
Chap. 10
Textures

Ensino de Informática (3326) - 4º ano, 2º semestre
Engenharia Electrotécnica (2287) - 5º ano, 2º semestre
Engenharia Informática (2852) - 4º ano, 2º semestre

Overview

 Objectives
 Notion of texture
 Motivation
 Texture mapping, texture patterns, and texels
 Mapping textures to polygons, texture interpolation
 Rasterization: texture application modes
 Mapping textures to geometric objects

 planar mapping
 cylindrical mapping
 spherical mapping
 box mapping

 Wrapping modes
 ...

Objectives

 Introduce Mapping Methods
 Texture Mapping
 Environmental Mapping
 Bump Mapping
 Light Mapping

 Consider two basic strategies
 Manual coordinate specification
 Two-stage automated mapping

Notion of Texture

 A texture is an image with
red, green, blue and alpha
components...

 Texture Mapping: a method
to create complexity in an image
without the overhead of building
large geometric models.

Motivation:
(1) adding realism
 Objects rendered using Phong reflection

model and Gouraud or Phong
interpolated shading often appear rather
‘‘plasticplastic’’ and ‘‘floating in airfloating in air’’

 Texture exture effects can be added to give
more realistic looking surface
appearance
 Texture mapping

Texture mapping uses pattern to be put on
a surface of an object.

 Light maps
Light maps combine texture and lighting
through a modulation process

 Bump mapping
Smooth surface is distorted to get variation
of the surface

 Environmental mapping
Environmental mapping (reflection maps) –
enables ray-tracing like output

texture map

light map

bump map

reflection
map

Motivation:
(2) adding surface detail
 The most obvious solution is not the best

 breaking the scene into smaller and smaller polygons
increases the detail

 But it is very hard to model and very time-consuming to render
 Preferred solution is texture mapping

 typically a 2D image ‘‘paintedpainted’’ onto objects
 Examples:

 Model t-shirt with logo
 no need to model the letters and engine with triangles
 use large base polygon
 color it with the photograph

 Subtle wall lighting
 No need to compute it at every frame
 No need to model it with a lot of constant color triangle
 Past photograph on large polygon

 Non-planar surfaces also work
 subdivide surface into planar patches
 assign photograph subregions to each individual patch

 Examples of modulating color, bumpiness, shininess,
transparency with identical sphere geometry

Textures: at what point do
things start to looking real?

geometric model geometric model
+

shading

geometric model
+

shading
+

textures

 Surfaces “in the wild” are very complex
 Cannot model all the fine variations
 We need to find ways to add surface detail. How?

Texture mapping, texture
pattern, and texels
 Developed by Catmull (1974), Blinn and

Newell (1976), and others.
 Texture mapping: adds surface detail

by mapping texture patterns onto the
surface.

 Pattern is repeated. For example, the
texture pattern for the cube aside is
the following:

 Texel: short for “texture element”.
 A texel is a pixel on a texture. For

example, an 128x128 texture has
128x128 texels. On screen this may
result in more or fewer pixels depending
on how far away the object is on which
the texture is used and also on how the
texture is scaled on the
object.geometric model texture mapped
geometric model texture mapped

Mapping Techniques

 Texture Mapping
 Environmental Mapping
 Bump Mapping
 Light Mapping

Texture Mapping
 Question to address: Which point of the

texture do we use for a given point on
the surface?

 The texture is simply an image, with a
2D coordinate system (s,t)
 Parameterize points in the texture with 2

coordinates: (s,t)
 Define the mapping from (x,y,z) in world

space to (s,t) in texture space
 To find the color in the texture, take an

(x,y,z) point on the surface, map it into
texture space, and use it to look up the
color of the texture

 With polygons:
 Specify (s,t) coordinates at vertices
 Interpolate (s,t) for other points based on

given vertices

s

t

s

t

u

 v

(s,t) = (u,v)

Texture to Surface
Coordinate Mapping
 The basic problem is how to find the

texture to surface mapping
 Given a texture position (s,t), what is the

position (x,y,z) on the surface?
 Appear to need three functions:

 x = X(s, t)
 y = Y(s, t)
 z = Z(s, t)

 So, there are 2 coordinate systems
involved, the 2D image coordinates (s,t)
and the 2D parameterization coordinates
(u,v) that we assign to the 3D object

 Texture coordinates (s,t)
 Used to identify points in the texture

image
 Parametric coordinates (u,v)

 Used to map the 3D surface with 2D
parameters

s

t
(x,y,z)

How to set
(u,v) parametric coordinates?

 Set the coordinates manually
 Set the texture coordinates for each vertex ourselves

 Automatically compute the coordinates
 Use an algorithm that sets the texture coordinates for us

Manually specifying the
coordinates
 We can manually specify the texture coordinates at each vertex

(0,0)
texture 2D polygon textured polygon

+ =(1,1)

(0,0)

(1,1)

 We can chose alternate texture coordinates

(0,0)
texture 2D polygon textured polygon

+ =(1,1)

(0,0)

(1,0.5)

Mapping Texture to Polygons

 For polygon texture mapping,
we explicitly define the (u,v)
coordinates of the polygon
vertices

 That is, we pin the texture at
the vertices

 We interpolate within the
triangle at the time of scan
converting into screen space

u

v

…
glTexCoord2f(0.5, 0.5);
glVertex3fv (10.2,3.4,4.5);
…

Texture Interpolation

 Interpolation is done during
scan conversion, similar as
is done for Gouraud
interpolated shading

 But rather than interpolate
to get RGB values, we get
(u,v) values which point to
elements of texture map.

 Thus, texture mapping is
done in canonical screen
space as the polygon is
rasterized

 When describing a scene,
you assume that texture
interpolation will be done in
world space

(x1, y1), (u1, v1)(x2, y2), (u2, v2)

(x3, y3), (u3, v3)

R

LR

L

L

LR

L
s

xx

xx
s

xx

xx
s !!

"

#
$$
%

&

'

'
+!!

"

#
$$
%

&

'

'
'= 1

!

sR = 1"
y " y

1

y
3
" y

1

$
%

&

'
(u1 +

y " y
1

y
3
" y

1

$
%

&

'
(u3

!

sL = 1"
y " y

2

y
3
" y

2

$
%

&

'
(u2 +

y " y
2

y
3
" y

2

$
%

&

'
(u3

Rasterization:
Texture Application Modes
 After a texture value is retrieved

(may be further transformed), the
resulting values are used to modify
one or more polygon/surface
attributes

 Called combine functions or
texture blending operations:
 replace: replace surface color with

texture color
 decal: replace surface color with

texture color, blend the color with
underlying color with an alpha texture
value, but the alpha component in
the framebuffer is not modified

 modulate: multiply the surface color
by the texture color (shaded +
textured surface). Need this for
multitexturing (i.e., lightmaps).

 blend: similar to modulation but add
alpha-blending

Texture Polygon Mapped
Texture

Texture Polygon Mapped
Texture

REPLACE operation

MODULATE operation

Texture Mapping Issues

 What should happen when we zoom in close or zoom out far away?

 How do we generate texture coordinates?

 What happens if we use texture coordinates less than zero or
greater than one?

 Are texture maps only for putting color on objects?

Texture to Surface Mapping

 Texture map to surface takes place
during rendering.

 Similar to smooth shading method:
 Triangle rasterized
 Each pixel mapped back to the texture
 Use known values at vertices to

interpolation over the texture

 Each pixel is associated with small
region of surface and to a small area
of texture.

 There are 3 possibilites for
association:
1. one texel to one pixel (rare)
2. Magnification: one texel to many pixels
3. Minification: many texels to one pixel

Magnification

Minification

Texture to Surface Mapping
Zoom In: Magnification Filter
 Pixel maps to a small portion of one texel
 Results in many pixels mapping to same texel
 Without a filtering method, aliasing is common
 Magnification filter: smooths transition between pixels

Magnification

many pixels correspond to one texel
 “blockiness” / jaggies / aliasing

solution: apply averaging
(magnification filter)

Texture to Surface Mapping
Zoom Out: Minification Filter
 One pixel maps to many texels
 Common with perspective foreshortening

Minification

Perspective foreshortening
and poor texture mapping
causes checkerboard to
deform

Mipmaps improve the
mapping, returning more
form to the checkerboard

Texture to Surface Mapping
Better Min Filter: Mipmaps
 “mip” stands for multum in parvo, or “many things in a small place”
 Basic idea: Create many textures of decreasing size and use one of

these subtextures when appropriate
 Pre-filter textures = mipmaps

Minification

Texture to Surface Mapping
Mipmaps: Storage Optimization
 Must provide all sizes of

texture from input to 1x1
in powers of 2

Filtering in Summary

 Zoom-in calls for mag filter

 Zoom-out calls for min filter

 More advanced filters require more time/computation but produce
better results

 Mipmapping is an advanced min filter

 Caution: requesting mipmapping without pre-defining mipmaps will
turn off texturing; (see Filtering in OpenGL)

Wrapping Modes

 Can assign texture coords outside of
[0,1] and have them either clamp or
repeat the texture map

 Wrapping modes:
 repeat: start entire texture over

 Repeat Issue: making the texture borders
match-up

 mirror: flip copy of texture in each
direction

 get continuity of pattern

 clamp to edge: extend texture edge
pixels

 clamp to border: surround with border
color

courtesy of Microsoft

(0, 0) (3, 0)

(3, 3)(3, 0)

REPEAT

MIRROR

CLAMP
TO EDGE

CLAMP TO
BORDER

Wrapping modes:
Repetitive texture tiling
 A texture can also be repeatedly tiled across the surface by repeating the

(s,t) parameterization over the surface

 But, best results are obtained when the texture is seamlessly tilable
 This means that the right side of the texture joins seamlessly with the left side

(same with the bottom and top)

 Seams will appear for most textures when tiled:

 But, we can edit or re-synthesize textures to be seamlessly repeatable (this is
another topic onto itself):

Texturing in OpenGL

 Procedure
 Example

Texturing in OpenGL

 Procedure: Texture Mapping

 uploading of the texture to the video memory
 set up texture parameters
 enable texturing
 the application of the texture onto geometry

Texturing in OpenGL:
main steps
1. Create texture and load with

 glTexImage()
 Three methods:

 read in an image in a jpg, bmp, ... File
 generate the texture yourself within application
 ccopy image from color buffer

2. define texture parameters as to how texture is applied
 glTexParameter*()
 wrapping, filtering, etc

3. enable texturing
 glEnable(GL_TEXTURE_*D)

4. assign texture coordinates to vertices
 the mapping function is left up to you
 glTexCoord*(s,t);
 glVertex*(x,y,z);

Step 1: Specifying Texturing
Image
 Define a texture image as an array of texels

(texture elements) in CPU memory:

Glubyte myTexture[width][height][3];

 Each RGB value is specified to be an unsigned
byte, between 0 and 255

 For example, a blue color would be (0, 0, 255)

Warning:
this [3]
seems to
be missing
in the
textbook

Step 1: Defining an Image as a
Texture
 Call glTexImage2D. It uploads the texture to the video memory where it will be ready for

us to use in our programs.

 void glTexImage2D(target,level,components,w,h,border,format,type,texture);
Parameters:
 target : type of texture, e.g. GL_TEXTURE_2D
 level : used for mipmapping = 0 (discussed later)
 components : elements per texel (for RGB)
 w, h : width and height of texture in pixels
 border : used for smoothing = 0 (don’t worry about this)
 format : texel format e.g. GL_RGB
 type : rgb component format e.g. GL_UNSIGNED_BYTE
 texture : pointer to the texture array

 Example, set the current texture:

glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0, GL_RGB, GL_UNSIGNED_BYTE, texture);

Step 1 (alternative):
Generating a Random Texture
 Here is a function for a random texture:

GLubyte texture[64][64][3];
int u, v;

for(u=0; u<64; u++)
{

for(v=0; v<64; v++)
{
 texture[u][v][0] = (GLubyte)(255 * rand()/RAND_MAX);
 texture[u][v][1] = (GLubyte)(255 * rand()/RAND_MAX);
 texture[u][v][2] = (GLubyte)(255 * rand()/RAND_MAX);
}

}

Step 2:
Specifying Texture Parameters
 OpenGL has a variety of parameters that determine how textures are

applied:
 Wrapping parameters determine what happens if s and t are outside the

(0,1) range
 Filter modes allow us to use area averaging instead of point samples
 Mipmapping allows us to use textures at multiple resolutions

 The glTexParameter() function is a crucial part of OpenGL texture
mapping, this function determines the behavior and appearance of
textures when they are rendered.

 Take note that each texture uploaded can have its own separate
properties, texture properties are not global.

Step 2:
glTexParameter()

Texture Paramete r Accepted value s Descripti o n

GL_TEXTURE_MIN_FILTER

GL_NEAREST , GL_LINEAR,

GL_NEAREST_MIPMAP_NEAREST,
GL_LINEAR_MIPMAP_NEAREST,
GL_NEAREST_MIPMAP_LINEAR and

GL_LINEAR_MIPMAP_LINEAR

The texture minification function is used

when a single screen pixel maps to
more than one texel, this means the
texture must be shrunk in size.

Default setting is
GL_NEAREST_MIPMAP_LINEAR.

GL_TEXTURE_MAG_FILTE R GL_NEAREST or GL_LINE A R

The texture magnification function is
used when the pixel being textured
maps to an area less than or equal to

one texel, this means the texture must
be magnified.

Default setting is GL_LINE A R .

GL_TEXTURE_WRAP_ S GL_CLAMP or GL_REPEAT

Sets the wrap parameter for the s
texture coordinate. Can be set to either
GL_CLAMP or GL_REPEAT.

Default setting is GL_REPEAT.

GL_TEXTURE_WRAP_T GL_CLAMP or GL_REPEAT

Sets the wrap parameter for the t

texture coordinate. Can be set to either
GL_CLAMP or GL_REPEAT.

Default setting is GL_REPEAT.

GL_TEXTURE_BORDER_COL O R Any four values in the [0, 1] range

Sets the border color for the texture, if
border is present.

Default setting is (0, 0, 0, 0) .

GL_TEXTURE_PRIORITY [0, 1]

Specifies the residence priority of the
texture, use to prevent OpenGL from

swapping textures out of video memory.
Can be set to values in the [0, 1] range.
See glPrioritizeTextures() for more

information or this article on
Gamasutra.

Target Specifies the target textur e

GL_TEXTURE_1 D One dimensional texturing.

GL_TEXTURE_2 D Two dimensional texturing.

Step 2:
glTexParameter()

Parameter Value Description

GL_CLAMP Clamps the texture coordinate in the [0,1] range.

GL_REPEAT

Ignores the integer portion of the texture coordinate, only the
fractional part is used, which creates a repeating pattern. A
texture coordinate of 3.0 would cause the texture to tile 3 times
when rendered .

GL_NEAREST

Returns the value of the texture element that is nearest (in
Manhattan distance) to the center of the pixel being textured.
Use this parameter if you would like your texture to appear

sharp when rendered .

GL_LIN E A R

Returns the weighted average of the four texture elements that
are closest to the center of the pixel being textured. These can
include border texture elements, depending on the values of
GL_TEXTURE_WRAP_S and GL_TEXTURE_WRAP_T, and on
the exact mapping. Use this parameter if you would like your
texture to appear blurred when rendered .

GL_NEAREST_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the
pixel being textured and uses the GL_NEAREST criterion (the
texture element nearest to the center of the pixel) to produce a
texture value.

GL_LINEAR_MIPMAP_NEAREST

Chooses the mipmap that most closely matches the size of the

pixel being textured and uses the GL_LINEAR criterion (a
weighted average of the four texture elements that are closest
to the center of the pixel) to produce a texture value.

GL_NEAREST_MIPMAP_LIN E A R

Chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the GL_NEAREST criterion
(the texture element nearest to the center of the pixel) to
produce a texture value from each mipmap. The final texture

value is a weighted average of those two values.

GL_LINEAR_MIPMAP_LIN E A R

Chooses the two mipmaps that most closely match the size of
the pixel being textured and uses the GL_LINEAR criterion (a
weighted average of the four texture elements that are closest
to the center of the pixel) to produce a texture value from each
mipmap. The final texture value is a weighted average of those
two values.

Step 2:
Wrapping Modes
 Clamping : if s,t > 1 use color at 1, if s,t < 0 use color at 0

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP);

 Repeating : use s,t modulo 1
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);

texture
s

t

Wrap S : GL_REPEAT
Wrap T : GL_REPEAT

Wrap S : GL_REPEAT
Wrap T : GL_CLAMP

Wrap S : GL_CLAMP
Wrap T : GL_REPEAT

Wrap S : GL_CLAMP
Wrap T : GL_CLAMP

Step 2:
Filter Modes
 Minification and magnification

Step 2:
Mipmapping
 bkjhgkj

Step 3: Enable Texturing

 To enable/disable just call:
 glEnable(GL_TEXTURE_2D)
 glDisable(GL_TEXTURE_2D);

 What does texture mapping affect?
 the current shading color of a pixel (after lighting) is multiplied by the

corresponding texture color

 So, if the object is a near white color (0.8, 0.8, 0.8) at some point and the
current texture color at that point is red (1, 0, 0), then when multiplied, it
produces (0.8, 0, 0)

Step 4:
Mapping a Texture
 Assign the texture coordinates
 glTexCoord*() is specified at each vertex

s

t
1, 1

0, 1

0, 0 1, 0

(s, t) = (0.2, 0.8)

(0.4, 0.2)

(0.8, 0.4)

A

B C

a

b

c

Texture Space Object Space

Step 4:
Mapping a Texture: example
 How to texture a quad? The following code assumes that texturing has been enabled

and that there has been a texture uploaded with the id of 13.

glBindTexture (GL_TEXTURE_2D, 13);

glBegin (GL_QUADS);
glTexCoord2f (0.0, 0.0); glVertex3f (0.0, 0.0, 0.0);
glTexCoord2f (1.0, 0.0); glVertex3f (10.0, 0.0, 0.0);
glTexCoord2f (1.0, 1.0); glVertex3f (10.0, 10.0, 0.0);
glTexCoord2f (0.0, 1.0); glVertex3f (0.0, 10.0, 0.0);

glEnd ();

(0.0f,0.0f) (1.0f,0.0f)

(1.0f,1.0f)(0.0f,1.0f)

texture coordinates

Texturing Mapping in OpenGL:
summing up
 We have seen how a 2D texture image can be mapped to an object, at

the rendering stage
 for a polygon, we pin texture to vertices and interpolate (correctly!) at scan

conversion time

 The texture value is used to modifymodify the colour that would otherwise be
drawn
 options include replacing completely, or modulating (e.g. by multiplying

shaded value with texture value)

What about complex 3D
objects?
 It is easy to set texture coordinate for a single 2D

polygon, but can be difficult to set the texture
coordinates for complex 3D regions or objects.

 Besides:
 in rendering based on pixel-to-pixel approach, the

inverse mapping from screen coordinates to texture
coordinates is needed

 because of shading, mapping areas-to-areas and not
point-to-point is required, which causes antialising
problems, moire patterns etc.

 Two-Stage Mapping: An automatic solution to the
mapping problem is to first map the texture to a
simple intermediate surface then map the simple
intermediate surface to the target surface

Automatic: cylindrical mapping

 Example: first map to a cylinder
 Like wrapping a label around a can of soup

 Convert rectangular coordinates (x, y, z) to cylindrical (r, , h), use only (h, µ) to index
texture image

h

u

v

Automatic: cylindrical mapping

 Example: first map to a cylinder
 Like wrapping a label around a can of

soup

 Convert rectangular coordinates (x, y, z) to
cylindrical (r, θ, h), use only (h, θ) to index
texture image

 Parametric cylinder:
x = r cos (2π u)
y = v/h
z = r sin (2π u)

 Maps rectangle in u, v space to cylinder
of radius r and height h in world
coordinates:

s = u
t = v

h

u

v

Automatic: spherical mapping

 Example: first map to a sphere

 Convert rectangular coordinates (x,y,z)
to spherical (θ,φ)

 Parametric sphere:
x = r cos (2π u)
y = r sin (2π u) cos (2π v)
z = r sin (2π u) sin (2π v)

 For example: paste a world map onto a
sphere to model the earth. But in the
case of the sphere there is distortion at
the poles (north and south)

Automatic: box mapping

 Example: first map to a box

Automatic: stage-two mapping

 Now, we still need to map from an intermediate object (sphere, cylinder, or box) to the
target object

1. Intersect the normals from intermediate surface to target surface
2. Intersect the normals from target surface to intermediate surface
3. Intersect vectors from center of target surface to intermediate

Mapping Techniques

 Texture Mapping
 Environmental Mapping
 Bump Mapping
 Light Mapping

Environmental Maps

 Use texture to represent reflected
color
 Texture indexed by reflection

vector
 Approximation works when

objects are far away from the
reflective object

 Environment mapping produces
reflections on shiny objects

 Texture is transferred in the
direction of the reflected ray from
the environment map onto the
object

 Reflected ray: R=2(N·V)N-V
 What is in the map? spherical map

Approximations Made

 The map should contain a view
of the world with the point of
interest on the object as the eye
 We can’t store a separate map

for each point, so one map is
used with the eye at the center of
the object

 Introduces distortions in the
reflection, but the eye doesn’t
notice

 Distortions are minimized for a
small object in a large room

 The object will not reflect itself
 The mapping can be computed

at each pixel, or only at the
vertices

cubic map

Types of Environment Maps

 The environment map may take one of
several forms:
 Cubic mapping

 Easy to produce with rendering system
 Possible to produce from phtographs
 “uniform” resolution
 Sim ple texture coordinates calculation

 Spherical mapping (two variants)
 Spatially variant resolution

 Parabolic mapping
 Describes the shape of the surface on

which the map “resides”
 Determines how the map is generated

and how it is indexed
 What are some of the issues in

choosing the map?

cubic map

spherical maps

Mapping Techniques

 Texture Mapping
 Environmental Mapping
 Bump Mapping
 Light Mapping

Bump Mapping

 This is another texturing
technique

 Aims to simulate a dimpled or
wrinkled surface
 for example, surface of an

orange
 Like Gouraud and Phong

shading, it is a tricktrick
 surface stays the same
 but the true normal is

perturbed, or jittered, to give
the illusion of surface
‘bumps’

Bump Mapping:
how does it work?
 To create a bump-like effect, we

use texture to perturb normals
 Many textures are the result of

small perturbations in the
surface geometry

 Modeling these changes would
result in an explosion in the
number of geometric primitives.

 Bump mapping attempts to alter
the lighting across a polygon to
provide the illusion of texture.

 We can model this as deviations
from some base surface.

 The question is then how these
deviations change the lighting.

N

N´

S(u,v) + B(u,v) = S’(u,v)
original
surface

bumped
surface

bump
map

Bump Mapping:
step 1 and 2
 Step 1: Putting everything into

the same coordinate frame as
B(u,v).
 x(u,v), y(u,v), z(u,v) – this is given

for parametric surfaces, but easy
to derive for other analytical
surfaces.

 Or S(u,v)
 Step 2: Define the tangent plane

to the surface at a point (u,v) by
using the two vectors Su and Sv.
 The normal is then given by:

N = Su × Sv

N

Su

Sv

Bump Mapping:
step 3, 4, and 5
 Step 3: The new surface positions are then given by:

 S’(u,v) = S(u,v) + B(u,v) N
 where, N = N / |N|

 Step 4: Differentiating leads to:
 S’u = Su + Bu N + B(N)u ≈ S’u = Su + Bu N
 S’v = Sv + Bv N + B(N)v ≈ S’v = Sv + Bv N
If B is small.

 Step 5: This leads to a new normal:
 N´(u,v) = Su × Sv - Bu(N × Sv) + Bv(N × Su) + Bu Bv(N × N)

 = N - Bu(N × Sv) + Bv(N × Su)
 = N + D

N

Su

SvN´

D

 For efficiency, can store Bu and Bv in a 2-component texture map.
 The cross products are geometry terms only.
 N´ will of course need to be normalized after the calculation and before lighting.This

floating point square root and division makes it difficult to embed into hardware.

Mapping Techniques

 Texture Mapping
 Environmental Mapping
 Bump Mapping
 Light Mapping

Light Mapping

 Gouraud shading is established
technique for rendering but has
well known limitations
 Vertex lighting only works well for

small polygons…
 … but we don’t want lots of

polygons!
 Solution is to pre-compute some

canonical light effects as texture
maps

 For example…
 Suppose we want to show effect

of a wall light
 Create wall as a single polygon
 Apply vertex lighting
 Apply texture map
 In a second rendering pass, apply

light map to the wall

=×

× =

reflectance irradiance radiosity

Light Mapping

 Widely used in games industry
 Latest graphics cards will allow

multiple texture maps per pixel

