
Computação Gráfica
Computer Graphics
Engenharia Informática (11569) – 3º ano, 2º semestre

Chap. 9 – Shading

http://di.ubi.pt/~agomes/cg/09-shading.pdf

T09 Shading

Outline

…:

– Light-dependent illumination models: a refresher

– Shading: motivation

– Types of shading: flat, Gouraud, and Phong

– Flat shading algorithm

– Gouraud shading algorithm

– Phong shading algorithm

– Shading issues

– Flat, Gouraud, and Phong shaders in GLSL

– OpenGL/GLSL examples.

Based on
https://www.cs.unc.edu/~dm/UNC/COMP236/LECTURES/LightingAndShading.ppt

T09 Shading

Light-dependent models: a refresher

Direct (or local) illumination:

– Simple interaction between light and objects

– Real-time process supported by OpenGL

– Example: Phong’s illumination model.

Indirect (or global) illumination:

– Multiple interactions between light and objects
(e.g., inter-object reflections, refraction, and
shadows)

– It is a real-time process for small scenes, but not
for complex scenes

– Examples: raytracing, radiosity, photon mapping …

ht
tp

://
je

di
.k

s.
ui

uc
.e

du
/~

jo
hn

s/
ra

yt
ra

ce
r/

ra
yg

al
le

ry
/s

til
ls

.h
tm

l

T09 Shading

We now have a direct lighting model for a simple point on the surface.

Assuming that our surface is defined as a mesh of polygonal faces, what points
should we use?

– Computing the color for all points is expensive

– The normals may not be explicitly defined for all points

It should be noted that:

– Lighting involves a rather cumbersome calculation process if it is applied to all points on the
surface of an object

– There are several possible solutions, each of which has different implications for the visual
quality of the scene.

Shading: motivation

T09 Shading

Shading

T09 Shading

Types of shading

In polygonal rendering, there are 3 main types:

– Flat shading

– Gouraud shading

– Phong shading

These roughly correspond to:

– Per-polygon shading

– Per-vertex shading

– Per-pixel shading

Recall that new graphics hardware makes
programmable shading per pixel!

T09 Shading

Flat shading

Flat shading:

– It is the fastest and simplest method,

§ because it computes the color (or shade) at a
single point of each polygon,

§ and use that color on every pixel of the
polygon

– The lighting intensity (color) is the same for all
points of each polygon.

– Benefit:

§ Fast: a shade per polygon

§ because it uses a normal per polygon

– Disadvantages:

§ Inaccurate

§ Discontinuities at the boundaries of polygons

§ Lack of realism

T09 Shading

Flat shading: lack of realism

Why?

– For point light sources, the direction to the light
source varies for each point of the facet.

– In the case of specular reflection, the direction to
the observer varies for each point of the facet.

Solutions:

– To obtain visually smooth surfaces, we must use
normal vectors at the vertices of the polygons

§ normally different from polygon normal

§ are used only for shading effects

§ It suggests a better approximation to the real
surface that the polygons approach

– The vertex normals can be

§ supplied with the model

§ approximated by the average of the normals to the
facets that share each vertex

Lack of realism results from:
- The use of faceted objects (or meshes)
- The use of a single normal per polygon

T09 Shading

Gouraud shading: algorithm

Compute 𝑆𝐴, 𝑆𝐵, 𝑆𝐶 for triangle ABC.

– 𝑆𝑖	= shade of point 𝑖.

For a scanline XY, compute 𝑆𝑋, 𝑆𝑌 by lerping.

– 𝑡𝐴𝐵	 = 	 |𝐴𝑋|	/	|𝐴𝐵|

– 𝑆𝑋	 = 	𝑡𝐴𝐵	𝑆𝐴	 +	(1 − 𝑡𝐴𝐵)𝑆𝐵
Compute SP

– By lerping between 𝑆𝑋 and 𝑆𝑌.
scanline

𝐴

𝐵

𝐶

𝑆𝑋

𝑋 𝑌

𝑆𝑌

𝑃

𝑆𝑃

- It illuminates or directly shades each vertex using its position and its normal vector.
- Interpolate linearly the color on each face: first along the edges, then along scanline lines inside it.

T09 Shading

Gouraud shading: issues

Benefits:

– Fast: incremental calculations during rasterization

– Smoother: a normal vector is used for each shared
vertex in order to obtain continuity between faces

Disadvantages:

– Still inaccurate. The polygons appear bumpy and
dull.

– It tends to eliminate the specular component of
light. If we include it, it will be distributed over the
entire polygon.

Issues:

– Perspectively-incorrect interpolation

– Mach banding

𝑩

𝑨

𝑪

𝑆6 = 𝑆7 + 𝑡1(𝑆8 − 𝑆7)

can’t shade
that effect!

𝑆6 𝑆9

𝑆9 = 𝑆8 + 𝑡2(𝑆; − 𝑆8)

𝑆<

𝑆< = 𝑆6 + 𝑡3(𝑆9 − 𝑆6)

scanline

T09 Shading

Perspective distortion

Perspective distortion

– Perspective projection complicates linear
interpolation, resulting in perspectively-incorrect
interpolation.

– Linear interpolation in the screen space is not
aligned with linear interpolation in the space of
the scene domain. Relationship between screen
space distance and eye space distance is
nonlinear.

– Therefore, relationship between
interpolation in the two spaces is also
nonlinear.

– Thus, screen space linear interpolation
of colors (and texture coordinates)
results in incorrect values

Possible solution

– Larger polygons are partitioned into smaller
polygons to reduce distortion.

Z – into the scene

image
plane

T09 Shading

Perspectively-correct interpolation

For a detailed derivation, see:

§ https://www.comp.nus.edu.sg/~lowkl/publications/lowk_persp_interp_techrep.pdf

§ https://www.scratchapixel.com/lessons/3d-basic-rendering/rasterization-practical-
implementation/perspective-correct-interpolation-vertex-attributes

Here, we skip to the punch line:

– Given two eye space points, E1 and E2.

§ Can lerp in eye space: 𝐸(𝑇) 	= 	𝐸1(1 − 𝑇)	+ 	𝐸2(𝑇).
§ 𝑇 is eye space parameter, 𝑡 is screen space parameter.

– To see relationship, express in terms of screen space t:

§ 𝐸(𝑡) = 	 [(𝐸1/𝑍1). (1 − 𝑡) 	+	(𝐸2/𝑍2). 𝑡]	/	[(1/𝑍1). (1 − 𝑡) 	+	(1/𝑍2). 𝑡]
§ 𝐸1/𝑍1, 𝐸2/𝑍2 are projected points.

§ Because 𝑍1, 𝑍2	are depths corresponding to 𝐸1, 𝐸2.
– Looking closely, can see that interpolation along an eye space edge = interpolation along

projected edge in screen space divided by the interpolation of 1/𝑍.

- Can we interpolate in eye space, then project every interpolated point?: way too much work!
- Can we interpolate in screen space and correct for perspective nonlinearity?: yes!

T09 Shading

Mach bands

Gouraud discusses “artifact” of lerping.

Mach bands:

– Describe the increase of contrast of adjacent colors

– Caused by interaction of neighboring retinal neurons.

– Acts as a sort of high-pass filter, accentuating
discontinuities in first derivative.

– Linear interpolation causes first derivative
discontinuities at polygon edges

Gouraud suggests higher-order interpolation would
alleviate mach banding.

– But stresses the performance cost.

– Probably not worth it.

Phong shading helps the problem.

ht
tp
://
w
w
w
.m
ar
ks
ch
en
k.
co
m
/v
ar
io
us
/m
ac
hb
an
d.
ht
m
l

floor appears banded

banded
along
edges

flat shading Gouraud shading

T09 Shading

Phong shading

Earlier graphics hardware did not implemented
Phong shading

– APIs (D3D, OGL) employ Blinn-Phong lighting and
Gouraud shading.

Phong shading applies lighting computation per-
pixel

– Uses linear interpolation of normal vectors, rather than
colors.

Interpolation just as with colors in Gouraud shading

– Interpolate scan line endpoint normals NA, NB from
endpoints of intercepted edges.

– Interpolate normal NP at each pixel from NA, NB.

– Normalize NP.

§ (Interpolation of unit vectors does not preserve length).

– Back-transform NP to eye space, compute lighting.

- Phong shading is not the same as Phong lighting, although they are concepts sometimes confused with one another.
- Phong lighting: the empirical model we discussed in the previous chapter to calculate the illumination at a point on the surface of
an object.
- Phong shading: linearly interpolates the normal in any and every facet by applying the Phong illumination model to each pixel

𝑵𝑨

𝑵𝟑

𝑵𝟏

Discontinuity in rate of
variation of the normal
it's harder to detect

𝑵𝟐

𝑵𝟒

𝑵𝑩

T09 Shading

Phong shading: improvements and issues

Interpolates linearly from normals to vertices

– Computes the lighting equations in pixel

– You can use the specular component

– It should be noted that the normals are used to compute the diffuse and specular components

Results are much improved over Gouraud.

– Harder to tell low- from high-polygon models.

Still some issues:

– Still Mach banding because can still get first derivative discontinuities

– Polygonal silhouettes still present, particularly in low-resolution tessellations

– Shared vs. unshared vertices.

– Perspective distortion

– Interpolation depending on the orientation of the polygons

– Shared vertex problems

– Erroneous mean at vertices

𝐼 = 𝐼𝐸 + 𝑘𝐴	𝐼𝐴	 + L 𝑘𝐷𝐼𝐷N(𝒏	 • 𝒍𝒊) 	+ 	𝑘𝑆𝐼𝑆N 𝒗	 • 𝒓𝒊
ℎ

#WNXYZ[

N\]

T09 ShadingPhong shading issues:
polygonal silhouettes and orientation of polygons

Polygonal silhouettes

Interpolation depending on the orientation of the polygons

Gouraud Phong

𝑨

𝑫

𝑪

𝑩

Interpola entre
AB e AD

Rotate -90o and shades
The same point

Interpola entre
CD e AD

𝑫

𝑪 𝑨

𝑩

T09 ShadingPhong shading issues:
shared vertices

Shared vertex problems

Example:

– The vertex B is shared by two rectangles on the right, but
not by the one on the left

– The first segment of the scanline (in yellow) is interpolated
between DE and AC

– The second segment of the scanline is interpolated
between BC and GH

– A discontinuity may arise

𝑩

𝑨

𝑪

𝑬

𝑫

𝑭

𝑯

𝑮

T09 ShadingPhong shading issues:
erroneous mean of normals

Erroneous mean of normals at vertices

T09 Shading

Shading by direct illumination: summing up

Flat Shading

– Per-polygon shading

– Phong lighting is computed once for each polygon

Gouraud Shading

– Per-vertex shading

– The Phong illumination is computed at the vertices and interpolates the shade values (or
colors) over the polygon

Phong Shading

– Per-pixel shading

– Compute the mean of the normals of the faces incident on each vertex

– The normals are interpolated over the face calculating the Phong illumination at each point
tied to a pixel.

Summary:
- We only superficially approached surface illumination. The common model is clearly unsuitable for accurate lighting, but has the advantage of being

fast and simple.
- It takes into account two sub-lighting problems:

• Where does the light go? Light Transport
• What happens on surfaces? Light Reflection

T09 Shading

Gouraud and Phong shaders

Gouraud shading is a per-vertex color computation. What this means is that the vertex shader must determine a color for
each vertex and pass the color as an out variable to the fragment shader. Since this color is passed to the fragment shader as
an in variable, it is interpolated across the fragments thus giving the smooth shading.

In contrast, Phong shading is a per-fragment color computation. The vertex shader provides the normal and position data
as out variables to the fragment shader. The fragment shader then interpolates these variables and computes the color.

ht
tp
s:
//w
w
w
.h
ar
ol
ds
er
ra
no
.c
om
/b
lo
g/
w
ha
t-i
s-
th
e-
di
ffe
re
nc
e-
be
tw
ee
n-
go
ur
au
d-
an
d-
ph
on
g-
sh
ad
in
g

T09 Shading

Examples in OpenGL

See examples in Chapter 2 and 3 of the book entitled
“OpenGL 4 Shading Language Cookbook” (2nd

edition)
Authored by David Wolff; these examples were run in
both theoretical and lab classes, and can be found at:
https://github.com/daw42/glslcookbook

T09 Shading

Other types of per-pixel shading

Ray tracing

– Doesn’t use Gouraud or Phong shading.

– Each pixel uses own ray to determine color.

§ Can apply arbitrary lighting model.

§ Classical (Whitted) ray tracing uses Phong model.

– Since ray tracing determines colors based on intersections, don’t have to use polygonal
geometry.

§ Thus, can potentially use exact normals, rather than interpolation.

New hardware provides per-pixel capabilities

– e.g. NVIDIA pixel shaders.

– Allow (somewhat) arbitrary programs on each pixel.

– So new hardware can implement Phong shading.

Also, vertex programs

– Allow (somewhat) arbitrary programs on each vertex.

T09 Shading

References

Gouraud, Phong, Blinn papers I handed out.

– Available in Seminal Graphics, ACM press.

Glassner, Principles of Digital Image Synthesis, volume two.

– Highly detailed and low level.

Möller and Haines, Real-Time Rendering.

– A great book, with the best bibliography you can find.

Rogers, Procedural Elements for Computer Graphics.

– One of my favorites.

Foley, van dam, et al. Computer Graphics, Principles and Practice.

– Not the best treatment, but it covers everything.

T09 Shading

Summary:

…:

– Light-dependent illumination models: a refresher

– Shading: motivation

– Types of shading: flat, Gouraud, and Phong

– Flat shading algorithm

– Gouraud shading algorithm

– Phong shading algorithm

– Shading issues

– Flat, Gouraud, and Phong shaders in GLSL

– OpenGL/GLSL examples.

