Computacao Interactiva e em GPU
Interactive and GPU Computing

11494: Mestrado em Engenharia Informatica

0041.000010L00L01.00 0100100101014 0000211101000 0%00L11%010000L00104%10L0010

1011010010101 4000

|DL¢DLULD%MMMDL%DLDD%DLDUL 111010010

Chap. 2 — Ray Casting

Chapter 2: Ray Casting

Outline

— Parametric and implicit objects: a reminder.

— Implicit surfaces

— Ray casting: the basic idea

— Constructing rays through pixels

— Finding intersection points between rays and objects

— Pixel color computation: Lambertian model reminder

Parametric and implicit objects: Chapter 2: Ray Casting

a short reminder

parametric circle implicit circle

fxy)=x>+y>=r* =0
f(x,y) <0 (inside)
f(x,y)>0 (outside)

{x = rcos6

y =rsinf

Chapter 2: Ray Casting

IMPLICIT SURFACES

Chapter 2: Ray Casting
Implicit surfaces

Definition:

— An implicit surface is a zero set of a function: f(x,y,z) =0

— Example: the radius-r sphere fxy)=x>+y*+z°-r’ =0
Other designations:

— Isosurface / Level set

s

Unit surface normal: o
- V

— It is the normalized gradient vector n= m where Vf = %

Advantages: 9

| 07 |

— The entire surface is represented by a single function.
— We can perform interesting operations with this function.

— Example: adding multiple surface functions together

Chapter 2: Ray Casting
Implicit as solids

Representation of solids:

— Implicit functions represent important classes of solids, which are not necessarily
bounded.

— Example:

" Ellipsoid: is a closed, manifold surface that encloses a solid.

— The surface of such a solid is said to be its boundary, which separates the interior
from the exterior of the solid.

Chapter 2: Ray Casting
Quadric surfaces

They are a particular case of implicit surfaces.

Definition:

— Every quadric surface is defined by the 2" degree polynomial:
f(x,y,2) = Ax* +2Bxy + 2Cxz+2Dx + Ey* +2Fyz+2Gy + HZ* + 21z +J =0
(A

Matrix form: f(x,y,z)=VTMV=[x y z 1]

Q ™ &b =
~ T T O
I&NQ@I

B
C
D

]
Y
Z
1-

az b?

http://en.wikipedia.org/wiki/Quadric

Chapter 2: Ray Casting

R Gaussian blob surfaces

They are another particular case of implicit surfaces.

Definition:

— A Gaussian blob surface is defined by summing up Gaussian functions for a given
threshold T, each one of which is associated to a point (e.g., center of an atom) in
3D space

2 2 2
| &e=x0) +(y—yg) +(z—z(;)

2

- f(x,y,Z) = Ef, -T=0 with f,-(x,y,z) = qae

http://en.wikipedia.org/wiki/Gaussian_function

Chapter 2: Ray Casting

RAY CASTING

Chapter 2: Ray Casting

8 Light Source

, 4
Viaw Ray // Shadow Ray

Ray casting

Arthur Appel (1968). Some techniques for shading machine
rendering of solids. AFIPS Conference Proc. 32, pp. 37-45.

Scene Object

Key idea:

— The idea behind ray casting is to shoot rays from the eye, one per pixel, and find
the closest object blocking the path of that ray.

— The color of each pixel on the view plane depends on the radiance emanating from
visible surfaces.

Algorithm:

— For each pixel

= Calculate ray from viewer point through pixel
* Find intersection points with scene objects (e.g., a sphere)

= Calculate the color at the intersection point near to viewer (e.g., Phong illumination
model)

http://en.wikipedia.org/wiki/Ray_tracing_(graphics)

Equation of the ray passing through a pixel:

X()=0+1v
X-0

Ve — —
[x -

b

camera position
(0,0,0)

Chapter 2: Ray Casting

view plane
(0,0,-1)

http://www.unknownroad.com/rtfm/graphics/rt_eyerays.html

Side view of camera at o:

P, =6+dI - dtan(6)ii
P =6+dIl +dtan(8)ii

h =2dtan(0)

x[i]= 1+0.5

(P -F)

SO

i+0.5

x[i]= hu

Chapter 2: Ray Casting

http://www.unknownroad.com/rtfm/graphics/rt_eyerays.html

—
A 1Y
(S
O
T 17T 1T T

0

: origin of camera (pinhole)

: look vector

: up vector

. discrete height of screen (in pixels)
. height of screen

: distance to screen

: field of view (FOV) or frustum halfangle

Chapter 2: Ray Casting

Step |: Constructing a ray through each pixel

http://www.unknownroad.com/rtfm/graphics/rt_eyerays.html

(cont’d)
1%
Top view of camera at o: +
— Position of the j-th pixel x[j]? il
w
— Analogously, we have: -+
. j+0.5 T |
x[j]= wy T
! x[jk
1
)

. origin of camera (pinhole)
: look vector

: upl/side vector

. discrete width of screen (in pixels)

. width of screen
. distance to screen

. field of view (FOV) or frustum halfangle

%&gglem

Chapter 2: Ray Casting

Step |: Constructing a ray through each pixel .
ik

(cont’d)

,_UIII"IIIII

In conclusion:

— The equation of the ray through each
pixel (i,j) is given by:

A
'+0.5 i+0.5 Qu
dijl =6+ i+ L2 5

-
1T 17T 1T 1T 11

http)//www.unknownroad.com/rtfm/graphics/rt_eyerays.html

Step 2: Finding intersection points
between rays and implicitly-defined objects

General algorithm:

Chapter 2: Ray Casting

http://www.realtimerendering.com/int/

Given the equation of the ray:
X(1)=0+1v

Given a surface in implicit form f(x,y,z)=0:
= Plane f(X)=ax+by+cz+d=n*x+d =0, with n=(a,b,c) and x=(x,y,7)
= Sphere fX)=x*+y*+7>-1=0
= Cylinder f(X)=x"+y"-1=0 and 0<z<l

We know that all points on the surface satisfy f(x,y,z)=0.

Therefore, for a ray X(t) to intersect the surface, we have to solve:

Jx(@®)=f(o+1v) =0

Chapter 2: Ray Casting
Ray-plane intersection

Algorithm:
— Given the equation of a generic ray:
X(1) =X, +1v
— Given the equation of the plane:
f(X)=ax+by+cz+d=n*x+d=0
where

" nis the normal to the plane
= dis the distance of the plane from the origin

— Substituting and solving for t, we obtain:
fx(®)=f(x,+tv)=0 or fx@))=n*(x,+tv)+d=0
so, the ray hits the plane at

. -(n*x,+d)

nev

Chapter 2: Ray Casting
M Ray-triangle intersection

Tomas Moller and Ben Trumbore, “Fast, minimum storage ray-
triangle intersection”, Journal of Graphics Tools, 2(1):21-28, 1997

Algorithm:
— Given the equation of a generic ray:
X(1)=0+1v
— Given the equation:
X=(0-u-v)X,+ux, +vx, u,y =0, u+vsl

that expresses X in barycentric coordinates (u,v) as a point in a triangle with vertices
Xo X, X,

— If the intersection point belongs to both ray line and triangle, we have:

X()=0+tv=(1-u-v)X, + ux, +vx,

— Thus, solve the previous equation system for (t,u,v) in terms of (x,y,z).

http://www.lighthouse3d.com/opengl/maths/index.php?raytriint

Chapter 2: Ray Casting
Testing ray-triangle intersection

LEe
*R. J. Segura, F. R. Feito,”Algorithms to test Ray-
triangle Intersection Comparative Study”, WSCG
2001.

f#idefine crossProductia,b,c) 3

(a) [0] = (b)[1] * (e)[2] - (c)[1] * (b)[2]:)
(&) [1] = (b)[2] * (c)[0] - (ec)[2] * (h)[O]:
(a)[2] = (B)[O] * (ec)[1] - (c)[0] * (hb)[1]:

int rayIntersectsTriangle(float *p,

fidefine innerProduct (v,q) 3
((v)[0] * () [0] + ©
(v3LL1]: = fablile+)
(v)[2] * (qg)[2])

=h - ¢ ¥/

fidefine wvectoria,b,c)
() [0] = (L) [0] - (c)([O]: 5
(a) [1] = (L) [1] - (c)([1]: 5
() [2] = (b)[2] - (c)([2]):

float *v0, float *vl,

float el[3],e2[3],h[3],=2[3],q[3]:
float a,f, u,v;

vector (el,vl,v0);
vector (e2,ve,v0) ;
crossProduct (h,d,e2) ;

a = innerProductiel,h):

if (a > -0.00001 &£ a < 0.00001)
return(false) ;

f = 1/a;
vector (s,p,v0);
u = £ * [(innerProduct(s,h)):

if (u< 0.0 || u> 1.0)
return(false);

crossProduct (¢, s,el);

v = £ ¥ innerProduct (d,dq):

if (v < 0.0 || u+ v > 1.0)
return(false) ;

returnitrue) ;

float *d,

float *v2)

{

_ Chapter 2: Ray Casting
f Ray-sphere intersection

Algorithm:
— Implicit form of sphere given center (g,b,c) and radius F:
[x—c"=r x=(xy.2, e=(abe)
— Intersection with the ray x(t)=o+tv gives:
lo+mv—¢f =7
— Taking into account the identity [a+b| =]al” +[b]" +2(a * b)

= the intersection is a quadratic equation in t:
lo+tv—c| —=r>=2*|v| +2tve (0 -c)+ (o - =)

— Solving for t: . _ve(o-c)= \/(V e« (0-0)) - ||V||2(||O —C||2 _r?)
i v/’

= Real solutions indicate one point (tangent point) or two intersection points

= Negative solutions are behind the eye

= [f discriminant is negative, the ray misses the sphere

Chapter 2: Ray Casting
Pixel color computation

Two major possibilities:
— The Lambertian/Phong illumination model of OpenGL.

= |t does not require implementation because it already comes with OpenGL.

— The Lambertian/Phong illumination output to a pixel matrix of some image file
format (e.g., TGA)

= |t requires implementation.

Chapter 2: Ray Casting

I, =K, (N*L)I N

Lambertian model for diffuse light:

object surface P

// list of lights

Light

{
Position = 0.0, 240.0, -100.0;
Intensity = 1.0, 1.0, 1.0 ;

}
// list of materials
Material
Reflection coefficient ;df; 0; 1.0, 1.0, 0.0
iffuse = 1. . - V7
Normal vector Reflection = 6.5; ’ ’
Light vector }
A
// calcu1a+es thk #ambert coefficient // list of objects
float K = K, * (N°L); Sphere

red += K * Light.red * Material.red; gggzﬁg - 306?' 20.0, 0.0;
L2 14

green += K * Light.green * Material.green; Material.Id = 0;
blue += K * Light.blue * Material.blue; }

Chapter 2: Ray Casting

Ray casting algorithm: review

Algorithm:

Define the objects and light sources in the scene

Set up the camera

for (int i=0; i<nRows; i++)

o U A WD

for (int j=0; j<nCols; j++)
Build the (i,j)™ ray
Find intersections of the (i,j)™ ray with the objects in the scene
Identify the intersection that lies closest to, and in front of, the eye
Compute the hit point where the ray hits this object, and the normal at that point
Find the color of the light returning to the eye along the ray from the hit point

Place the color at the (i,j)™ pixel

Courtesy F.S. Hill,“Computer Graphics using OpenGL”

Chapter 2: Ray Casting
Summary:

— Parametric and implicit objects: a reminder.

— Implicit surfaces

— Ray casting: the basic idea

— Constructing rays through pixels

— Finding intersection points between rays and objects

— Pixel color computation: Lambertian model reminder

