
Textures

Computação Gráfica
5385: Licenciatura em Engenharia Informática

Chap. 10 — Textures

Cap. 10: Texturas

Outline

…:

– Objectives and motivation

– Notion of texture, texture mapping, texture patterns and texels

– Texture mapping on polygons, texture interpolation

– Wrapping modes

– Filtering modes

– Blending modes

– Mapping textures on geometric objects

§ planar mapping

§ cylindrical mapping

§ spherical mapping

§ box mapping

Cap. 10: Texturas

Objectivos

To introduce mapping methods:

– Texture mapping

– Environmental mapping

– Bump mapping

– Light mapping

We consider two basic strategies:

– Manual specification of coordinates

– Two-stage automated mapping

They will not be taught!

It will not be taught!

Cap. 10: Texturas

Notion of texture

Definition:

– It is an image with RGBA components.

Texture mapping:

– A method to create complexity in an image
without the overhead of building large
geometric models.

Cap. 10: Texturas

Motivation: adding realism

Texturing techniques:

– Texture mapping

§ Texture mapping uses pattern to be put
on a surface of an object.

– Light maps

§ Light maps combine texture and lighting
through a modulation process

– Bump mapping

§ Smooth surface is distorted to get
variation of the surface

– Environmental mapping

§ Environmental mapping (reflection maps)
– enables ray-tracing like output

• Objects rendered using Phong reflection model and Gouraud or Phong interpolated shading often appear rather ‘plastic’ and
‘floating in air’

• Texture effects can be added to give more realistic looking surface appearance.

texture map

light map

bump map

reflection
map

Cap. 10: Texturas

Motivation: add surface details…

• Texture mapping doesn’t affect geometry processing, such as transformation, clipping,
projection, …

• It does affect rasterization, which is highly accelerated by hardware.

• Textures can be easily replaced for more details: texture mod in games

The Elder Scrolls: Skyrim

Before mod After mod

Cap. 10: Texturas

Motivation: advantages

− More polygons (slow and hard to handle small details)

− Less polygons but with textures (much faster)

World of Warcraft, Blizzard Inc.

Cap. 10: Texturas

Motivation: adding surface detail

Exemplos:
– Model t-shirt with logo

§ no need to model the letters and engine with
triangles

§ use large base polygon

§ color it with the photograph

– Subtle wall lighting

§ No need to compute it at every frame

§ No need to model it with a lot of constant
color triangle

§ Past photograph on large polygon

– Non-planar surfaces also work

§ subdivide surface into planar patches

§ assign photograph sub-regions to each
individual patch

– Examples of modulating color,
bumpiness, shininess, transparency with
identical sphere geometry

The obvious solution is not the best:
• breaking the scene into smaller and smaller polygons increases the detail.
• But it is very hard to model and very time-consuming to render.

The preferred solution is texture mapping:
• typically a 2D image ‘painted’ onto objects

④

①

②

③

④

③

②

①

Cap. 10: TexturasTextures:
at what point do things start to looking real?
§ Surfaces “in the wild” are very complex
§ Cannot model all the fine variations
§ We need to find ways to add surface detail. How?

geometric model geometric model
+

shading

geometric model
+

shading
+

textures

Cap. 10: Texturas

Texture mapping, texture pattern, and texels

History:

– Developed by Catmull (1974), Blinn and Newell
(1976), and others.

Texture mapping:

– adds surface detail by mapping texture patterns
onto the surface.

Texture pattern:

– Pattern is repeated. For example, the texture
pattern for the cube aside is the following:

Texel: (short for “texture element”)

– A texel is a pixel on a texture. For example, an
128x128 texture has 128x128 texels. On screen
this may result in more or fewer pixels depending
on how far away the object is on which the
texture is used and also on how the texture is
scaled on the object surface.

Cap. 10: Texturas

MAPPING TECHNIQUES

¨ Texture mapping
¨ Environment mapping
¨ Bump mapping
¨ Light mapping

Cap. 10: Texturas

Texture Mapping

Answer I:

– The texture is simply an image, with a 2D
coordinate system (s,t).
§ Parameterize points in the texture with 2

coordinates: (s,t)

– Define the mapping from (x,y,z) in world space
to (s,t) in texture space.

§ To find the color in the texture, take an (x,y,z)
point on the surface, map it into texture space,
and use it to look up the color of the texture.

Answer II:

– Specify (s,t) coordinates at vertices,

– Interpolate (s,t) for other points based on
given vertices.

Question I: Which point of the texture do we use for a given point on the surface?

Question II: And in the case of mapping a texture onto a polygon?

s

t

Cap. 10: Texturas

Texture to surface coordinate mapping

Problem formulation:

– This problem requires 3 parametric
functions to transforma a texel (s,t)
into a Cartesian point (x,y,z) on the
surface::

§ x = X(s, t)
§ y = Y(s, t)
§ z = Z(s, t)

– Alternatively, we can use 2
parametric coordinate systems, the
2D image coordinates (s,t) and the
2D parameterization coordinates
(u,v) that we assign to the 3D
object

Question I: The basic problem here is how to find the texture to surface mapping?

That is: Given a texture position (s,t), what is the position (x,y,z) on the surface?

s

t

u

v

(u,v)

s

t

(x,y,z)

Cap. 10: Texturas

How to set (u,v) parametric coordinates?

n Manually:
Set the texture coordinates for each vertex ourselves

n Automatically:
Use an algorithm that sets the texture coordinates
for us

Cap. 10: TexturasUse an algorithm
that sets the texture coordinates for us

(0,0)
texture 2D polygon textured polygon

+ =(1,1)

(0,0)

(1,1)

(0,0)
texture 2D polygon textured polygon

+ =(1,1)

(0,0)

(1,0.5)

n We can chose alternate texture coordinates

n We can manually specify the texture coordinates at each vertex

Cap. 10: Texturas

Mapping texture to polygons

Procedure:

– For polygon texture mapping, we
explicitly define the (u,v) coordinates
of the polygon vertices

– That is, we pin the texture at the
vertices

– We interpolate within the triangle at
the time of scan converting into screen
space

u

v

Cap. 10: Texturas

Texture interpolation

How is it done?:

– Interpolation is done during
rasterization or scan conversion,
similar as is done for Gouraud
interpolated shading

– But rather than interpolate to
get RGB values, we get (u,v)
values which point to
elements of texture map.

– Thus, texture mapping is done
in canonical screen space as
the polygon is rasterized

– When describing a scene, you
assume that texture
interpolation will be done in
world space

(x1, y1), (u1, v1)(x2, y2), (u2, v2)

(x3, y3), (u3, v3)

Cap. 10: Texturas

Texture mapping and the OpenGL pipeline

− Images and geometry flow through separate pipelines that join during fragment
processing

− “Complex” textures do not affect geometric complexity

geometry pipelinevertices

pixel pipelineimage

fragment
processor

Cap. 10: Texturas

Texture mapping

s

t

x

y

z
3D world Space

2D Screen Space

Texture Space

Projection

Texture lookup

Cap. 10: Texturas

Texturing in OpenGL

Texture Mapping

– uploading of the texture to the video memory

– set up texture parameters

– enable texturing

– the application of the texture onto geometry

Cap. 10: Texturas

Texturing in OpenGL: 4 main steps

1. Create/load texture with
§ glTexImage*D()

§ Three methods:

− read in an image in a jpg, bmp, ...

− generate the texture yourself within application

− copy image from color buffer

2. Define texture parameters as to how texture is applied
§ glTexParameter*()

§ wrapping, filtering, etc

3. Enable texturing
§ glActiveTexture(GL_TEXTURE_*D)

4. Assign texture coordinates to vertices
§ The mapping function is left up to you

Cap. 10: TexturasStep1:
Generation / transfer of the texture into graphics memory

Generation:

– Define a texture image as an array of texels (texture elements) in CPU memory :

Glubyte myTexture[width][height][3];

– Each RGB value is specified to be an unsigned byte, between 0 and 255. For
example, a blue color would be (0, 0, 255).

Transfer / uppoad:

– We use:

void glTexImage2D (target,level,components,w,h,border,format,type,texture);

Parameters:
§ target : type of texture, e.g. GL_TEXTURE_2D
§ level : used for mipmapping = 0 (discussed later)
§ components : elements per texel (for RGB)
§ w, h : width and height of texture in pixels
§ border : used for smoothing = 0 (don’t worry about this)
§ format : texel format e.g. GL_RGB
§ type : rgb component format e.g. GL_UNSIGNED_BYTE
§ texture : pointer to the texture array

Example:

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, myTexture);

The texture resolution must be power of 2.

Cap. 10: TexturasStep2:
Specifying texture parameters

q OpenGL has a variety of parameters that determine how textures are applied:

– Wrapping parameters determine what happens if s and t are outside the (0,1) range

– Filter modes allow us to use area averaging instead of point samples

– Mipmapping allows us to use textures at multiple resolutions

q The glTexParameter() function is a crucial part of OpenGL texture
mapping, this function determines the behavior and appearance of textures
when they are rendered.

q Take note that each texture uploaded can have its own separate properties,
texture properties are not global.

Cap. 10: TexturasStep2:
Specifying texture parameters
glTexParameter()

Cap. 10: TexturasStep2:
Specifying texture parameters
glTexParameter()

Cap. 10: Texturas

Step2 (contd.): wrapping modes

n Clamping : if s,t > 1 use color at 1, if s,t < 0 use color at 0
¨ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

n Repeating : use s,t modulo 1
¨ glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

texture

s

t

Wrap S : GL_REPEAT
Wrap T : GL_REPEAT

Wrap S : GL_REPEAT
Wrap T : GL_CLAMP

Wrap S : GL_CLAMP
Wrap T : GL_REPEAT

Wrap S : GL_CLAMP
Wrap T : GL_CLAMP

Cap. 10: Texturas

Step2: filtering modes

n Since a texture can be mapped arbitrarily to an image region, it can either be
magnified or minified.

n Mag filter: To interpolate a value from neighboring texels
n Min filter: Combine multiple texels into a single value

Magnification
Screen

Minification

Screen

Cap. 10: Texturas

Without proper filtering, you
get texture aliasing when the
texture is minified.

Cap. 10: Texturas

Step2 (contd.): filtering modes

Recall that:

– Texture map to surface takes place during
rendering, much like in Gouraud shading:

§ Triangle rasterized

§ Each pixel mapped back to the texture

§ Use known values at vertices to interpolation
over the texture

– Each pixel is associated with small region of
surface and to a small area of texture.

– There are 3 possibilities for association :

1. one texel to one pixel (rare)

2. Magnification: one texel to many pixels

3. Minification: many texels to one pixel

Magnification

Minification

Cap. 10: TexturasStep 2 (contd.):
Zoom in with magnification filter
§ Pixel maps to a small portion of one texel
§ Results in many pixels mapping to same texel
§ Without a filtering method, aliasing is common
§ Magnification filter: smooths transition between pixels

many pixels correspond to one texel
à “blockiness” / jaggies / aliasing

solution: apply averaging
(magnification filter)

Magnificação

Cap. 10: TexturasStep 2 (contd.):
Zoom out with minification filter
− One pixel is mapped to many texels
− It is commonly found in perspective projection (foreshortening)

Minification

Perspective (foreshortening)
and poor texture mapping causes
visual deformation of the floor

Mipmaps improve the
texture mapping

Foreshortening is a technique used in perspective to create the illusion of an object receding
strongly into the distance or background. The illusion is created by the object appearing
shorter than it is in reality, making it seem compressed. It is an excellent way to maximize the
depth and dimension of paintings and drawings.
(taken from https://www.liveabout.com/definition-of-foreshortening-2577559)

Cap. 10: TexturasStep 2 (contd.):
Mipmaps are the best minification filter

− “mip” means multum in parvo, ou “many things in a small place ”
− Leading idea: create many textures of decreasing size, using one of them when adequate
− Pre-filtered textures = mipmaps

Cap. 10: TexturasStep 2 (contd.):
Mipmaps to optimize storage

− It is mandatory to provide texture sizes in power of 2 in relation to the original in 1x1

Cap. 10: Texturas

Step 2 (contd.): filtering modes

OpenGL texture filtering

Nearest Neighbor
(fast, but with aliasing)

Bi-linear Interpolation
(slow, but less aliasing)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)

Cap. 10: Texturas

Step 2 (contd.): texture color blending modes

Blending functions:

– replace: replace surface color
with texture color

– decal: replace surface color with
texture color, blend the color with
underlying color with an alpha
texture value, but the alpha
component in the framebuffer is
not modified

– modulate: multiply the surface
color by the texture color (shaded
+ textured surface). Need this for
multitexturing (i.e., lightmaps).

– blend: similar to modulation but
add alpha-blending

Texture Polygon Mapped Texture

Texture Polygon Mapped Texture

REPLACE operation

MODULATE operation

After a texture value is retrieved (may be further transformed), the resulting values are used to modify one or more polygon/surface
attributes by means of the blending functions:

Cap. 10: Texturas

Step 2 (contd.): texture color blending modes

§ Determine how to combine the texture color with the object color

− For example, GL_MODULATE: multiply texture with object color

− GL_BLEND: linear combination of texture and object color

− GL_REPLACE: use texture color to replace object color

§ For example:

§ Remember to use GL_MODULATE (default) if you want to have the
light effect.

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE)

Cap. 10: Texturas

Step 3: Enable Texturing

§ To enable just call:

– glActiveTexture(GL_TEXTURE_2D)

§ What does texture mapping affect?

– the current shading color of a pixel (after lighting) is multiplied by the
corresponding texture color

§ So, if the object is a near white color (0.8, 0.8, 0.8) at some point and the current
texture color at that point is red (1, 0, 0), then when multiplied, it produces (0.8,0.0,0.0)

Cap. 10: TexturasStep 4:
Mapping a texture to a triangle

− Assign the texture coordinates to triangle vertices

− The color of each triangle pixel is obtained by interpolation

s

t
1, 1

0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b

c

Texture Space Object Space

Cap. 10: TexturasStep 4 (contd.):
Mapping a texture: example

float texCoords[] = {
0.0f, 0.0f, // lower-left corner
1.0f, 0.0f, // lower-right corner
0.5f, 1.0f // top-center corner

};
(…)
glBindTexture (GL_TEXTURE_2D, 13);

− How to texture a triangle? The following code assumes that texturing has been enabled
and that there has been a texture uploaded with the id of 13.

Cap. 10: TexturasStep 4 (contd.):
the whole process

unsigned int texture;
glGenTextures(1, &texture);
glBindTexture(GL_TEXTURE_2D, texture);

// set the texture wrapping/filtering options (on the currently bound texture object)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

// load and generate the texture
int width, height, nrChannels;
unsigned char *data = stbi_load("container.jpg", &width, &height, &nrChannels, 0);
if (data) {

glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, data);
glGenerateMipmap(GL_TEXTURE_2D);

}
else

std::cout << "Failed to load texture" << std::endl;

stbi_image_free(data);

container.jpg

“stb_image.h is a very popular single header image loading library by Sean Barrett that is
able to load most popular file formats and is easy to integrate in your project(s).
stb_image.h can be downloaded from here. Simply download the single header file, add it
to your project as stb_image.h”

ht
tp

s:
//l

ea
rn

op
en

gl
.c

om
/G

et
tin

g-
st

ar
te

d/
Te

xt
ur

es

https://learnopengl.com/Getting-started/Textures

Cap. 10: TexturasStep 4 (contd.):
the whole process including shaders

#version 330 core
out vec4 FragColor;
in vec3 ourColor;
in vec2 TexCoord;
// texture samplers
uniform sampler2D texture1;
uniform sampler2D texture2;
void main() {

// linearly interpolate between both textures (80% container, 20% awesomeface)
FragColor = mix(texture(texture1, TexCoord), texture(texture2, TexCoord), 0.2);

}

#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
layout (location = 2) in vec2 aTexCoord;

out vec3 ourColor;
out vec2 TexCoord;

void main() {
gl_Position = vec4(aPos, 1.0);
ourColor = aColor;
TexCoord = vec2(aTexCoord.x, aTexCoord.y);

}

https://learnopengl.com/Getting-started/Textures

Cap. 10: Texturas

Further reading

https://learnopengl.com/Getting-started/Textures

https://open.gl/textures

http://www.opengl-tutorial.org/beginners-tutorials/tutorial-5-a-textured-cube/

Cap. 10: Texturas

Summary:

…:

– Objectives and motivation

– Notion of texture, texture mapping, texture patterns and texels

– Texture mapping on polygons, texture interpolation

– Wrapping modes

– Filtering modes

– Blending modes

– Mapping textures on geometric objects

§ planar mapping

§ cylindrical mapping

§ spherical mapping

§ box mapping

