OHIO
SIAITE

UNIVERSITY

Texture Mapping

To add surface details...

* More polygons (slow and hard to handle small details)
e Less polygons but with textures (much faster)

World of Warcraft, Blizzard Inc.

Advantages

* Texture mapping doesn’t affect geometry processing, such
as transformation, clipping, projection,

* |t does affect rasterization, which is highly accelerated by
hardware.

* Textures can be easily replaced for more details: texture
mod in games.

After mod

Texture Representation

e Bitmap textures (supported by OpenGL)
* Procedural textures (used in advanced programs)

* Bitmap texture

A (L1) — » A 2D image, represented by a
t ==='.'!,=§f=”5== 2D array (width-by-height).

e Each pixel (or called texel) has a
unique texture coordinate (s, t).

e sandtare defined from 0 to 1.

* Given (s, t), we can find a
. unigue image value.

N :

(0,0)

Texture Value Lookup

e To find the unique image value at (s, t):
* Nearest neighbor
* Bi-linear interpolation
e Other filters

(1,1)

o

~

(s, t) is not exactly at
the texel location.

T

/! f t N\ AN
(0,0) (0.25,0) (0.5,0) (0.75,0) (1,0)

Mapping from Texture to Polygon

* Texture mapping is performed in rasterization.

* @Given texture coordinates at vertices,

e Calculate the texture coordinate (s,
t) at each pixel, using linear (0.5, 1)
interpolation :

(1,1)

* Find the texture value using
texture lookup

e Combine it with the illumination
effect...

(0.5 0.5)

(1, 0.5)

Texture Mapping

v

Projection

4

Texture Space

OpenGL Texture Mapping

* Steps in OpenGL

Specify the texture: read/generate the image,
assign it as a texture

Specify texture mapping parameters: wrapping,
filtering, ...

Enable OpenGL texture mapping
(GL_TEXTURE_2D)

Assign texture coordinates to vertices
Draw your objects

Disable OpenGL texture mapping

Specify Textures

* Load the texture from main memory into texture memory

glTexImage2D(target, level, iformat, width, height,
border, format, type, pointer);

 For example,

glTexImage2D(GL TEXTURE 2D, 0, GL RGB, 64, 64, 0,
GL RGB, GL UNSIGNED BYTE, pointer);

GLuByte pointer[64][64][3];

* The texture resolution must be power of 2.

Fix Texture Size_ o

* If the resolution is not power of 2:

* Pad zeros by yourself 100

(remember to adjust texture
coordinates for your vertices, or
you will see the dark boundary).

128

* Or, resize the image using:

GLint gluScaleImage(GLenum format,
GLsizei wIn, GLsizei hIn,
GLenum typeln, const void *dataln,
GLsizei wOut, GLsizei hOut,
GLenum typeOut, const void *dataOut)

Texture Mapping Parameters (1)

* (s, t)in the texture space are from O to 1. But what if
vertices have texture coordinates beyond this range?

(2, 2) (2, 2)

0 B 11
S —

Texture (0, 0) (0, 0)
GL_REPEAT GL_CLAMP

* For example,

glTexParameteri(GL TEXTURE 2D, GL TEXTURE WRAP S,

GL_CLAMP)

Texture Mapping Parameters (2)

e Since a texture can be mapped arbitrarily to an image
region, it can either be magnified or minified.

Screen Screen

Magnification Minification

 Mag filter: To interpolate a value from neighboring texels
* Min filter: Combine multiple texels into a single value

copyright

reverend

www.voodooextreme.com/3dpulpit
www.heyond3d.com

oy

ne

:

>

fing, you

Texture Mapping Parameters (3)

* OpenGL texture filtering:
O O F
1

Nearest Neighbor Bi-linear Interpolation
(fast, but with aliasing) (slow, but less aliasing)

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL_ NEAREST)

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MIN FILTER, GL LINEAR)

glTexParameteri (GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL NEAREST)

glTexParameteri(GL TEXTURE 2D, GL TEXTURE MAG FILTER, GL LINEAR)

Texture Color Blending

Determine how to combine the texture color with the
object color

e GL MODULATE: multiply texture with object color

e GL BLEND: linear combination of texture and object
color

* GL_REPLACE: use texture color to replace object color

For example,

glTexEnvf (GL TEXTURE ENV, GL TEXTURE ENV MODE, GL REPLACE)

Remember to use GL. MODULATE (default) if you want to
have the light effect.

Enable/Disable Textures

glEnable (GL TEXTURE 2D)

glDisable(GL TEXTURE 2D)

Remember to disable texture mapping when drawing
non-texture polygons.

Specify Texture Coordinates

e Define texture coordinates before each vertex

glBegin(GL_QUADS);
glTexCoord2D(0, 0);
glvertex3f(-1, 0, -1);

glEnd();

* Texture coordinates can be transformed as well, using a
GL_TEXTURE matrix.

e Switch to:
glMatrixMode (GL_TEXTURE) ;
* Apply 2D transformation
 Then draw your object
* Not necessary to use

Summary

glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP S, GL REPEAT);
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE WRAP T, GL REPEAT);
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MIN FILTER, GL_ NEAREST);
glTexParameteri (GL_TEXTURE 2D, GL TEXTURE MAG FILTER, GL_ NEAREST);
glTexEnvf (GL_TEXTURE ENV, GL TEXTURE ENV_MODE, GL MODULATE);

glEnable(GL TEXTURE 2D);
glTexImage2D(GL TEXTURE 2D, 0, GL RGB, 64, 64, 0, GL RGB,
GL UNSIGNED BYTE, img pointer);

glBegin(GL_ TRIANGLES) ;
glTexCoord2D(0, 0);
glNormal3£f(0, 1, 0);
glvertex3f (-1, 0, -1);

glEnd();
glDisable(GL_TEXTURE 2D);

Mip Map

* Mip map is a technique that helps improve the
computational efficiency and avoid aliasing:

Minification

¢

Original Image

Mip Map

Multiple MipMap Textures in OpenGL

glTexParameteri(GL_TEXTURE 2D, GL_TEXTURE MIN FILTER,
GL_NEAREST MIPMAP NEAREST) ;

Gluint texturel, texture2;

glGenTextures (1, &texturel);

glBindTexture (GL_TEXTURE 2D, texturel);

gluBuileDMipmaps(GL_TEXTURE_ZD,(:) width, height, GL RGB,

GL UNSIGNED BYTE, datal); _
- - Number of input channels

glGenTextures (1, &texture2);

glBindTexture (GL_TEXTURE 2D, texture2);

gluBuild2DMipmaps (GL_TEXTURE_ 2D, width, height, GL RGBA,

GL UNSIGNED BYTE, data2); .
— - Number of input channels

//To use them

glEnable (GL TEXTURE 2D);

glBindTexture(GL TEXTURE 2D, texturel);

Draw Object 1();

glBindTexture(GL TEXTURE 2D, texture2);

Draw Object 2();

Surface Parameterization

* Find texture coordinates for a planar surface is trivial.

 However, finding texture coordinates for an arbitrarily
curved surface is a research problem called: surface
parameterization.

* |t means parametrizing the surface using texture
coordinates (s, t). =

An Example

2D Texture 3D Earth

Planar Projection

Vertex (x, y, z) -> Texture (y, z) Vertex (x, v, z) -> Texture (X, z)

Planar Projection

Dry condition

Cylindrical Projection

* Project any 3D point onto a cylinder. The height and the
angle become texture coordinates: (s, t).

Spherical Projection

* Project any 3D point onto a unit sphere. The spherical
coordinates are texture coordinates: (s, t).

Parametric Surfaces

e Surfaces can also be created in a parametric way. Any
3D point on the surface are defined as functions of
texture coordinates:

x = 1(s,1), y = g(s,t), Z = h(s,?)

Rasterization

* Rasterization uses scanlines to interpolate a lot of things:
* Color (Gouraud shading)
e Depth (depth buffer)
* Texture coordinates

For every
scanline

Linear Texture Coordinate Interpolation

* It has artifact when using perspective projection
and large polygons. Textures are warped! Very
noticeable in animation.

Linear Texture Coordinate Interpolation

* This is because perspective projection has foreshortening
effect. Linear interpolation in 2D does not consider this.

A | [———

/%[5' : TR S
170 ¢) \
/ |
equispaced / farther

from
closer to the eye
the eye

In a 2D view In a 3D perspective view

Solution

* Let w be the homogenous coordinate.
* |Interpolate (s/w, t/w, 1/w) to get three values: (a, b, c).
* The final result is: (a/c, b/c).

(XZI y21 22) WZ)
(SZ/WZI tZ/WZI 1/W2)

“ L]
8 tssssssssssssnnnnnnfl Jussssnsnd
'. B

/ (a, b, c) \

(Xo; Yor Zo» Wo) (X1; Y1, 21, W1)
(SO/WO, tO/WOI 1/W0) (51/W1) t1/W1, 1/W1)

Perspective Correction

Before Correction After Correction

Perspective Correction

* To enable perspective correction:

glHint (GL PERSPECTIVE CORRECTION HINT, hint)

* Hint can be:
 GL_NICEST (with correction, sloow)
 GL FASTEST (linear)
e GL DONT _ CARE (linear)

Advanced Textures

* OpenGL only uses textures to change surface colors.

e But textures can have other usages.

* For example, the bump map that changes the surface
normal. (The geometry stays the same. You can tell
this from the silhouette.)

o b

Displacement Map

* You can even change the geometry, by treating the
texture as an offset map to the vertex position.

Environment Map

* You can surround the 3D space with a texture image
too. You can consider the 3D space is contained in an
infinite sphere, textured by an image.

Texture Animation

* Animate the texture over time
* Apply transformations to texture coordinates

* Change textures
(but try to avoid multiple texture loadings)

