Interactive and GPU Computing

11494: Mestrado em Engenharia Informatica

004100001.010020100%00201000020 0001111101001010100211%010000L00104LL10L00L0

11010101010011010000410000%0100L0100L00L01000 LDLLDLDDLDIDLHDUD%LLLLLDLDDLDL

I DLD']DLDLDPE LH]]?D]JDDQD]JDD]J]-I].I].ID].I DLDLLDLD 101011301.000041

0100L0101

Lab. | — C++ Explained

Lab. 2: C++ Explained

Outline

Variables, pointers, and references
Functions

Variables, pointers, and references

Lab. 2: C++ Explained

VARIABLES, POINTERS, AND REFERENCES

Lab. 2: C++ Explained
Variables, pointers, and references

Variable:

— It is a name/identifier that represents a value stored in memory.

Pointer variable:

— It is a name/identifier that represents an address (of memory) stored in memory.

Reference variable:

— It is a pointer variable.

— But, it also works as an alias to the pointed variable, so that it can be used an usual
variable.

— It must be initialized at the declaration stage.

Lab. 2: C++ Explained
Variables, pointers, and references (cont’d)

Variable:

— It is a name/identifier that represents a value stored in memory.
Pointer variable:

— It is a name/identifier that represents an address (of memory) stored in memory.
Reference variable:

— ltis a pointer variable, but it also works as an alias of the pointed variable.

— It must be initialized at the declaration stage.

Exan“ﬂe: int b; // usual variable
int& a = b; // reference variable
a = 10;
int b; // usual variable
int *a = &b; // pointer variable

*a = 10;

Lab. 2: C++ Explained

FUNCTIONS

Lab. 2: C++ Explained
Function

Header:
— Specifies WHAT is done by the function.
Body:

— Describes HOW the function does the specified work.

Examples:
return-data-type function-name (parameter list) void function-name (parameter list)
¢ constant declarations { constant declarations
variable declarations variable declarations
other C++ statements other C++ statements
return value }

value-returning function non value-returning function

Function’s formal parameters b 2 Bxplained
Function’s prototype

Formal parameters: int FindMax(int x, int y)
{
— The argument names in the function header. int maximum;
Example: if(x>=y)
maximum = X;
— x and y in the following function: else
maximum = Yy
return maximum
Prototype: }

— The use of function prototypes permits error checking of data types by the compiler.

— It also ensures conversion of all arguments passed to the function to the declared
argument data type when the function is called.

— It the function header followed by “;”. The argument names are not necessary.

Example:

— int FindMax(int, int);

Function’s actual parameters b 2 Bxplained
Calling a function

Actual parameters:

The argument names in the function call are referred to as actual parameters.

Example:

— firstnum and secnum in the following function:

#include <iostream.h>

int FindMax(int, int); // function prototype

int main()

{

int firstnum, secnum, max;

cout << "\nEnter two numbers: ";
cin >> firstnum >> secnum;

max=FindMax (firstnum, secnum); // the function is called here
cout << "The maximum is " << max << endl;

return 0;

Lab. 2: C++ Explained
Calling a function by value

How does it work?:
— The function receives a copy of the actual parameter values
— The function cannot change the values of the actual parameters.

Example:

— The values of firstnum and sechnum are copied into x and y arguments, respectively,
of the FindMax function (see previous transparency).

Lab. 2: C++ Explained
Calling a function by reference

How does it work?:

— Very useful when we need a function which "returns more than one value”.
— The formal parameter becomes an dlias for the actual parameter.

— The function can change the values of the actual parameters.

Exanwﬂe: #include <iostream.h>
void newval(float&, float&); // function prototype
int main()

float firstnum, secnum;

cout << "Enter two numbers: ";

cin >> firstnum >> secnum;

newval (firstnum, secnum);

cout << firstnum << secnum << endl;

return 0;

}

void newval(float& xnum, float& ynum)
xnum = 89.5;
ynum = 99.5;

Two differences:

Example:
#include <iostream.h>

void newval(float*, float¥*);

int main()

float firstnum, secnum;

cout << "Enter two numbers: ";

cin >> firstnum >> secnum;

newval (&firstnum, &secnum);

cout << firstnum << secnum << endl;

return 0;

}

void newval(float* xnum, float* ynum)
*xnum = 89.5;
*ynum = 99.5;

calling function with pointer arguments ‘

Lab. 2: C++ Explained

#include <iostream.h>
void newval(float&, float&);
int main()

float firstnum, secnum;

cout << "Enter two numbers: ";

cin >> firstnum >> secnum;

newval (firstnum, secnum);

cout << firstnum << secnum << endl;

return 0;

}

void newval(float& xnum, float& ynum)
xnum = 89.5;
ynum = 99.5;

calling function with reference arguments

Calling a function by reference Lab. 2: C++ Explained

The “const” modifier

How does it work?:

— Calling by reference is the preferred way to pass a large structure or class instances
to functions, simply because the entire structure need not be copied each time it is

used!!

— C++ provides us with protection against accidentally changing the values of
variables passed by reference with the const operator

Example (function prototype):

int FindMax(const int&, const int&);

Example (function header):

int FindMax(const int& x, const int& y)

Lab. 2: C++ Explained
Function overioading

How does it work?:

— C++ provides the capability of using the same function name for more than one
function (function overloading

— The compiler must be able to determine which function to use based on the
number and data types of the parameters.

— Warning: creating overloaded functions with identical parameter lists and different
return types is a syntax error!!

Example:
void cdabs(int x)

if (x<0)

-X;
cout << "The abs value of the integer is " << x << endl;

}

void cdabs(float x)
if (x<0)

-X;
cout << "The abs value of the float is " << x << endl;

Lab. 2: C++ Explained

STRUCTURES AND CLASSES

_ Lab. 2: C++ Explained
R What is a structure?

Data type composition:

— It is an compound data type built using elements of other types.

— Declaring a structure requires declaring its members and their data types.

Example:

?truct RECTANGLE
float height;
float width;
int xpos;
int ypos;

}i

Declaration:

— They are declared like variables of any other type.

RECTANGLE R;

RECTANGLE &RRef
RECTANGLE *RPtr

R;
&R;

BN Accessing members of a structure

Dot operator (.):
— Applies to both variables and references.

Example:
R.height = 15.34;
RRef.height = 15.34;

Arrow operator (->):

— Applies to pointers.

Example:

RPtr->height = 15.34;

(*RPtr).height = 15.34;

Lab. 2: C++ Explained

Declaration of member functions/methods b 2: G Bxplained

of a structure

Member functions:

— Functions which operate on the data of the structure.

The prototype of a member function appears within the structure definition.
— Usually, the declaration of structs appears in a separate file .h

Exam P les l rectangle.h

?truct RECTANGLE

float height;
float width;
int xpos;
int ypos;

// draw member function
// position member function
/ move member function

void draw(); . .
void position(int,int);
void move(int,int);

}i

Implementation of member functions/methods =% beere

B of a structure

Member functions:

— Usually, they are implemented outside the structure.
— Usually, the implementation of member functions appears in a separate file .cpp
— The :: "scope resolution operator” is necessary for that.

Example: ' rectangle.cpp I

YOid RECTANGLE: :draw()

cout << "position is << xpos << ypos << endl;

Yoid RECTANGLE: :position(int x, int y)

Xpos = X;
ypos = y;

Yoid RECTANGLE: :move (int dx, int dy)

Xpos += dx;
ypos += dy;

Lab. 2: C++ Explained
Referring to a member function

Accessing to a member function:

— This is done in the same way as for struct variables.

Examples:
R.draw();
RRef.position(100,200);
RPtr->move(30,30);

Lab. 2: C++ Explained
Controlling access to members

Access specifiers:

— Most common member access specifiers are: public and private.

— The private keyword specifies that the structure members following it are private to
the structure and can only be accessed by member functions (and by friend
functions).

Examples: rectangle.h |
struct RECTANGLE

private: _
oat height;
float width;

int xpos;
int ypos;

ublic:
void draw(); :
void position(int,int);
void move(int,int);

draw member function
position member function
move member function

NN
NN

Lab. 2: C++ Explained
What is a class?

Definition:

— Practically, there are no differences between structures and classes.
» Structures have all of their members public by default.
m Aclass is a structure which has all of its members private by default.

Example:

' rectangle.h

class RECTANGLE

rivate: _ // only for clarity
float height;

float width;
int xpos;

int ypos;

ublic: _
void draw(); . . // draw member function
void position(int,int); // position member function
void move(int,int); // move member function

Lab. 2: C++ Explained
What is a constructor?

Definition:
— It is a member function which initializes every single class’ object.

— A constructor has:

= the same name as the class itself,

u no return type.
rectangle.h

Example: class RECTANGLE

private: _
float height;
float width;
int xpos;
int ypos;

public:
void RECTANGLE (float,float); // constructor
void draw(); . _
void position(int,int);
void move(int,int);

.
14

Lab. 2: C++ Explained
What is a constructor? (cont’d) rectangle.cop |
Yoid RECTANGLE: : RECTANGLE (float h, float w)

height = h;
width = w;
xpos = 0;
ypos = 0;

How does a constructor work?:

— A constructor is called automatically whenever a new instance of a class is created.

— You must supply the arguments to the constructor when a new instance is created.

— If you do not specify a constructor, the compiler generates a default constructor for
you (expects no parameters and has an empty body).

— Wiarning: attempting to initialize a data member of a class explicitly in the class
definition is a syntax error. It is up to constructors to initialize member variables.

l main.cpp I

Example: ~ Yoid main()

RECTANGLE R(20.0,30.0);

R.gosition(lOO,lOO);
R.draw();

Overloading a constructor

Multiple constructors:

— You can have more than one

list of arguments.

Example:

}i

?lass RECTANGLE

private:

float height;
float width;
int Xpos;
int ypos;

public:

void RECTANGLE () ;
void RECTANGLE fioat,float);
void draw(); . _

volid position(int,int);

void move(lnt,lnts;

height = 0;
width = 0;
xXpos = 0;
ypos = 0;

Lab. 2: C++ Explained

‘ rectangle.cpp |

Yoid RECTANGLE : : RECTANGLE ()

constructor in a class, as long as each has a different

. rectangle.h ‘

// constructor
// constructor

Yoid main()

RECTANGLE R1(20.0,30.0);
RECTANGLE R2();

Rl.draw();
R2.draw§g

.
14

. main.cpp

Lab. 2: C++ Explained
Object composition in classes

Definition:

— A class may have objects of other classes as members.

| rectangle.h

Example: class RECTANGLE

private:)
float height;
float width;
int Xpos;
int ypos;
COLOR c;

public: . . .
void RECTANGLE (float,float,int,int,int);
void draw(); . _
vold position(int,int);
void move(lnt,lnts;

}i

color.h |

class COLOR

private:
int Rj;
int Gj;
int Bj;

public: , , ,
) void COLOR(int,int,int);
7

Lab. 2: C++ Explained
Object composition in classes (cont’d)

‘ rectangle.cpp ‘

Yoid RECTANGLE: : RECTANGLE (float h,float w,int r,int g,int b):c(r,g,b)

height = h;
width = w;
Xpos .

=0
ypos = 0

color.cpp ‘

¥oid COLOR: :COLOR(int r,int g,int b)

R=r; G;j=g9g; B=Db;
}i

main.cpp ‘

YOid main()

RECTANGLE R(20.0,30.0,1,0,1);
R.draw();

Lab. 2: C++ Explained

—
R~
) .

What is a destructor?

string.h |

Definition: <{:lass STRING
— Function that deletes an object. pnq‘r'%t}e:{cs;
int size;
— A destructor function is called public:
automatically when the object goes §g¥§¥ﬁ&f?i‘r *)i % constructor
out of scope: »

= the function ends;

= the program ends; string.cpp |

= ablock containing temporary STRING: : STRING (char *c)
variables ends; { _ N p——
S1zZe = strlen C H
= a delete operator is called. s = new char[size+l];

strcpy(s,C);

— A constructor has:
STRING: : ~STRING ()
= the same name as the class itself, {

but is preceded by a tilde (~), } delete []s;

" no arguments and return no values.

Example:

Lab. 2: C++ Explained

string.h I

What is a copy constructor?

class STRING

private:
char *s;
int size;

public:
STRING char*)

° o4 0 ° ~STRIN
Definition: STRING (const STRING&); // copy constructor

void print

— It is a member function which void copy(éﬁér*);

initializes an object using }i
another object of the same ' string.cpp
class. :
STRING: : STRING (const STRING& aString)
— In the absence of a copy { size = aString.size;
constructor, the C++ gtgcggyscgggf;ge;}})

compiler builds a default copy | }
constructor for each class

which is doing a memberwise main.cpp |
copy between objects. PR bRl
string strl("Geor??");
— Default copy constructors string str2 = str
work fine unless the class strl.print(); // what is printed ?

)) str2.print();
contains pointer data

str2.copy("Mary");
members ... Why!?

strl.print(); // what is printed now ?
str2.print();
Example:

Lab. 2: C++ Explained
Summary

Variables, pointers, and references
Functions

Structures and classes

