
Chap. 7
Illumination-based Shading

Ensino de Informática (3326) - 4º ano, 2º semestre
Engenharia Electrotécnica (2287) - 5º ano, 2º semestre

Engenharia Informática (2852) - 4º ano, 2º semestre

Lighting Review

 Lighting Models
 Ambient

− Normals don’t matter

 Lambert/Diffuse
− Angle between surface normal and light

 Phong/Specular
− Surface normal, light, and viewpoint

Applying Illumination

 We now have an direct illumination model for a single point on
a surface

 Assuming that our surface is defined as a mesh of polygonal
facets, which points should we use?
 Computing these models for every point that is displayed is expensive

 Normals may not be explicitly stated for every point

 Keep in mind:
 It’s a fairly expensive calculation

 Several possible answers, each with different implications for the visual
quality of the result

Shading Models

 Several options:
 Flat shading

 Gouraud shading (interpolation)

 Phong shading (interpolation)

 New hardware does per-pixel programmable shading!

Flat (or Constant) Shading

 The simplest approach, flat shading, calculates
illumination at a single point for each polygon.
 OpenGL uses one of the vertices

 The illumination intensity (color) is the same for
all points of each polygon.

 Advantages:
 Fast - one shading value computation per polygon

 Disadvantages:
 Inaccurate

 Artifacts: Discontinuities at polygon boundaries

Is flat shading realistic for faceted
object?

NO!
 For point sources, the direction to light varies across the facet
 For specular reflectance, direction to eye varies across the facet

Flat Shading

 We can refine it a bit by evaluating the
Phong lighting model at each pixel of each
polygon, but the result is still clearly faceted:

 To get smoother-looking surfaces
we use vertex normals at each vertex
 Usually different from facet normal

 Used only for shading

 Think of as a better approximation of the real
surface that the polygons approximate

 Vertex normals may be
 Provided with the model

 Approximated by averaging the normals of the
facets that share the vertex

Gouraud Shading

 It directly illuminates or shades each vertex
by using its location and normal.

 It linearly interpolates the resulting colors
over faces: along bounding edges first, and
then along scanlines in its interior.

 Advantages:
 Fast - incremental calculations when rasterizing
 Much smoother - use one normal per shared

vertex to get continuity between faces

 Disadvantages:
 Still inaccurate. Polygons appear dull and chalky.
 It tends to eliminate the specular component. If

included, it will be averaged over entire polygon.
 Mach banding.

c1

c2

c3

c1 + t1(c2-c1) c1 + t2(c3-c1)

c1 + t1(c2-c1) +
t3(c1 + t2(c3-c1)- c1 + t1(c2-c1))

can’t shade
that effect!

Gouraud Shading:
Mach banding

 Artifact at discontinuities in intensity or
intensity slope.

 The Mach banding describes an effect
where the human mind subconsciously
increase the contrast between two
surfaces with different luminance.

 The difference between two colors is more
pronounced when they are side by side
and the boundary is smooth.

 This emphasizes boundaries between
colors, even if the color difference is small.

 Rough boundaries are “averaged” by our
vision system to give smooth variation

http://www.markschenk.com/various/machband.html

floor appears banded

banded
along
edges

flat shading Gouraud shading

OpenGL shading

 OpenGL defines two particular shading models:

 Controls how colors are assigned to pixels

 Gouraud shading:interpolates between the colors at the vertices (the
default)

glShadeModel(GL_SMOOTH)

 Flat shading: uses a constant color across the polygon

glShadeModel(GL_FLAT)

Phong Shading

 Phong shading is not the same as Phong
lighting, though they are sometimes mixed up
 Phong lighting: the empirical model we’ve been

discussing to calculate illumination at a point on a
surface

 Phong shading: linearly interpolates the surface
normals across the facet, applying the Phong
lighting model at every pixel

 Advantages:
 Usually very smooth-looking results
 High quality, narrow specularities

 Disadvantages:
 But, considerably more expensive
 Still an approximation for most surfaces

Phong Shading

 Linearly interpolate the vertex
normals
 Compute lighting equations at each

pixel

 Can use specular component

 Note that normals are used to
compute diffuse and specular terms

N1

N2

N3

N4

discontinuity in normal’s rate of
change is harder to detect

Itotal = KAIA + Ii

i=1

lights

∑ (KD

N ⋅

Li() + KS

V ⋅

Ri()n)

Shortcomings of Shading
 Polygonal silhouettes remain

 Perspective distortion

 Interpolation dependent on the polygon orientation

 Problems at shared vertices

 Bad vertex averaging

Shortcomings of Shading
 Polygonal silhouettes remain

Gouraud Phong

Shortcomings of Shading
 Perspective distortion

 Note that linear interpolation in screen space does not align with linear
interpolation in world space.

 Break up large polygons with many smaller ones to reduce distortion.

Z – into the scene

image
plane

Shortcomings of Shading
 Interpolation dependent on the polygon orientation

A

D

C

B

Interpolate between
AB and AD

Rotate -90o

and color
same point

Interpolate between
CD and AD

D

C A

B

Shortcomings of Shading
 Problems at shared vertices

 Example aside:
− The vertex B is shared by the two

rectangles on the right, but not by the
one on the left

− The first portion of the scanline is
interpolated between DE and AC

− The second portion of the scanline is
interpolated between BC and GH

− A large discontinuity could arise

B

A

C

E

D

F

H

G

Shortcomings of Shading
 Bad vertex averaging

Shading Models (Direct lighting)
summary

 Flat Shading
 Compute Phong lighting once for entire polygon

 Gouraud Shading
 Compute Phong lighting at the vertices and interpolate lighting values across

polygon

 Phong Shading
 Compute averaged vertex normals

 Interpolate normals across polygon and perform Phong lighting across polygon

Current Generation of Shaders

 Current hardware allows you to break from the standard
illumination model

 Programmable Vertex Shaders allow you to write a small
program that determines how the color of a vertex is computed
 Your program has access to the surface normal and position, plus

anything else you care to give it (like the light)

 You can add, subtract, take dot products, and so on

Current Generation of Shaders

 We have only touched on the complexities of illuminating
surfaces
 The common model is hopelessly inadequate for accurate lighting (but it’s

fast and simple)

 Consider two sub-problems of illumination
 Where does the light go? Light transport

 What happens at surfaces? Reflectance models

 Other algorithms address the transport or the reflectance
problem, or both
 Much later in class, or a separate course

Overview:
lighting-based models

 Direct Illumination
 Emission at light sources

 Scattering at surfaces

 Global Illumination
 Shadows

 Refractions

 Inter-object reflections

Global Illumination

Global Illumination

 We’ve glossed over how light really works

 And we will continue to do so…

 One step better

 Global Illumination
 The notion that a point is illuminated by more than light from local

lights; it is illuminated by all the emitters and reflectors in the global
scene

Shadows

 Shadow terms tell which light sources are blocked
 Cast ray towards each light source Li

 Si = 0 if ray is blocked, Si = 1 otherwise

I = IE + KAIA + [KD

N ⋅

L() + KS

V ⋅

R()n]Si Ii

i=1

lights

∑

Shadow
Term

Ray Casting

 Trace primary rays from camera
 Direct illumination from unblocked lights only

I = IE + KAIA + [KD

N ⋅

L() + KS

V ⋅

R()n]Si Ii

i=1

lights

∑

Recursive Ray Tracing
 Also trace secondary rays from hit surfaces

 Global illumination from mirror reflection and transparency

I = IE + KAIA + [KD

N ⋅

L() + KS

V ⋅

R()n]Si Ii

i=1

lights

∑ + KSIR + KT IT

Recursive Ray Tracing:
overview
 Primary rays. Cast a ray from the viewer’s eye

through each pixel, and then from intersected
object to light sources and determine
shadow/lighting conditions

 Secondary rays. Also spawn secondary rays
 Reflection rays and refraction rays

 Use surface normal as guide (angle of incidence
equals angle of reflection)

 If another object is hit, determine the light it
illuminates by recursing through ray tracing

 Stop recursing when:
 ray fails to intersect an object

 user-specified maximum depth is reached

 system runs out of memory

Recursive Ray Tracing

 Stop recursing when:
 ray fails to intersect an object

 user-specified maximum depth is reached

 system runs out of memory

 Common numerical accuracy error
 Spawn secondary ray from intersection point

 Secondary ray intersects another polygon on same object

Mirror Reflection
 Trace secondary ray in direction of mirror reflection

 Evaluate radiance along secondary ray and include it into illumination model

I = IE + KAIA + [KD

N ⋅

L() + KS

V ⋅

R()n]Si Ii

i=1

lights

∑ + KSIR + KT IT

Radiance
for mirror

reflection ray

Transparency
 Trace secondary ray in direction of refraction

 Evaluate radiance along secondary ray and include it into illumination model

I = IE + KAIA + [KD

N ⋅

L() + KS

V ⋅

R()n]Si Ii

i=1

lights

∑ + KSIR + KT IT

Radiance for
refraction ray

Transparency
 Transparency coefficient is fraction transmitted

 KT = 1 if object is translucent, KT = 0 if object is opaque

 0 < KT < 1 if object is semi-translucent

I = IE + KAIA + [KD

N ⋅

L() + KS

V ⋅

R()n]Si Ii

i=1

lights

∑ + KSIR + KT IT

Transparency
Coefficient

Refractive Transparency

 For thin surfaces, can ignore change in direction
 Assume light travels straight through surface

LT −≅

Refractive Transparency

 For solid objects, apply Snell’s Law:
 ηr sin Θr = ηi sin Θi

L
ηr

ηiN)coscos
ηr

ηi(T ri −Θ−Θ=

Radiosity

 Ray tracing models specular
reflection and refractive transparency, but still uses an
ambient term to account for other lighting effects

 Radiosity is the rate at which energy is emitted or reflected
by a surface

 By conserving light energy in a volume,
these radiosity effects can be traced

Summary

 Direct Illumination-based Shading
 Ray casting

− Usually use simple analytic approximations for light source emission and surface
reflectance

 Indirect illumination-based Shading
 Recursive ray tracing

− Incorporate shadows, mirror reflections, and pure refractions

 Radiosity
− Use energy conservative law.

FIM

