
Ray Casting

Computação Interactiva e em GPU
Interactive and GPU Computing

 11494: Mestrado em Engenharia Informática

Chap. 2 — Ray Casting	

Chapter 2: Ray Casting	

Outline	

…:	

–  Parametric and implicit objects: a reminder.	

–  Implicit surfaces	

–  Ray casting: the basic idea	

–  Constructing rays through pixels	

–  Finding intersection points between rays and objects	

–  Pixel color computation: Lambertian model reminder	

Chapter 2: Ray Casting	
Parametric and implicit objects: ���
a short reminder	

parametric circle	
 implicit circle	

€

x = rcosθ
y = rsinθ

$
%

€

f (x,y) = x 2 + y 2 − r2 = 0
f (x,y) < 0 (inside)
f (x,y) > 0 (outside)

Chapter 2: Ray Casting	

IMPLICIT SURFACES	

Chapter 2: Ray Casting	

Implicit surfaces	

Definition:	

–  An implicit surface is a zero set of a function: 	
	

–  Example: the radius-r sphere	

Other designations: 	

–  Isosurface / Level set	

Unit surface normal:	

–  It is the normalized gradient vector	

Advantages:	

–  The entire surface is represented by a single function.	

–  We can perform interesting operations with this function.	

–  Example: adding multiple surface functions together	

€

f (x,y,z) = x 2 + y 2 + z2 − r2 = 0

€

f (x,y,z) = 0

€

n =
∇f
∇f

where ∇f =

∂f
∂x
∂f
∂y
∂f
∂z

$

%

&
&
&
&
&
&

'

(

)
)
)
)
)
)

Chapter 2: Ray Casting	

Implicit as solids	

Representation of solids:	

–  Implicit functions represent important classes of solids, which are not necessarily
bounded.	

–  Example:	

§  Ellipsoid: is a closed, manifold surface that encloses a solid.	

–  The surface of such a solid is said to be its boundary, which separates the interior
from the exterior of the solid.	

Chapter 2: Ray Casting	

Quadric surfaces	

Definition:	

–  Every quadric surface is defined by the 2nd degree polynomial:	

	

	

Matrix form:	

	

€

f (x,y,z) = Ax 2 + 2Bxy + 2Cxz + 2Dx + Ey 2 + 2Fyz + 2Gy +Hz2 + 2Iz + J = 0

€

f (x,y,z) = vTMv = x y z 1[]

A B C D
B E F G
C F H I
D G I J

"

$
$
$
$

%

&

'
'
'
'

x
y
z
1

"

$
$
$
$

%

&

'
'
'
'

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/Q

ua
dr

ic
	

They are a particular case of implicit surfaces.	

Chapter 2: Ray Casting	

Gaussian blob surfaces	

Definition:	

–  A Gaussian blob surface is defined by summing up Gaussian functions for a given
threshold T, each one of which is associated to a point (e.g., center of an atom) in
3D space	

–  with 	

€

f (x,y,z) = f i
i=1

N

∑ −T = 0

They are another particular case of implicit surfaces.	

€

N =1

€

N = 2

€

N = 3

€

fi(x,y,z) = ae
−
(x−x0)

2

2σ x
2 +

(y−y0)
2

2σ y
2 +

(z−z0)
2

2σ z
2

$

%
&
&

'

(
)
)

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/G

au
ss

ia
n_

fu
nc

tio
n	

Chapter 2: Ray Casting	

RAY CASTING	

Chapter 2: Ray Casting	

Ray casting	

Key idea:	

–  The idea behind ray casting is to shoot rays from the eye, one per pixel, and find
the closest object blocking the path of that ray.	

–  The color of each pixel on the view plane depends on the radiance emanating from
visible surfaces.	

Algorithm:	

–  For each pixel	

§  Calculate ray from viewer point through pixel	

§  Find intersection points with scene objects (e.g., a sphere)	

§  Calculate the color at the intersection point near to viewer (e.g., Phong illumination
model)	

ht
tp

://
en

.w
ik

ip
ed

ia
.o

rg
/w

ik
i/R

ay
_t

ra
ci

ng
_(

gr
ap

hi
cs

)	

Arthur Appel (1968). Some techniques for shading machine
rendering of solids. AFIPS Conference Proc. 32, pp. 37-45.	

Chapter 2: Ray Casting	

Step 1: Constructing a ray through each pixel	

Equation of the ray passing through a pixel:	

where:	

–  o is the camera (eye) position;	

–  v is the vector that stands for the direction of
the ray starting at o and passing through pixel
(i,j):	

	
where x is the float-point location of the
window corresponding to the pixel (i,j) of a
discrete view screen (in the view plane) of
resolution (W,H):	

	

ht
tp

://
w

w
w

.u
nk

no
w

nr
oa

d.
co

m
/r

tf
m

/g
ra

ph
ic

s/
rt

_e
ye

ra
ys

.h
tm

l	

€

x(t) = o + tv

€

v =
x − o
x − o

€

x[i, j]

Chapter 2: Ray Casting	
Step 1: Constructing a ray through each pixel ���
(cont’d)	

Side view of camera at o: 	

–  Position of the i-th pixel x[i]?	

–  Let us first agree that:	

–  Also:	

	

	

ht
tp

://
w

w
w

.u
nk

no
w

nr
oa

d.
co

m
/r

tf
m

/g
ra

ph
ic

s/
rt

_e
ye

ra
ys

.h
tm

l	

€

P0 =
! o + d

!
l - d tan(θ)! u

€

!
l : look vector

€

! u : up vector

€

H : discrete height of screen (in pixels)

€

d : distance to screen

€

θ : field of view (FOV) or frustum halfangle

€

! o : origin of camera (pinhole)

€

P1 =
! o + d

!
l +d tan(θ)! u

x[i]= i+0.5
H

(P1 −P0)

so

x[i]= i+0.5
H

h!u

€

h : height of screen

€

h = 2d tan(θ)

h	

d	

€

!
l

€

! u

€

θ

€

P1

€

P0

€

! o

€

x[i]

Chapter 2: Ray Casting	
Step 1: Constructing a ray through each pixel ���
(cont’d)	

Top view of camera at o: 	

–  Position of the j-th pixel x[j]?	

–  Analogously, we have:	

	

ht
tp

://
w

w
w

.u
nk

no
w

nr
oa

d.
co

m
/r

tf
m

/g
ra

ph
ic

s/
rt

_e
ye

ra
ys

.h
tm

l	

€

!
l : look vector

w	

d	

€

!
l

€

! v

€

φ

€

Q1

€

Q0

€

! u : up/side vector

€

W : discrete width of screen (in pixels)

€

d : distance to screen

€

φ : field of view (FOV) or frustum halfangle

€

! o : origin of camera (pinhole)

€

! o
x[j]= j+0.5

W
w!v

€

w : width of screen

€

x[j]

Chapter 2: Ray Casting	
Step 1: Constructing a ray through each pixel ���
(cont’d)	

In conclusion:	

–  The equation of the ray through each
pixel (i,j) is given by:	

	

ht
tp

://
w

w
w

.u
nk

no
w

nr
oa

d.
co

m
/r

tf
m

/g
ra

ph
ic

s/
rt

_e
ye

ra
ys

.h
tm

l	

€

x[i, j] =
! o +

i +0.5
H

h! u +
j +0.5

W
w! v

w	

d	

€

!
l

€

! v

€

φ

€

Q1

€

Q0

€

! o

€

x[j]

h	

d	

€

!
l

€

! u

€

θ

€

P1

€

P0

€

! o

€

x[i]

Chapter 2: Ray Casting	
Step 2: Finding intersection points ���
between rays and implicitly-defined objects	

General algorithm:	

–  Given the equation of the ray:	

–  Given a surface in implicit form f(x,y,z)=0:	

§  Plane 	

§  Sphere	

§  Cylinder	

	

–  We know that all points on the surface satisfy f(x,y,z)=0.	

–  Therefore, for a ray x(t) to intersect the surface, we have to solve:	

	

	

f (x) = ax + by+ cz+ d = n•x+d = 0, with n = (a,b,c) and x = (x, y, z)

€

f (x) = x 2 + y 2 + z2 −1 = 0
f (x) = x2 + y2 −1= 0 and 0 < z <1

ht
tp

://
w

w
w

.r
ea

lti
m

er
en

de
ri

ng
.c

om
/in

t/
	

€

x(t) = o + tv

€

f (x(t)) = f (o + tv) = 0

Chapter 2: Ray Casting	

Ray-plane intersection	

Algorithm:	

–  Given the equation of a generic ray:	

–  Given the equation of the plane:	

 where	

§  n is the normal to the plane 	

§  d is the distance of the plane from the origin	

–  Substituting and solving for t, we obtain:	

 	
 	
 	
 	
 	
 	
 	
 or	

 so, the ray hits the plane at	

	

€

x(t) = x0 + tv

€

f (x) = ax + by + cz + d = n • x + d = 0

€

f (x(t)) = f (x0 + tv) = 0

€

f (x(t)) = n • (x0 + tv) + d = 0

€

t =
−(n • x0 + d)
n • v

Chapter 2: Ray Casting	

Ray-triangle intersection	

Algorithm:	

–  Given the equation of a generic ray:	

–  Given the equation:	

 that expresses x in barycentric coordinates (u,v) as a point in a triangle with vertices
x0, x1, x2	

–  If the intersection point belongs to both ray line and triangle, we have:	

 	
 	
 	
 	
 	
 	
 	
 	

–  Thus, solve the previous equation system for (t,u,v) in terms of (x,y,z). 	

	

€

x(t) = o + tv

€

x = (1− u − v)x0 + ux1 + vx2 u,v ≥ 0, u + v ≤1

Tomas Möller and Ben Trumbore, “Fast, minimum storage ray-
triangle intersection”, Journal of Graphics Tools, 2(1):21-28, 1997	

€

x(t) = o + tv = (1− u − v)x0 + ux1 + vx2

ht
tp

://
w

w
w

.li
gh

th
ou

se
3d

.c
om

/o
pe

ng
l/m

at
hs

/in
de

x.
ph

p?
ra

yt
ri

in
t	

Chapter 2: Ray Casting	

Testing ray-triangle intersection	

• R. J. Segura, F. R. Feito,”Algorithms to test Ray-
triangle Intersection Comparative Study”, WSCG
2001.	

Chapter 2: Ray Casting	

Ray-sphere intersection	

Algorithm:	

–  Implicit form of sphere given center (a,b,c) and radius r:	

–  Intersection with the ray x(t)=o+tv gives:	

–  Taking into account the identity	

§  the intersection is a quadratic equation in t:	

–  Solving for t: 	

§  Real solutions indicate one point (tangent point) or two intersection points	

§  Negative solutions are behind the eye	

§  If discriminant is negative, the ray misses the sphere	

€

x − c 2
= r2 x = (x,y,z), c = (a,b,c)

€

o + tv − c 2
= r2

€

a +b 2
= a 2

+ b 2
+ 2(a • b)

€

o + tv − c 2
− r 2 = t 2 v 2

+ 2tv • (o − c) + (o − c 2
− r2)

€

t =
−v • (o − c) ± (v • (o − c))2 − v 2(o − c 2

−r2)
v 2

Chapter 2: Ray Casting	

Pixel color computation	

Two major possibilities:	

–  The Lambertian/Phong illumination model of OpenGL.	

§  It does not require implementation because it already comes with OpenGL.	

–  The Lambertian/Phong illumination output to a pixel matrix of some image file
format (e.g., TGA)	

§  It requires implementation. 	

Chapter 2: Ray Casting	
Pixel color computation: ���
diffuse light	

Lambertian model for diffuse light:	

–  Specify how material reflects light:	

–  Bind material to each object in a scene 	

–  Calculates the Lambert coefficient at
each hit point of the object surface.	

–  Calculates the color at each hit point of
the object surface:	

// list of materials !
Material!
{!
 Id = 0;!
 Diffuse = 1.0, 1.0, 0.0;!
 Reflection = 0.5;!
}!

// list of objects!
Sphere!
{!
 Center = 20.0, 20.0, 0.0;!
 Radius = 9.0;!
 Material.Id = 0;!
}!

// list of lights!
Light!
{!
 Position = 0.0, 240.0, -100.0; !
 Intensity = 1.0, 1.0, 1.0 ;!
}!

!
L

!
N

P object surface

θ!

€

ID = KD (
!
N •
!
L)I

// calculates the Lambert coefficient!
float K = KD * (N�L); !
// calculates the RGB color!
red += K * Light.red * Material.red; !
green += K * Light.green * Material.green; !
blue += K * Light.blue * Material.blue;!

Reflection coefficient	

Light vector	

Normal vector	

Chapter 2: Ray Casting	

Ray casting algorithm: review	

Algorithm:	

–  Define the objects and light sources in the scene	

–  Set up the camera	

–  for (int i=0; i<nRows; i++)!

–  for (int j=0; j<nCols; j++)!

1.  Build the (i,j)th ray	

2.  Find intersections of the (i,j)th ray with the objects in the scene	

3.  Identify the intersection that lies closest to, and in front of, the eye	

4.  Compute the hit point where the ray hits this object, and the normal at that point 	

5.  Find the color of the light returning to the eye along the ray from the hit point	

6.  Place the color at the (i,j)th pixel	

Co
ur

te
sy

 F
.S

. H
ill,

 “
Co

m
pu

te
r

G
ra

ph
ic

s
us

in
g

O
pe

nG
L”
	

Chapter 2: Ray Casting	

Summary:	

…:	

–  Parametric and implicit objects: a reminder.	

–  Implicit surfaces	

–  Ray casting: the basic idea	

–  Constructing rays through pixels	

–  Finding intersection points between rays and objects	

–  Pixel color computation: Lambertian model reminder	

