

In teract ive and GPU Comput ing

Abel J. P. Gomes

 LAB. 1

INTRODUCTION TO OpenGL
1. Getting Started
2. Installing Graphics Libraries: OpenGL and GLUT
3. Setting up an IDE to run graphics programs in OpenGL/GLUT
4. A First OpenGL/GLUT Program
5. Programming Exercises

Department of Computer Science and Engineering
University of Beira Interior

Portugal
2015

Copyright © 2009-2015 All rights reserved.

Lab. 1

INTRODUCTION TO OpenGL

1 . Get t ing Star ted

A starting point for learning computer graphics via OpenGL API (Application Programming Interface) is the
following wiki:

http://www.opengl.org/wiki/Getting_started

Before starting programming it is good idea to know details about system, say renderer/graphics card and
CPU, as well as OpenGL and DirectX versions installed in your computer. Of course, we are here assuming
that your computer is a PC running Microsoft Windows XP or Vista.

We can obtain all this information by downloading and installing an OpenGL viewer such as, for example, the
OpenGL Extension Viewer (Windows, Windows x64 and MacOS X), which is available from:

http://www.realtech-vr.com/glview/index.html

For more details about other OpenGL viewers, have a look at the wiki aforementioned.

The idea of producing pictures or images using a computer requires two processes: modeling and
rendering. Model ing has to do with the creation, manipulation, and storage of geometric objects on
computer, while rendering just means converting a scene to an image. Render ing involves a number of
transformations, namely: rasterization, shading, illumination, and animation of the image.

Computer graphics has been widely used in many areas of interest from graphics presentation, paint
systems, computer-aided design (CAD), and scientific visualization to simulation of natural phenomena,
virtual reality, computer games and, in general, entertainment.

2 . Ins ta l l ing Graph ics L ibrar ies : OpenGL and GLUT

We are going to use the Microsoft Visual C++ Studio in the labs. This IDE (Integrated Development
Environment) only runs on Windows XP/Vista machines.

Note that the OpenGL libraries (glu32.dll and opengl32.dll) are already installed in Windows.
Usually, they are in the directory:

C:\WINDOWS\system32

In order to run OpenGL programs on any machine (Windows, Linux or Mac OSX), it is necessary to use a
supplementary library, called GLUT (The OpenGL Utility Toolkit). GLUT is a window system independent
toolkit for writing OpenGL programs. It implements a simple windowing API for OpenGL that interfaces to

proprietary windowing systems of specific operating system; hence its platform independence.

GLUT supports:

- Multiple windows for OpenGL rendering

- Callback driven event processing

- Sophisticated input devices

- An 'idle' routine and timers

- A simple, cascading pop-up menu facility

- Utility routines to generate various solid and wire frame objects

- Support for bitmap and stroke fonts

- Miscellaneous window management functions

For more details about GLUT, the reader is referred to:

http://www.opengl.org/resources/libraries/glut/

and

http://www.xmission.com/~nate/glut.html

From this last link of Nate Robbins, download the GLUT toolkit from glut-3.7.6-bin.zip (117 KB). This zip file
contains the following files:

- glut.dll

- glut32.dll

- glut.h

- glut.lib

- glut32.lib

The dlls (glut.dll and glut32.dll) must be moved into the folder

C:\WINDOWS\system32

The libs (glut.lib and glut32.lib) must be moved into the folder

C:\Program Files\Microsoft Visual Studio\VC98\Lib

The include (glut.h) must be moved into the folder

C:\Program Files\Microsoft Visual Studio\VC98\Include\GLUT

3. Set t ing up an IDE To Run Graph ics Programs in
OpenGL/GLUT

Let us assume that you have already downloaded the GLUT files and installed them in the appropriate
folders.

Starting up an OpenGL project on Microsoft Visual C++ Studio involves the following steps:

1. Start VC++ and create a new project.

2. The project has to be a "Win32 Console Application".

3. Type in the name of the project and where it will be on your hard disk drive.

4. Chose an empty project and click next or finish.

Setting up the OpenGL and GLUT libraries for the project involves the following steps:

1. The first thing you need to do when the project opens up is to click on the "Project" menu item from
the top.

2. Chose "Settings" (a window will come up).

3. On the left side of the window there are tabs, chose the "Link" tab.

4. The string field labeled "Object/library modules" has a few lib files already set in it.

5. Go to the end of this string field and enter:

opengl32. l ib g lut32. l ib g lu32. l ib

6. Chose "OK" and that will include all the OpenGL libraries that you need.

7. Now all you need to do is include <GL\glut.h> and you are ready to go.

4 . A F i rs t OpenGL/GLUT Program

The following program draws a line segment between two points, P(5.0,1.5) and Q(9.3,7.2) in the 2-
dimensional Euclidean space.

1 #include <GLUT/glut.h> // Header file for GLUT and OpenGL
2 #include <stdlib.h>
3
4 //--
5 // DRAWING CALLBACK FUNCTION
6 //--
7

8 void draw(){
9 // background colour: yellow

10 glClearColor(100, 100, 0, 0);
11 glClear (GL_COLOR_BUFFER_BIT);
12
13 // Sets up the DOMAIN (xmin,xmax,ymin,ymax) in R2.
14 // Let (xmin,xmax,ymin,ymax)=(0.0,20.0,0.0,20.0)
15 glMatrixMode(GL_PROJECTION);
16 glLoadIdentity();
17 gluOrtho2D(0.0,20.0,0.0,20.0);
18
19 // Let us now define the line segment in red
20 // Endpoints: (5.0,1.5) and (9.3,7.2)
21 glMatrixMode(GL_MODELVIEW);
22 glLoadIdentity();
23 glColor3f(1, 0, 0);
24 glBegin(GL_LINES);
25 glVertex2f(5.0,1.5);
26 glVertex2f(9.3,7.2);
27 glEnd();
28
29 // display line segment
30 glutSwapBuffers();
31 }
32
33 //---
34 // KEYBOARD CALLBACK FUNCTION
35 //---
36
37 void keyboard(unsigned char key,int x,int y)
38 {
39 // press ESC key to quit
40 if(key==27) exit(0);
41 }
42
43 //---
44 // MAIN FUNCTION
45 //---
46
47 int main(int argc, char ** argv)
48 {
49 glutInit(&argc, argv);
50 // Double Buffered RGB display
51 glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE);
52 // Set window size
53 glutInitWindowSize(500,500);
54 glutCreateWindow("Line Segment");
55 // Declare callback functions
56 glutDisplayFunc(draw);

57 glutKeyboardFunc(keyboard);
58 // Start the main loop of events
59 glutMainLoop();
60 return 0;
61 }

Comments:

(1) The previous program illustrates the basic structure of an OpenGL/GLUT program:
a. First, we define the scene domain (or scene world) where we are working on. This is

given by the statement
gluOrtho2D(0.0,20.0,0.0,20.0);

This is the world of the geometry . This is usually done in the drawing callback function.

b. Second, we define the image domain (or image world) where we are going to display our
rasterized scene in pixels. This is given by the statement

glutInitWindowSize(500,500);
This is the world of the image. This is usually done in the main function.

5 . Programming Exerc ises

1. Write a program to draw the following points: (0.0,0.0), (20.0,0.0), (20.0,20.0), (0.0,20.0) and
(10.0,25.0). For this purpose, use the GL_POINTS primitive.

2. Write a program to draw the sinc function. This function is given by

€

sinc(x) =
sin(x)
x

with

€

x ∈ [−10.0,10.0]. For this purpose, use the GL_LINE_STRIP primitive. The sampling step is
0.25 when x varies in the given interval. Note that sinc(0.0)=1.0.

3. Write a program to draw a circle centered at (cx,cy) with a given radius r, whose points are given by the
following equations

€

x = cx + r.cos(θ)
y = cy + r.sin(θ)

$
%

