realism
n  Objects rendered using Phong reflection

model and Gouraud or Phong
interpolated shading often appear rather
‘plastic’ and ‘floating in air’"

n  Texture effects can be added to give
more realistic looking surface
appearance"
¨  Texture mapping"

 Texture mapping uses pattern to be put on
a surface of an object."

¨  Light maps"
 Light maps combine texture and lighting
through a modulation process

¨  Bump mapping"
"Smooth surface is distorted to get variation
of the surface"

¨  Environmental mapping"
"Environmental mapping (reflection maps) –
enables ray-tracing like output"

texture map	

light map	

bump map	

reflection 	

map	

Motivation:
(2) adding surface detail
n  The most obvious solution is not the best"

¨  breaking the scene into smaller and smaller polygons
increases the detail"

¨  But it is very hard to model and very time-consuming to render"
n  Preferred solution is texture mapping "

¨  typically a 2D image ‘painted’ onto objects"
n  Examples:"

¨  Model t-shirt with logo"
n  no need to model the letters and engine with triangles"
n  use large base polygon"
n  color it with the photograph

¨  Subtle wall lighting
n  No need to compute it at every frame"
n  No need to model it with a lot of constant color triangle"
n  Past photograph on large polygon

¨  Non-planar surfaces also work
n  subdivide surface into planar patches"
n  assign photograph subregions to each individual patch"

¨  Examples of modulating color, bumpiness, shininess,
transparency with identical sphere geometry"

④	

①	

①	

②	

②	

③	

③	

④	

Textures: at what point do
things start to looking real?

geometric model	

 geometric model	

+	

shading	

geometric model	

+	

shading	

+	

textures	

n  Surfaces “in the wild” are very complex
n  Cannot model all the fine variations
n  We need to find ways to add surface detail. How?"

Texture mapping, texture
pattern, and texels
n  Developed by Catmull (1974), Blinn and

Newell (1976), and others."
n  Texture mapping: adds surface detail

by mapping texture patterns onto the
surface. "

n  Pattern is repeated. For example, the
texture pattern for the cube aside is the
following: "

n  Texel: short for “texture element”."
n  A texel is a pixel on a texture. For

example, an 128x128 texture has
128x128 texels. On screen this may
result in more or fewer pixels depending
on how far away the object is on which
the texture is used and also on how the
texture is scaled on the object."

Mapping Techniques

¨  Texture Mapping
¨  Environmental Mapping
¨  Bump Mapping
¨  Light Mapping

Texture Mapping
n  Question to address: Which point of the

texture do we use for a given point on
the surface?

n  The texture is simply an image, with a
2D coordinate system (s,t)
¨  Parameterize points in the texture with 2

coordinates: (s,t)
n  Define the mapping from (x,y,z) in world

space to (s,t) in texture space
¨  To find the color in the texture, take an

(x,y,z) point on the surface, map it into
texture space, and use it to look up the
color of the texture

n  With polygons:
¨  Specify (s,t) coordinates at vertices
¨  Interpolate (s,t) for other points based on

given vertices

s

t	

s

t

u

 v

(s,t) = (u,v)

Texture to Surface
Coordinate Mapping
n  The basic problem is how to find the

texture to surface mapping

n  Given a texture position (s,t), what is the
position (x,y,z) on the surface?

n  Appear to need three functions:
¨  x = X(s, t)
¨  y = Y(s, t)
¨  z = Z(s, t)

n  So, there are 2 coordinate systems
involved, the 2D image coordinates (s,t)
and the 2D parameterization coordinates
(u,v) that we assign to the 3D object

n  Texture coordinates (s,t)
¨  Used to identify points in the texture

 image
n  Parametric coordinates (u,v)

¨  Used to map the 3D surface with 2D
parameters

s

t
(x,y,z)

How to set
(u,v) parametric coordinates?

n  Set the coordinates manually
¨  Set the texture coordinates for each vertex ourselves

n  Automatically compute the coordinates

¨  Use an algorithm that sets the texture coordinates for us

Manually specifying the
coordinates
n  We can manually specify the texture coordinates at each vertex

(0,0)
texture 2D polygon textured polygon

+ = (1,1)

(0,0)

(1,1)

n  We can chose alternate texture coordinates

(0,0)
texture 2D polygon textured polygon

+ = (1,1)

(0,0)

(1,0.5)

Mapping Texture to Polygons
n  For polygon texture mapping,

we explicitly define the (u,v)
coordinates of the polygon
vertices

n  That is, we pin the texture at
the vertices

n  We interpolate within the
triangle at the time of scan
converting into screen space

u	

v	

…
glTexCoord2f(0.5, 0.5);
glVertex3fv (10.2,3.4,4.5);
…

Texture Interpolation
n  Interpolation is done during

scan conversion, similar as
is done for Gouraud
interpolated shading

n  But rather than interpolate
to get RGB values, we get
(u,v) values which point to
elements of texture map.

n  Thus, texture mapping is
done in canonical screen
space as the polygon is
rasterized

n  When describing a scene,
you assume that texture
interpolation will be done in
world space

(x1, y1), (u1, v1) (x2, y2), (u2, v2)

(x3, y3), (u3, v3)

R
LR

L
L

LR

L s
xx
xxs

xx
xxs !!

"

#
$$
%

&

−
−

+!!
"

#
$$
%

&

−
−

−= 1

€

sR = 1− y − y1
y3 − y1

$
%

&

'
(u1 +

y − y1
y3 − y1

$
%

&

'
(u3

€

sL = 1− y − y2
y3 − y2

$
%

&

'
(u2 +

y − y2
y3 − y2

$
%

&

'
(u3

Rasterization:
Texture Application Modes
n  After a texture value is retrieved (may

be further transformed), the resulting
values are used to modify one or
more polygon/surface attributes

n  Called combine functions or
texture blending operations:
¨  replace: replace surface color with

texture color
¨  decal: replace surface color with

texture color, blend the color with
underlying color with an alpha texture
value, but the alpha component in
the framebuffer is not modified

¨  modulate: multiply the surface color
by the texture color (shaded +
textured surface). Need this for
multitexturing (i.e., lightmaps).

¨  blend: similar to modulation but add
alpha-blending

Texture	

 Polygon	

 Mapped Texture	

Texture	

 Polygon	

 Mapped Texture	

REPLACE operation

MODULATE operation

Texture Mapping Issues
n  What should happen when we zoom in close or zoom out far away?

n  How do we generate texture coordinates?

n  What happens if we use texture coordinates less than zero or

greater than one?

n  Are texture maps only for putting color on objects?

Texture to Surface Mapping
n  Texture map to surface takes place

during rendering.
n  Similar to smooth shading method:

¨  Triangle rasterized
¨  Each pixel mapped back to the texture
¨  Use known values at vertices to

interpolation over the texture

n  Each pixel is associated with small
region of surface and to a small area
of texture.

n  There are 3 possibilites for
association:
1.  one texel to one pixel (rare)
2.  Magnification: one texel to many pixels
3.  Minification: many texels to one pixel

Magnification

Minification

Texture to Surface Mapping
Zoom In: Magnification Filter
n  Pixel maps to a small portion of one texel
n  Results in many pixels mapping to same texel
n  Without a filtering method, aliasing is common
n  Magnification filter: smooths transition between pixels

Magnification

many pixels correspond to one texel
à “blockiness” / jaggies / aliasing

solution: apply averaging
(magnification filter)

Texture to Surface Mapping
Zoom Out: Minification Filter
n  One pixel maps to many texels
n  Common with perspective foreshortening

Minification

Perspective foreshortening
and poor texture mapping
causes checkerboard to
deform

Mipmaps improve the
mapping, returning more
form to the checkerboard

Texture to Surface Mapping
Better Min Filter: Mipmaps
n  “mip” stands for multum in parvo, or “many things in a small place”
n  Basic idea: Create many textures of decreasing size and use one of

these subtextures when appropriate
n  Pre-filter textures = mipmaps

Minification

Texture to Surface Mapping
Mipmaps: Storage Optimization
n  Must provide all sizes of

texture from input to 1x1
in powers of 2

Filtering in Summary
n  Zoom-in calls for mag filter

n  Zoom-out calls for min filter

n  More advanced filters require more time/computation but produce

better results

n  Mipmapping is an advanced min filter

n  Caution: requesting mipmapping without pre-defining mipmaps will
turn off texturing; (see Filtering in OpenGL)

Wrapping Modes
n  Can assign texture coords outside of

[0,1] and have them either clamp or
repeat the texture map

n  Wrapping modes:
¨  repeat: start entire texture over

n  Repeat Issue: making the texture borders
match-up

¨  mirror: flip copy of texture in each
direction

n  get continuity of pattern

¨  clamp to edge: extend texture edge
pixels

¨  clamp to border: surround with border
color

courtesy of Microsoft

(0, 0) (3, 0)

(3, 3) (3, 0)

REPEAT

MIRROR

CLAMP
TO EDGE

CLAMP TO
BORDER

Wrapping modes:
Repetitive texture tiling
n  A texture can also be repeatedly tiled across the surface by repeating the

(s,t) parameterization over the surface

n  But, best results are obtained when the texture is seamlessly tilable
¨  This means that the right side of the texture joins seamlessly with the left side

(same with the bottom and top)

n  Seams will appear for most textures when tiled:

n  But, we can edit or re-synthesize textures to be seamlessly repeatable (this is
another topic onto itself):

Texturing in OpenGL

n  Procedure"
n  Example"

Texturing in OpenGL

n  Procedure: Texture Mapping"

¨  uploading of the texture to the video memory"
¨  set up texture parameters"
¨  enable texturing"
¨  the application of the texture onto geometry"

Texturing in OpenGL:
main steps
1.  Create texture and load with

n  glTexImage()
n  Three methods:

¨  read in an image in a jpg, bmp, ... File
¨  generate the texture yourself within application
¨  copy image from color buffer

2.  define texture parameters as to how texture is applied
n  glTexParameter*()
n  wrapping, filtering, etc

3.  enable texturing
n  glEnable(GL_TEXTURE_*D)

4.  assign texture coordinates to vertices
n  the mapping function is left up to you
n  glTexCoord*(s,t);
n  glVertex*(x,y,z);

Step 1: Specifying Texturing
Image
n  Define a texture image as an array of texels

(texture elements) in CPU memory:

 Glubyte myTexture[width][height][3];

n  Each RGB value is specified to be an unsigned
byte, between 0 and 255

n  For example, a blue color would be (0, 0, 255)

Warning:
this [3]
seems to be
missing in
the
textbook

Step 1: Defining an Image as a
Texture
n  Call glTexImage2D. It uploads the texture to the video memory where it will be ready for

us to use in our programs.

n  void glTexImage2D(target,level,components,w,h,border,format,type,texture);
"Parameters:

¨  target : type of texture, e.g. GL_TEXTURE_2D
¨  level : used for mipmapping = 0 (discussed later)
¨  components : elements per texel (for RGB)
¨  w, h : width and height of texture in pixels
¨  border : used for smoothing = 0 (don’t worry about this)
¨  format : texel format e.g. GL_RGB
¨  type : rgb component format e.g. GL_UNSIGNED_BYTE
¨  texture : pointer to the texture array

n  Example, set the current texture:

 glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, texture);

Step 1 (alternative):
Generating a Random Texture
n  Here is a function for a random texture:
 GLubyte texture[64][64][3];
 int u, v;

 for(u=0; u<64; u++)
 {
 for(v=0; v<64; v++)
 {
 texture[u][v][0] = (GLubyte)(255 * rand()/RAND_MAX);
 texture[u][v][1] = (GLubyte)(255 * rand()/RAND_MAX);
 texture[u][v][2] = (GLubyte)(255 * rand()/RAND_MAX);
 }
 }

Step 2:
Specifying Texture Parameters
n  OpenGL has a variety of parameters that determine how textures are

applied:
¨  Wrapping parameters determine what happens if s and t are outside the

(0,1) range
¨  Filter modes allow us to use area averaging instead of point samples
¨  Mipmapping allows us to use textures at multiple resolutions

n  The glTexParameter() function is a crucial part of OpenGL texture
mapping, this function determines the behavior and appearance of
textures when they are rendered.

n  Take note that each texture uploaded can have its own separate
properties, texture properties are not global.

Step 2:
glTexParameter()

Texture Paramete r Accepted value s Descripti o n

GL_TEXTURE_MIN_FILTER

GL_NEAREST , GL_LINEAR,
GL_NEAREST_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR and
GL_LINEAR_MIPMAP_LINEAR

The texture minification function is used
when a single screen pixel maps to
more than one texel, this means the
texture must be shrunk in size.

Default setting is
GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTE R GL_NEAREST or GL_LINE A R

The texture magnification function is
used when the pixel being textured
maps to an area less than or equal to
one texel, this means the texture must
be magnified.

Default setting is GL_LINE A R .

GL_TEXTURE_WRAP_ S GL_CLAMP or GL_REPEAT

Sets the wrap parameter for the s
texture coordinate. Can be set to either
GL_CLAMP or GL_REPEAT.

Default setting is GL_REPEAT.

GL_TEXTURE_WRAP_T GL_CLAMP or GL_REPEAT

Sets the wrap parameter for the t
texture coordinate. Can be set to either
GL_CLAMP or GL_REPEAT.

Default setting is GL_REPEAT.

GL_TEXTURE_BORDER_COL O R Any four values in the [0, 1] range

Sets the border color for the texture, if
border is present.

Default setting is (0, 0, 0, 0) .

GL_TEXTURE_PRIORITY [0, 1]

Specifies the residence priority of the
texture, use to prevent OpenGL from
swapping textures out of video memory.
Can be set to values in the [0, 1] range.
See glPrioritizeTextures() for more
information or this article on
Gamasutra.

Target Specifies the target textur e
GL_TEXTURE_1 D One dimensional texturing.
GL_TEXTURE_2 D Two dimensional texturing.

Step 2:
glTexParameter()

Parameter Value Description
GL_CLAMP Clamps the texture coordinate in the [0,1] range.

GL_REPEAT

Ignores the integer portion of the texture coordinate, only the
fractional part is used, which creates a repeating pattern. A
texture coordinate of 3.0 would cause the texture to tile 3 times
when rendered .

GL_NEAREST

Returns the value of the texture element that is nearest (in
Manhattan distance) to the center of the pixel being textured.
Use this parameter if you would like your texture to appear
sharp when rendered .

GL_LIN E A R

Returns the weighted average of the four texture elements that
are closest to the center of the pixel being textured. These can
include border texture elements, depending on the values of
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on
the exact mapping. Use this parameter if you would like your
texture to appear blurred when rendered .

GL_NEAREST_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the
pixel being textured and uses the GL_NEAREST criterion (the
texture element nearest to the center of the pixel) to produce a
texture value.

GL_LINEAR_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the
pixel being textured and uses the GL_LINEAR criterion (a
weighted average of the four texture elements that are closest
to the center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LIN E A R

Chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the GL_NEAREST criterion
(the texture element nearest to the center of the pixel) to
produce a texture value from each mipmap. The final texture
value is a weighted average of those two values.

GL_LINEAR_MIPMAP_LIN E A R

Chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the GL_LINEAR criterion (a
weighted average of the four texture elements that are closest
to the center of the pixel) to produce a texture value from each
mipmap. The final texture value is a weighted average of those
two values.

Step 2:
Wrapping Modes
n  Clamping : if s,t > 1 use color at 1, if s,t < 0 use color at 0

¨  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

n  Repeating : use s,t modulo 1
¨  glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

texture
s

t

Wrap S : GL_REPEAT
Wrap T : GL_REPEAT

Wrap S : GL_REPEAT
Wrap T : GL_CLAMP

Wrap S : GL_CLAMP
Wrap T : GL_REPEAT

Wrap S : GL_CLAMP
Wrap T : GL_CLAMP

Step 2:
Filter Modes
n  Minification and magnification

Step 2:
Mipmapping
n  …

Step 3: Enable Texturing
n  To enable/disable just call:

¨  glEnable(GL_TEXTURE_2D)
¨  glDisable(GL_TEXTURE_2D);

n  What does texture mapping affect?
¨  the current shading color of a pixel (after lighting) is multiplied by the

corresponding texture color

n  So, if the object is a near white color (0.8, 0.8, 0.8) at some point and the
current texture color at that point is red (1, 0, 0), then when multiplied, it
produces (0.8, 0, 0)

Step 4:
Mapping a Texture
n  Assign the texture coordinates
n  glTexCoord*() is specified at each vertex

s

t
1, 1

0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b

c

Texture Space Object Space

Step 4:
Mapping a Texture: example
n  How to texture a quad? The following code assumes that texturing has been enabled

and that there has been a texture uploaded with the id of 13. "

glBindTexture (GL_TEXTURE_2D, 13);!
 !
glBegin (GL_QUADS); !

glTexCoord2f (0.0, 0.0); glVertex3f (0.0, 0.0, 0.0); !

glTexCoord2f (1.0, 0.0); glVertex3f (10.0, 0.0, 0.0); !
glTexCoord2f (1.0, 1.0); glVertex3f (10.0, 10.0, 0.0);!
glTexCoord2f (0.0, 1.0); glVertex3f (0.0, 10.0, 0.0); !

glEnd (); "

(0.0f,0.0f)	

 (1.0f,0.0f)	

(1.0f,1.0f)	

(0.0f,1.0f)	

texture coordinates	

Texturing Mapping in OpenGL:
summing up
n  We have seen how a 2D texture image can be mapped to an object, at

the rendering stage
¨  for a polygon, we pin texture to vertices and interpolate (correctly!) at scan

conversion time

n  The texture value is used to modify the colour that would otherwise be
drawn
¨  options include replacing completely, or modulating (e.g. by multiplying

shaded value with texture value)

What about complex 3D
objects?
n  It is easy to set texture coordinate for a single 2D

polygon, but can be difficult to set the texture
coordinates for complex 3D regions or objects.

n  Besides:
¨  in rendering based on pixel-to-pixel approach, the

inverse mapping from screen coordinates to texture
coordinates is needed

¨  because of shading, mapping areas-to-areas and not
point-to-point is required, which causes antialising
problems, moire patterns etc.

n  Two-Stage Mapping: An automatic solution to the
mapping problem is to first map the texture to a
simple intermediate surface then map the simple
intermediate surface to the target surface

Automatic: cylindrical mapping
n  Example: first map to a cylinder
n  Like wrapping a label around a can of soup

n  Convert rectangular coordinates (x, y, z) to cylindrical (r, , h), use only (h, µ) to index
texture image

h

u

v

Automatic: cylindrical mapping
n  Example: first map to a cylinder
n  Like wrapping a label around a can of

soup

n  Convert rectangular coordinates (x, y, z) to
cylindrical (r, θ, h), use only (h, θ) to index
texture image

n  Parametric cylinder:
x = r cos (2π u)
y = v/h
z = r sin (2π u)

n  Maps rectangle in u, v space to cylinder
of radius r and height h in world
coordinates:

s = u
t = v

h

u

v

Automatic: spherical mapping
n  Example: first map to a sphere

n  Convert rectangular coordinates (x,y,z)
to spherical (θ,φ)

n  Parametric sphere:
x = r cos (2π u)
y = r sin (2π u) cos (2π v)
z = r sin (2π u) sin (2π v)

n  For example: paste a world map onto a
sphere to model the earth. But in the
case of the sphere there is distortion at
the poles (north and south)

Automatic: box mapping
n  Example: first map to a box

Automatic: stage-two mapping
n  Now, we still need to map from an intermediate object (sphere, cylinder, or box) to the

target object
1.  Intersect the normals from intermediate surface to target surface
2.  Intersect the normals from target surface to intermediate surface
3.  Intersect vectors from center of target surface to intermediate

Mapping Techniques

¨  Texture Mapping
¨  Environmental Mapping
¨  Bump Mapping
¨  Light Mapping

Environmental Maps
n  Use texture to represent reflected

color
¨  Texture indexed by reflection

vector
¨  Approximation works when

objects are far away from the
reflective object

n  Environment mapping produces
reflections on shiny objects

n  Texture is transferred in the
direction of the reflected ray from
the environment map onto the
object

n  Reflected ray: R=2(N·V)N-V
n  What is in the map? spherical map	

Approximations Made
n  The map should contain a view

of the world with the point of
interest on the object as the eye
¨  We can’t store a separate map

for each point, so one map is
used with the eye at the center of
the object

¨  Introduces distortions in the
reflection, but the eye doesn’t
notice

¨  Distortions are minimized for a
small object in a large room

n  The object will not reflect itself
n  The mapping can be computed

at each pixel, or only at the
vertices

cubic map	

Types of Environment Maps
n  The environment map may take one of

several forms:
¨  Cubic mapping

n  Easy to produce with rendering system
n  Possible to produce from phtographs
n  “uniform” resolution
n  Simple texture coordinates calculation

¨  Spherical mapping (two variants)
n  Spatially variant resolution

¨  Parabolic mapping
n  Describes the shape of the surface on

which the map “resides”
n  Determines how the map is generated

and how it is indexed
n  What are some of the issues in

choosing the map?

cubic map	

spherical maps	

Mapping Techniques

¨  Texture Mapping
¨  Environmental Mapping
¨  Bump Mapping
¨  Light Mapping

Bump Mapping
n  This is another texturing

technique
n  Aims to simulate a dimpled or

wrinkled surface
¨  for example, surface of an

orange
n  Like Gouraud and Phong

shading, it is a trick
¨  surface stays the same
¨  but the true normal is

perturbed, or jittered, to give
the illusion of surface
‘bumps’

Bump Mapping:
how does it work?
n  To create a bump-like effect, we

use texture to perturb normals
n  Many textures are the result of

small perturbations in the
surface geometry

n  Modeling these changes would
result in an explosion in the
number of geometric primitives.

n  Bump mapping attempts to alter
the lighting across a polygon to
provide the illusion of texture.

n  We can model this as deviations
from some base surface.

n  The question is then how these
deviations change the lighting.

N

N´

S(u,v) + B(u,v) = S’(u,v)	

original 	

surface	

bumped 	

surface	

bump 	

map	

Idea: small normal deviations

where B=f(u,v) is a height field defined
as a 2D function over S

Bump Mapping:
step 1 and 2
n  Step 1: Putting everything into

the same coordinate frame as
B(u,v).
¨  x(u,v), y(u,v), z(u,v) – this is given

for parametric surfaces, but easy
to derive for other analytical
surfaces.

¨  Or S(u,v)
n  Step 2: Define the tangent plane

to the surface at a point (u,v) by
using the two vectors Su and Sv.
¨  The normal is then given by:

N = Su × Sv

N

Su

Sv

Bump Mapping:
step 3, 4, and 5
n  Step 3: The new surface positions are then given by:

¨  S’(u,v) = S(u,v) + B(u,v) N
¨  where, N = N / |N|

n  Step 4: Differentiating leads to:
¨  S’u = Su + Bu N + B(N)u ≈ S’u = Su + Bu N
¨  S’v = Sv + Bv N + B(N)v ≈ S’v = Sv + Bv N

 since B is small, as it is the case because it is a small height perturbation.

n  Step 5: This leads to a new normal:
¨  N´(u,v) = Su × Sv - Bu(N × Sv) + Bv(N × Su) + Bu Bv(N × N)

¨  = N - Bu(N × Sv) + Bv(N × Su)
¨  = N + D

N

Su

Sv N´

D

n  For efficiency, can store Bu and Bv in a 2-component texture map:
- This is commonly called an offset vector map;
- It is oriented in tangent space, not object space.

n  The cross products are geometry terms only.
n  N´ will of course need to be normalized after the calculation and before lighting.This

floating point square root and division makes it difficult to embed into hardware.

Mapping Techniques

¨  Texture Mapping
¨  Environmental Mapping
¨  Bump Mapping
¨  Light Mapping

Light Mapping
n  Gouraud shading is established

technique for rendering but has
well known limitations
¨  Vertex lighting only works well for

small polygons…
¨  … but we don’t want lots of

polygons!
n  Solution is to pre-compute some

canonical light effects as texture
maps

n  For example…
n  Suppose we want to show effect

of a wall light
¨  Create wall as a single polygon
¨  Apply vertex lighting
¨  Apply texture map
¨  In a second rendering pass, apply

light map to the wall

=	

×	

×	

 =	

reflectance	

 irradiance	

 radiosity	

Light Mapping
n  Widely used in games industry
n  Latest graphics cards will allow

multiple texture maps per pixel

