
1

Chap. 5
3D Viewing and

Projections

4BA6 - Topic 4

Dr. Steven Collins

2

References

 “Computer graphics: principles & practice”, Foley, vanDam,
Feiner, Hughes, S-LEN 500.1644 M23*1;1-6 (has a good
appendix on linear algebra)

 “Advanced Animation and Rendering Techniques”, Watt and
Watt, S-LEN 500.18 N26;2-5

 “The OpenGL Programming Guide”, Woo, Neider & Davis, S-
LEN 500.18 N72;0-2

 “Interactive Computer Graphics”, Edward Angel

3

OpenGL® Geometry Pipeline

MODELVIEW
matrix

PROJECTION
matrix

perspective
division

viewport
transformation

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

w

z

y

x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

eye

eye

eye

eye

w

z

y

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

1
dev

dev

y

x

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

proj

proj

proj

w

y

x

⎥
⎦

⎤
⎢
⎣

⎡

win

win

y

x

original
vertex

vertex in the
eye coordinate

space

2D projection
of vertex onto
viewing plane

normalised device
coordinates

(foreshortened)

final window
coordinates

4

The Camera System

 To create a view of a scene we need:
 a description of the scene geometry
 a camera or view definition

 Default OpenGL camera is located at the origin looking
down the -z axis.

 The camera definition allows projection of the 3D scene
geometry onto a 2D surface for display.

 This projection can take a number of forms:
 orthographic (parallel lines preserved)
 perspective (foreshortening): 1-point, 2-point or 3-point
 skewed orthographic

5

Camera Types

 Before generating an image we must choose our viewer:
 The pinhole camera model is most widely used:

 infinite depth of field (everything is in focus)

 Advanced rendering systems model the camera
 double gauss lens as used in many professional cameras
 model depth of field and non-linear optics (including lens flare)

 Photorealistic rendering systems often employ a physical
model of the eye for rendering images
 model the eyes response to varying brightness and colour levels
 model the internal optics of the eye itself (diffraction by lens fibres etc.)

6

Pinhole Camera Model

7

Modeling the Eye’s Response

Adaptation

Glare & Diffraction

8

Camera Systems

A camera model implemented
in Princeton University (1995)

9

Viewing System

 We are only concerned with
the geometry of viewing at this
stage.

 The camera’s position and
orientation define a view-
volume or view-frustrum.
 objects completely or partially

within this volume are
potentially visible on the
viewport.

 objects fully outside this
volume cannot be seen ⇒
clipped

clipped

view frustrum

clipping planes

10

Camera Models

 Each vertex in our model must be projected onto the 2D
camera viewport plane in order to be display on the screen.

 The CTM is employed to determine the location of each
vertex in the camera coordinate system:

 We then employ a projection matrix defined by
GL_PROJECTION to map this to a 2D viewport coordinate.

 Finally, this 2D coordinate is mapped to device coordinates
using the viewport definition (given by glViewport()).

xx CTM


M=′

CTM= Current Transformation Matrix

11

Camera Modeling in OpenGL ®

glMatrixMode(GL_MODELVIEW)
...

glMatrixMode(GL_PROJECTION)
...

glViewport(0,0,xres,yres)

camera coordinate
system

viewport coordinate
system

device/screen
coordinate system

12

3D  2D Projection

 Type of projection depends on a number of factors:
 location and orientation of the viewing plane (viewport)

 direction of projection (described by a vector)

 projection type:

3-point

Projection

Perspective Parallel

2-point

Oblique

Axonometric

Orthographic1-point

13

Parallel Projections

axonometric
orthographic

oblique

14

Perspective Projections
3-point perspective

2-point perspective

1-point perspective

15

Orthogonal Projections

 The simplest of all projections, parallel project onto view-
plane.

 Usually view-plane is axis aligned (often at z=0)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

→

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000

0000

0010

0001

 where

1

0

1

MMPP
y

x

z

y

x

16

Multiple Projections
 It is often useful to have multiple projections available at

any given time
 usually: plan (top) view, front & left or right elevation (side) view

Perspective

Front Right

Top

17

Orthogonal Projections

 The result is an orthographic projection if the object is axis
aligned, otherwise it is an axonometric projection.

 If the projection plane intersects the principle axes at the
same distance from the origin the projection is isometric.

1=++ zyx

18

Parallel Projections in OpenGL®

glOrtho(xmin, xmax, ymin, ymax, zmin, zmax);

Note: we always view in -z direction need to transform world in order to view
in other arbitrary directions.

19

Perspective Projections

 Perspective projections are more complex and exhibit fore-
shortening (parallel appear to converge at points).

 Parameters:
 centre of projection (COP)

 field of view (θ,φ)

 projection direction

 up direction

20

Perspective Projections
Consider a perspective projection with the viewpoint at the origin
and a viewing direction oriented along the positive -z axis and the

view-plane located at z = -d

y

yp

dz
y

y
d
y

z
y

P
P =⇒=

-z

d

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
↔

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

10100

0100

0010

0001

1
1

z

y

x

ddz

z

y

x

d
dz
y
dz
x

z

y

x

P

P

P

divide by homogenous ordinate to
map back to 3D space

a similar construction for xp ⇒

21

Perspective Projections Details

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
↔

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

dz

z

y

x

d
dz
y
dz
x

z

y

x

P

P

P

1
1

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
10000

0100

0010

0001

1

z

y

x

z

y

x

Flip z to transform to a left handed co-ordinate
system ⇒ increasing z values mean increasing

distance from the viewer.

PROJECTION
matrix

perspective
division

22

Perspective Projection

 Depending on the application we can use different
mechanisms to specify a perspective view.

 Example: the field of view angles may be derived if the
distance to the viewing plane is known.

 Example: the viewing direction may be obtained if a point
in the scene is identified that we wish to look at.

 OpenGL supports this by providing different methods of
specifying the perspective view:
 gluLookAt, glFrustrum and gluPerspective

23

Perspective Projections
glFrustrum(xmin, xmax, ymin, ymax, zmin, zmax);

24

glFrustrum
 Note that all points on the line defined by (xmin,ymin,-
zmin) and COP are mapped to the lower left point on the
viewport.

 Also all points on the line defined by (xmax,ymax,-zmin)
and COP are mapped to the upper right corner of the
viewport.

 The viewing direction is always parallel to -z
 It is not necessary to have a symmetric frustrum like:

 Non symmetric frustrums introduce obliqueness into the
projection.

 zmin and zmax are specified as positive distances along
-z

glFrustrum(-1.0, 1.0, -1.0, 1.0, 5.0, 50.0);

25

Perspective Projections
gluPerspective(fov, aspect, near, far);

2
tan2

2
tan

2 θθ
nearh

near
h =⇒=

26

gluPerspective

 A utility function to simplify the specification of perspective
views.

 Only allows creation of symmetric frustrums.

 Viewpoint is at the origin and the viewing direction is the -z
axis.

 The field of view angle, fov, must be in the range [0..180]

 aspect allows the creation of a view frustrum that matches
the aspect ratio of the viewport to eliminate distortion.

27

Perspective Projections

28

10mm Lens (fov = 122°) 20mm Lens (fov = 84°)

35mm Lens (fov = 54°) 200mm Lens (fov = 10°)

Lens Configurations

29

Positioning the Camera

 The previous projections had limitations:
 usually fixed origin and fixed projection direction

 To obtain arbitrary camera orientations and positions we
manipulate the MODELVIEW matrix prior to creation of the
models. This positions the camera w.r.t. the model.

 We wish to position the camera at (10, 2, 10) w.r.t. the
world

 Two possibilities:
 transform the world prior to creation of objects using translatef

and rotatef: glTranslatef(-10, -2, -10);
 use gluLookAt to position the camera with respect to the world

co-ordinate system: gluLookAt(10, 2, 10, …);
 Both are equivalent.

30

Positioning the Camera
gluLookAt(eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz);

glTranslatef(-eyex, -eyey, -eyez);
glRotatef(theta, 1.0, 0.0, 0.0);
glRotatef(phi, 0.0, 1.0, 0.0);

equivalent to:

31

Projection window

 The projection matrix defines the mapping from a 3D
world co-ordinate to a 2D viewport co-ordinate.

 The window extents are defined as a parameter of the
projection:
 glFrustrum(l,r,b,t,n,f)⇒

 gluPerspective(f,a,n,f)⇒

(l,b,-n)

(r,t,-n)

(w,h,-n)

(-w,-h,-n)
ahw

f
nh

⋅=

⋅=
2

tan

32

Projection window

 We need to associate the 2D window co-ordinate system
with the viewport co-ordinate system in order to determine
the correct pixel associated with each vertex.

normalised device
co-ordinates viewport co-ordinates

33

Window to Viewport
Transformation: review
 An affine planar transformation is used.
 After projection to the window, all points are transformed to

normalised device co-ordinates: [-1,1]x[1,1]

 glViewport used to relate the co-ordinate systems:

12

12

minmax

min

minmax

min

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−
−

=

−⎟⎟⎠

⎞
⎜⎜⎝

⎛
−
−

=

yy

yy
y

xx

xx
x

p
n

p
n

glViewport(int x, int y, int width, int height);

34

Window to Viewport
Transformation: review
 (x,y) = location of bottom left of viewport within the window

 width,height = dimension in pixels of the viewport ⇒

 normally we re-create the window after a window resize event
to ensure a correct mapping between window and viewport
dimensions:

static void reshape(int width, int height)
{

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(85.0, 1.0, 5, 50);

}

static void reshape(int width, int height)
{

glViewport(0, 0, width, height);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(85.0, 1.0, 5, 50);

}

() () y
height

x
width +⎟

⎠
⎞⎜

⎝
⎛+=+⎟

⎠
⎞⎜

⎝
⎛+=

2
1

2
1 nwnw yyxx

35

Aspect Ratio
 The aspect ratio defines the relationship between the

width and height of an image.
 Using gluPerspective an viewport aspect ratio may be

explicitly provided, otherwise the aspect ratio is a function
of the supplied viewport width and height.

 The aspect ratio of the window (defined by the user) must
match the viewport aspect ratio to prevent unwanted
affine distortion:

aspect ratio = 1.25 aspect ratio = 0.5

36

// top left: top view
glViewport(0, win_height/2, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glCallList(object);

// top right: right view
glViewport(win_width/2, win_height/2, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glCallList(object);

// bottom left: front view
glViewport(0, 0, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glCallList(object);

// bottom right: rotating perspective view
glViewport(win_width/2, 0, win_width/2, win_height/2);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(70.0, 1.0, 1, 50);
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glRotatef(30.0, 1.0, 0.0, 0.0);
glRotatef(Angle, 0.0, 1.0, 0.0);
glCallList(object);

Sample Sample ViewportViewport
ApplicationApplication

