
1

Chap. 5
3D Viewing and

Projections

4BA6 - Topic 4

Dr. Steven Collins

2

References

 “Computer graphics: principles & practice”, Foley, vanDam,
Feiner, Hughes, S-LEN 500.1644 M23*1;1-6 (has a good
appendix on linear algebra)

 “Advanced Animation and Rendering Techniques”, Watt and
Watt, S-LEN 500.18 N26;2-5

 “The OpenGL Programming Guide”, Woo, Neider & Davis, S-
LEN 500.18 N72;0-2

 “Interactive Computer Graphics”, Edward Angel

3

OpenGL® Geometry Pipeline

MODELVIEW
matrix

PROJECTION
matrix

perspective
division

viewport
transformation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w

z

y

x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

eye

eye

eye

eye

w

z

y

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
dev

dev

y

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

proj

proj

proj

w

y

x

⎥
⎦

⎤
⎢
⎣

⎡

win

win

y

x

original
vertex

vertex in the
eye coordinate

space

2D projection
of vertex onto
viewing plane

normalised device
coordinates

(foreshortened)

final window
coordinates

4

The Camera System

 To create a view of a scene we need:
 a description of the scene geometry
 a camera or view definition

 Default OpenGL camera is located at the origin looking
down the -z axis.

 The camera definition allows projection of the 3D scene
geometry onto a 2D surface for display.

 This projection can take a number of forms:
 orthographic (parallel lines preserved)
 perspective (foreshortening): 1-point, 2-point or 3-point
 skewed orthographic

5

Camera Types

 Before generating an image we must choose our viewer:
 The pinhole camera model is most widely used:

 infinite depth of field (everything is in focus)

 Advanced rendering systems model the camera
 double gauss lens as used in many professional cameras
 model depth of field and non-linear optics (including lens flare)

 Photorealistic rendering systems often employ a physical
model of the eye for rendering images
 model the eyes response to varying brightness and colour levels
 model the internal optics of the eye itself (diffraction by lens fibres etc.)

6

Pinhole Camera Model

7

Modeling the Eye’s Response

Adaptation

Glare & Diffraction

8

Camera Systems

A camera model implemented
in Princeton University (1995)

9

Viewing System

 We are only concerned with
the geometry of viewing at this
stage.

 The camera’s position and
orientation define a view-
volume or view-frustrum.
 objects completely or partially

within this volume are
potentially visible on the
viewport.

 objects fully outside this
volume cannot be seen ⇒
clipped

clipped

view frustrum

clipping planes

10

Camera Models

 Each vertex in our model must be projected onto the 2D
camera viewport plane in order to be display on the screen.

 The CTM is employed to determine the location of each
vertex in the camera coordinate system:

 We then employ a projection matrix defined by
GL_PROJECTION to map this to a 2D viewport coordinate.

 Finally, this 2D coordinate is mapped to device coordinates
using the viewport definition (given by glViewport()).

xx CTM

M=′

CTM= Current Transformation Matrix

11

Camera Modeling in OpenGL ®

glMatrixMode(GL_MODELVIEW)
...

glMatrixMode(GL_PROJECTION)
...

glViewport(0,0,xres,yres)

camera coordinate
system

viewport coordinate
system

device/screen
coordinate system

12

3D 2D Projection

 Type of projection depends on a number of factors:
 location and orientation of the viewing plane (viewport)

 direction of projection (described by a vector)

 projection type:

3-point

Projection

Perspective Parallel

2-point

Oblique

Axonometric

Orthographic1-point

13

Parallel Projections

axonometric
orthographic

oblique

14

Perspective Projections
3-point perspective

2-point perspective

1-point perspective

15

Orthogonal Projections

 The simplest of all projections, parallel project onto view-
plane.

 Usually view-plane is axis aligned (often at z=0)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

0000

0010

0001

 where

1

0

1

MMPP
y

x

z

y

x

16

Multiple Projections
 It is often useful to have multiple projections available at

any given time
 usually: plan (top) view, front & left or right elevation (side) view

Perspective

Front Right

Top

17

Orthogonal Projections

 The result is an orthographic projection if the object is axis
aligned, otherwise it is an axonometric projection.

 If the projection plane intersects the principle axes at the
same distance from the origin the projection is isometric.

1=++ zyx

18

Parallel Projections in OpenGL®

glOrtho(xmin, xmax, ymin, ymax, zmin, zmax);

Note: we always view in -z direction need to transform world in order to view
in other arbitrary directions.

19

Perspective Projections

 Perspective projections are more complex and exhibit fore-
shortening (parallel appear to converge at points).

 Parameters:
 centre of projection (COP)

 field of view (θ,φ)

 projection direction

 up direction

20

Perspective Projections
Consider a perspective projection with the viewpoint at the origin
and a viewing direction oriented along the positive -z axis and the

view-plane located at z = -d

y

yp

dz
y

y
d
y

z
y

P
P =⇒=

-z

d

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
↔

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10100

0100

0010

0001

1
1

z

y

x

ddz

z

y

x

d
dz
y
dz
x

z

y

x

P

P

P

divide by homogenous ordinate to
map back to 3D space

a similar construction for xp ⇒

21

Perspective Projections Details

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
↔

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

dz

z

y

x

d
dz
y
dz
x

z

y

x

P

P

P

1
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
10000

0100

0010

0001

1

z

y

x

z

y

x

Flip z to transform to a left handed co-ordinate
system ⇒ increasing z values mean increasing

distance from the viewer.

PROJECTION
matrix

perspective
division

22

Perspective Projection

 Depending on the application we can use different
mechanisms to specify a perspective view.

 Example: the field of view angles may be derived if the
distance to the viewing plane is known.

 Example: the viewing direction may be obtained if a point
in the scene is identified that we wish to look at.

 OpenGL supports this by providing different methods of
specifying the perspective view:
 gluLookAt, glFrustrum and gluPerspective

23

Perspective Projections
glFrustrum(xmin, xmax, ymin, ymax, zmin, zmax);

24

glFrustrum
 Note that all points on the line defined by (xmin,ymin,-
zmin) and COP are mapped to the lower left point on the
viewport.

 Also all points on the line defined by (xmax,ymax,-zmin)
and COP are mapped to the upper right corner of the
viewport.

 The viewing direction is always parallel to -z
 It is not necessary to have a symmetric frustrum like:

 Non symmetric frustrums introduce obliqueness into the
projection.

 zmin and zmax are specified as positive distances along
-z

glFrustrum(-1.0, 1.0, -1.0, 1.0, 5.0, 50.0);

25

Perspective Projections
gluPerspective(fov, aspect, near, far);

2
tan2

2
tan

2 θθ
nearh

near
h =⇒=

26

gluPerspective

 A utility function to simplify the specification of perspective
views.

 Only allows creation of symmetric frustrums.

 Viewpoint is at the origin and the viewing direction is the -z
axis.

 The field of view angle, fov, must be in the range [0..180]

 aspect allows the creation of a view frustrum that matches
the aspect ratio of the viewport to eliminate distortion.

27

Perspective Projections

28

10mm Lens (fov = 122°) 20mm Lens (fov = 84°)

35mm Lens (fov = 54°) 200mm Lens (fov = 10°)

Lens Configurations

29

Positioning the Camera

 The previous projections had limitations:
 usually fixed origin and fixed projection direction

 To obtain arbitrary camera orientations and positions we
manipulate the MODELVIEW matrix prior to creation of the
models. This positions the camera w.r.t. the model.

 We wish to position the camera at (10, 2, 10) w.r.t. the
world

 Two possibilities:
 transform the world prior to creation of objects using translatef

and rotatef: glTranslatef(-10, -2, -10);
 use gluLookAt to position the camera with respect to the world

co-ordinate system: gluLookAt(10, 2, 10, …);
 Both are equivalent.

30

Positioning the Camera
gluLookAt(eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz);

glTranslatef(-eyex, -eyey, -eyez);
glRotatef(theta, 1.0, 0.0, 0.0);
glRotatef(phi, 0.0, 1.0, 0.0);

equivalent to:

31

Projection window

 The projection matrix defines the mapping from a 3D
world co-ordinate to a 2D viewport co-ordinate.

 The window extents are defined as a parameter of the
projection:
 glFrustrum(l,r,b,t,n,f)⇒

 gluPerspective(f,a,n,f)⇒

(l,b,-n)

(r,t,-n)

(w,h,-n)

(-w,-h,-n)
ahw

f
nh

⋅=

⋅=
2

tan

32

Projection window

 We need to associate the 2D window co-ordinate system
with the viewport co-ordinate system in order to determine
the correct pixel associated with each vertex.

normalised device
co-ordinates viewport co-ordinates

33

Window to Viewport
Transformation: review
 An affine planar transformation is used.
 After projection to the window, all points are transformed to

normalised device co-ordinates: [-1,1]x[1,1]

 glViewport used to relate the co-ordinate systems:

12

12

minmax

min

minmax

min

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−
−

=

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−
−

=

yy

yy
y

xx

xx
x

p
n

p
n

glViewport(int x, int y, int width, int height);

34

Window to Viewport
Transformation: review
 (x,y) = location of bottom left of viewport within the window

 width,height = dimension in pixels of the viewport ⇒

 normally we re-create the window after a window resize event
to ensure a correct mapping between window and viewport
dimensions:

static void reshape(int width, int height)
{

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(85.0, 1.0, 5, 50);

}

static void reshape(int width, int height)
{

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(85.0, 1.0, 5, 50);

}

() () y
height

x
width +⎟

⎠
⎞⎜

⎝
⎛+=+⎟

⎠
⎞⎜

⎝
⎛+=

2
1

2
1 nwnw yyxx

35

Aspect Ratio
 The aspect ratio defines the relationship between the

width and height of an image.
 Using gluPerspective an viewport aspect ratio may be

explicitly provided, otherwise the aspect ratio is a function
of the supplied viewport width and height.

 The aspect ratio of the window (defined by the user) must
match the viewport aspect ratio to prevent unwanted
affine distortion:

aspect ratio = 1.25 aspect ratio = 0.5

36

// top left: top view
glViewport(0, win_height/2, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glCallList(object);

// top right: right view
glViewport(win_width/2, win_height/2, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glCallList(object);

// bottom left: front view
glViewport(0, 0, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glCallList(object);

// bottom right: rotating perspective view
glViewport(win_width/2, 0, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(70.0, 1.0, 1, 50);
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(30.0, 1.0, 0.0, 0.0);
glRotatef(Angle, 0.0, 1.0, 0.0);
glCallList(object);

Sample Sample ViewportViewport
ApplicationApplication

