11494 Interactive and GPU Computing Lab. 5 - 29/04/2015

Indirect Rendering

Supervisor: Abel Gomes Scribe: Orlando Pereira

The goal of this assignment is to understand how productivity can be achieved using the power of GPU
computing.
1 Exercises: Indirect Rendering

1. Download the source code for this class, and analyze it carefully. Build and run it. You should have
an interface like the following:

—

Indirect Rendering

Figure 1: Initial rendering interface.

2. Using direct rendering (glBegin and glEnd instructions) render the cube defined by the wertices,
normals and colors arrays. Note that you can use your mouse to interact with the cube. Pressing the
d key will cycle through several rendering options.

Indirect Rendering

Figure 2: Cube rendered using direct rendering.

3. Render the cube using direct rendering through Vertex Arrays Objects (VAO). A VAO is an OpenGL
object that stores all of the state needed to supply vertex data (vertex, normals, colors, and textures).

Before progressing any further you are advised to carefully read the following links: Client-Side Vertex
Array Objects https://www.opengl.org/wiki/Client-Side_Vertex_Arrays, and Vertex Specifica-
tions https://www.opengl.org/wiki/Vertex_Specification#Vertex_Array_Object.

The major steps to achieve VAO rendering are the following:

(a) Enable the client state;
(b) Specify the pointers to each array;

(¢) Draw the elements;
(d) Disable the client state.

Is there any difference in performance?

4. Create your Vertex Buffer Object (VBO). A VBO is an OpenGL feature that provides methods for
uploading vertex data (position, normal vector, color, etc.) to the video device for indirect rendering.

Before progressing any further you are advised to carefully read the following link: Vertex Buffer Ob-
jects Examples https://www.opengl.org/wiki/VBO_-_just_examples.

The major steps are the following;:

(a) Generate a VBO. Note that, you need to delete it when program exits;;
(b) Put the vertex, normal and color arrays in the same buffer object;

(¢) Copy data with 3 calls of glBufferSubDataARB, one for vertex coordinates, one for normals
vectors, and one for colors.;

(d) The target flag is GL_.ARRAY _BUFFFER_ARB, and usage flag is GL.STATIC_DRAW _ARB.
All VBO creation code should be placed inside the following conditional instruction.

if (vboSupported) {
// VBO creation code here
}

5. Configure the VBO rendering routine. The major steps to achieve VBO rendering are the following:

(a) Bind your VBO with an ID and set the buffer offsets of the bound VBOs (When a buffer object
is bound with its ID, all pointers in gl*Pointer() are treated as offset instead of real pointer;

Enable the client state;

Specify vertex, normals, and color index arrays with their offsets;

)
)
(d) Draw the elements;
) Disable the client state;
)

Unbind the VBO. Once bound with 0, all pointers in gl*Pointer() behave as real pointer, so,
normal vertex array operations are re-activated.
Is there any difference in performance?

2 Exercises: External 3D Models

1. Import an external .obj file and render it using direct rendering (glBegin and glEnd instructions). The
main operations you need to do are the following:

(a) Initialization:

char xnewPathToModel = "media/teapot.obj”;
objLoader xobjData = new objLoader ();

(b) Loading the external model:
objData—>load (newPathToModel) ;

(¢) Rendering the model:

for (int i = 0; i < objData—>faceCount; i++) {
glBegin (GL.TRIANGLES) ;
obj_face %o = objData—>faceList [i];

glColor3f(1, 0, 0);

glVertex?)f(obJData —>vertexList [o—>vertex._ 1ndex[0]]
objData—>vertexList [o—>vertex_index [0]] —>e[1]
objData—>vertexList [o—>vertex_index [0]] —>e [2]

glNormal3f(objData—>normalList [o—>vertex_ 1ndex[0]]
objData—>normalList [o—>vertex_index [0]] —>e[1]
objData—>normalList [o—>vertex_index [0]] —>e [2]

glColor3f(1, 0, 1);
glVertex3f(objData—>vertexList [o—=>vertex._ 1ndex[1]]

objData—>vertexList [o—>vertex_index[1]]—>e[1]
objData—>vertexList [o—>vertex_index[l]]—>e[2]
glNormal3f(objData—>normalList [o—>vertex_ 1ndex[1]]

objData—>normalList [o—>vertex_index[1]]—>e[1]
objData—>normalList [o—>vertex_index[l]]—>e[2]

glColor3f (1, 1, 0);

glVertex?)f(obJData —>vertexList [o—>vertex_index[2]] —
objData—>vertexList [o—>vertex_index [2]] —>e[1]
objData—>vertexList [o—>vertex_index[2]]—>e[2]);

glNormal3f(objData—>normalList [o—>vertex_index[2]]
objData—>normalList [o—>vertex_index [2]] —>e[1]
objData—>normalList [o—>vertex_index[2]] —>e[2]

glEnd ();

You should obtain something similar to:

3,
S’
S’

)

Indirect Rendering

Figure 3: Teapot.

2. Modify your rendering step to render your model using VAO.
3. Modify your rendering step to render your model using VBO.

4. Using the Computer Graphics Data link http://graphics.cs.williams.edu/data/meshes.xml down-
load the Chinese Dragon model and render it using direct and indirect rendering (VBO).
Is there any difference in performance? Why?

You should obtain something similar to:

[] Indirect Rendering

Figure 4: Teapot.

References

[1] Client-Side Vertex Array Objects https://www.opengl.org/wiki/Client-Side_Vertex_Arrays, last
access on 29/04/2015.

[2] Vertex Specification https://www.opengl.org/wiki/Vertex_Specification#Vertex_Array_Object,
last access on 29/04/2015.

[3] Vertex Buffer Objects Examples https://www.opengl.org/wiki/VB0_-_just_examples, last access
on 29/04/2015.

[4] Computer Graphics Data http://graphics.cs.williams.edu/data/meshes.xml, last access on
29/04/2015.

