Chap. 5

3D Viewing and
Projections

4BA6 - Topic 4
Dr. Steven Collins



References

“Computer graphics: principles & practice”, Foley, vanDam,
Feiner, Hughes, S-LEN 500.1644 M23*1;1-6 (has a good
appendix on linear algebra)

“Advanced Animation and Rendering Techniques”, Watt and
Watt, S-LEN 500.18 N26;2-5

“The OpenGL Programming Guide”, Woo, Neider & Davis, S-
LEN 500.18 N72;0-2

“Interactive Computer Graphics”, Edward Angel



OpenGL® Geometry Pipeline

. X - - T ] /
original e

X
X . d . .
Vortex y proj “ final window
e Y proj Viev coordinates
z 1
eye
. W, | B
| eve | o normalised device
. 2D projection coordinates
vertex in the of vertex onto (foreshortened)
eye coordinate viewing plane
space



The Camera System

To create a view of a scene we need:
a description of the scene geometry
a camera or view definition
Default OpenGL camera is located at the origin looking
down the -z axis.
The camera definition allows projection of the 3D scene
geometry onto a 2D surface for display.
This projection can take a number of forms:
orthographic (parallel lines preserved)
perspective (foreshortening): 1-point, 2-point or 3-point
skewed orthographic



Camera Types

Before generating an image we must choose our viewer:
The pinhole camera model is most widely used:
infinite depth of field (everything is in focus)

Advanced rendering systems model the camera
double gauss lens as used in many professional cameras
model depth of field and non-linear optics (including lens flare)

Photorealistic rendering systems often employ a physical
model of the eye for rendering images
model the eyes response to varying brightness and colour levels
model the internal optics of the eye itself (diffraction by lens fibres etc.)



Pinhole Camera Model

~ Pinhole
Aperture

«

Imaging Surface
Viewing ———

Frustrum |



Modeling the Eye’s Response

Adaptation

Glare & Diffraction



Camera Systems

Double Gauss Lens

A camera model implemented
in Princeton University (1995)




Viewing System

We are only concerned with
the geometry of viewing at this =1 o view frustrum
stage. S

The camera’s position and
orientation define a view-
volume or view-frustrum.

objects completely or partially
within this volume are
potentially visible on the
viewport.

objects fully outside this
volume cannot be seen =
clipped

clipping planes

clipped



CTM= Current Transformation Matrix

Camera Models

Each vertex in our model must be projected onto the 2D
camera viewport plane in order to be display on the screen.

The CTM is employed to determine the location of each
vertex in the camera coordinate system:

X' = M, X
We then employ a projection matrix defined by
GL PROJECTION to map this to a 2D viewport coordinate.

Finally, this 2D coordinate is mapped to device coordinates
using the viewport definition (given by glviewport ()).

10



Camera Modeling in OpenGL ®

camera coordinate > viewport coordinate device/screen
system system coordinate system
’ ]
e ( 0 r 0 )
e @
{ g > —> —> RS
\\\_//]I
|
7 RN
| \
| |
- /\) //
X I -
(-1,-1) )
(xres,yres)

z ! ‘

glMatrixMode (GL MODELVIEW) glViewport (0,0, xres, yres)

glMatrixMode (GL PROJECTION)

11



3D - 2D Projection

Type of projection depends on a number of factors:
location and orientation of the viewing plane (viewport)
direction of projection (described by a vector)
projection type:

Projection
Perspective Parallel
1-point Orthographic
2-point Axonometric

3-point Oblique 12




" <
Parallel Projections

+@ O-

: orthographic
axonometric

¢

oblique

13



Perspective Projections

3-point perspective

1-point perspective

2-point perspective

14



Orthogonal Projections

The simplest of all projections, parallel project onto view-

plane.

Usually view-plane is axis aligned (often at z=0)

viewing direction

17 AP
e I
& /

S

~ont

0| L7

=

— N e X

— O = =

— P =MP where M =

o o O =

oS O = O

o o o O

— o O O

15



Multiple Projections

It is often useful to have multiple projections available at
any given time

usually: plan (top) view, front & left or right elevation (side) view

*+ 3D Studio MAX - Untitled [_ O]
File Edit Group Yiews Rendering Help

Jﬁl&lJ_l_IJJAH I | [T | e S e s 1 2 | e = ) w|—_||_|
& F5| & T
[feepont [

Mo qm |

= Wae PlimaiPai
_More.| _I =
Benid | Taper
Twist | Mai: Top
Exiride | Lethe |
UsWiap | EditPaten |
EditMesh | Edigpine |

Perspective —

~ fier 5
ﬂ ITeapul j
el e =]

Selection Level

b2 1R ) f|=TeiE b

Parametar: ]

Radius:[43 053 =
i
£ Segments:[4 El

V¥ Smaooth

Front i Teapot Parts
\b v Body

[¥ Handle

W Spout

IV Licl

Right

I” Genetate Mapping Cootds

04100
[1 Object Seledted 8] [Grid=100 ﬂ“ w0 Ell_$ jall=s
| Click and drag up-and-clown to zoom in and out _I l_ jitl(\ o] o _I h




Orthogonal Projections

The result is an orthographic projection if the object is axis
aligned, otherwise it is an axonometric projection.

If the projection plane intersects the principle axes at the
same distance from the origin the projection is isometric.

y
1 X+y+z=1

—

3
projection plane

17



Parallel Projections in OpenGL®

glOrtho (xmin, xmax, ymin, ymax, zmin, Zzmax);

far clipping plane (at z=-zmax)
(xmax, ymax, —zmax)

(xmin, ymin, —zmin)

" near clipping plane (at z=-zmin)

z resulting image

Note: we always view in -z direction need to transform world in order to view
in other arbitrary directions.

18



Perspective Projections

Perspective projections are more complex and exhibit fore-
shortening (parallel appear to converge at points).

Parameters:
centre of projection (COP)
field of view (6,0)
projection direction
up direction

T achion
fnov d\few
T A

g

view frustrum

projection plane\:\\*

19



Perspective Projections

Consider a perspective projection with the viewpoint at the origin
and a viewing direction oriented along the positive -z axis and the

view-plane located at z = -d

y
P
—d
I? . Y
p Yp
o > -7
CoP f z
projection

plane

z

Y _ Ve

d

Y

;Vp:Z/—d

a similar construction for X, =

X
z/d
A
z/d
—d

1

X

y

—Z

| 2/d |

/

o o O =

o O = O

divide by homogenous ordinate to
map back to 3D space

o o o O

— N e =

20



Perspective Projections Details

. Yp _ L Y
' = “
/\x ZP Z/d —z

|
<
|
Il
1
o O

|
|
>—‘l\1‘<><l

I

(G
|

o O = O
I
U

o O O O

I
N
o o O =

47| PROJECTION ‘ perspective ‘

.~ 4 L L matrix ’ division ’

Flip z to transform to a left handed co-ordinate
system = increasing z values mean increasing
distance from the viewer.

21



Perspective Projection

Depending on the application we can use different
mechanisms to specify a perspective view.

Example: the field of view angles may be derived if the
distance to the viewing plane is known.

Example: the viewing direction may be obtained if a point
in the scene is identified that we wish to look at.

OpenGL supports this by providing different methods of
specifying the perspective view:
gluLookAt, glFrustrum and gluPerspective

22



Perspective Projections

glFrustrum (xmin, xmax, ymin, ymax, zmin, zmax);

(xmin, ymin, —zmin) -

(xmax, ymax, —zmin)

near clipping plane

23



glFrustrum

Note that all points on the line defined by (xmin,ymin,-
zmin) and COP are mapped to the lower left point on the
viewport.

Also all points on the line defined by (xmax,ymax,-zmin)
and COP are mapped to the upper right corner of the
viewport.

The viewing direction is always parallel to -z
It is not necessary to have a symmetric frustrum like:

glFrustrum(-1.0, 1.0, -1.0, 1.0, 5.0, 50.0);

Non symmetric frustrums introduce obliqueness into the
projection.

zmin and zmax are specified as positive distances along
-2

24



Perspective Projections

gluPerspective (fov, aspect, near, far);

P -

aspect = w/h
fov = 0O

v s

g -
F, (/ (J
L

4 -

."r. ’/'
-
!.n' P
’ ., ’z’ S
d - o, .
/ i ¢ -
s . - - =T
’ - ,d’ ~— -
L =
/ 4 . e AT
- = -
. r o / T
L - .
A - -
S -

. ___L_““l”_w%h /
w i -
N3

e

-
-
'y

h/2 = talrlg = h= 2neartan%

X near

25



gluPerspective

A utility function to simplify the specification of perspective
Views.

Only allows creation of symmetric frustrums.

Viewpoint is at the origin and the viewing direction is the -z
axis.

The field of view angle, fov, must be in the range [0..180]

aspect allows the creation of a view frustrum that matches
the aspect ratio of the viewport to eliminate distortion.

26



Perspective

A

&

large fov (or small near)

Projections

<

small fov (or large near)

27



ens Configurations

20mm Lens (fov = 84°)

10mm Lens (fov = 122°)

SR

S

&

o

200mm Lens (fov = 10°)

35mm Lens (fov = 54°)

28



Positioning the Camera

The previous projections had limitations:

usually fixed origin and fixed projection direction
To obtain arbitrary camera orientations and positions we
manipulate the MODELVIEW matrix prior to creation of the
models. This positions the camera w.r.t. the model.

We wish to position the camera at (10, 2, 10) w.r.t. the
world
Two possibilities:

transform the world prior to creation of objects using translatef
and rotatef:. glTranslatef (-10, -2, -10);

use gluLookAt to position the camera with respect to the world
co-ordinate system: gluLookAt (10, 2, 10, .. );

Both are equivalent.

29



Positioning the Camera

gluLookAt (eyex, eyey, eyez, lookx, looky, lookz, upx, upy, upz):;

Cy

CX

origin

look

equivalent to:

glTranslatef (-eyex, -eyey, -eyez);
glRotatef (theta, 1.0, 0.0, 0.0);
glRotatef (ph1, 0.0, 1.0, 0.0);

30



Projection window

The projection matrix defines the mapping from a 3D
world co-ordinate to a 2D viewport co-ordinate.

The window extents are defined as a parameter of the
projection:
glFrustrum(l,r,b,t,n,f)=

Q (rltl_n)

(llbl_n)c

Q (wlhl_n)

gluPerspective(f,a,n,f)=

£
h=n-tan—
(-w,-h,-n) S 2

w=h-a

31



Projection window

We need to associate the 2D window co-ordinate system
with the viewport co-ordinate system in order to determine
the correct pixel associated with each vertex.

=

normalised device

co-ordinates viewport co-ordinates

32



Window to Viewport

Transformation: review

An affine planar transformation is used.

After projection to the window, all points are transformed to
normalised device co-ordinates: [-1,1]1x[1,1]

yn=2 yp_ymil’l _1
ymax_ymin

glviewport used to relate the co-ordinate systems:

glViewport (int x, int y, 1nt width, int height);

33



Window to Viewport

Transformation: review
(x,y) = location of bottom left of viewport within the window
width,height = dimension in pixels of the viewport =

X, = (xn n 1)(Wl;th j-l— x y = (yn n 1)(helzght j-l— y

normally we re-create the window after a window resize event
to ensure a correct mapping between window and viewport
dimensions:

static void reshape (int width, int height)
{
glViewport (0, 0, width, height) ;
glMatrixMode (GL_PROJECTION) ;
glLoadIdentity () ;

gluPerspective (85.0, 1.0, 5, 50);
} 34




Aspect Ratio

The aspect ratio defines the relationship between the
width and height of an image.

Using gluPerspective an viewport aspect ratio may be
explicitly provided, otherwise the aspect ratio is a function
of the supplied viewport width and height.

The aspect ratio of the window (defined by the user) must
match the viewport aspect ratio to prevent unwanted
affine distortion:

aspect ratio = 1.25 aspect ratio = 0.5

35



Sample Viewport
Application

i Sample: Simple Objects

// top left: top view

glViewport (0, win height/2, win_width/2, win_height/2);
glMatrixMode (GL_PROJECTION) ;

glLoadIdentity() ;

glortho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);

gluLookAt(0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, -1.0);
glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity() ;

glCallList (object) ;

// top right: right view

glViewport(win_width/2, win_height/2, win width/2, win_height/2) ;

glMatrixMode (GL_PROJECTION) ;

glLoadIdentity() ;

glortho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);

glulLookAt (5.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity() ;

glCallList (object) ;

// bottom left: front view

glviewport (0, 0, win width/2, win_height/2);
glMatrixMode (GL_PROJECTION) ;

glLoadIdentity() ;

glortho(-3.0, 3.0, -3.0, 3.0, 1.0, 50.0);
gluLookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity() ;

glCallList (object) ;

// bottom right: rotating perspective view
glViewport(win_width/2, 0, win_width/2, win_height/2);
glMatrixMode (GL_PROJECTION) ;

glLoadIdentity() ;

gluPerspective (70.0, 1.0, 1, 50);

glulookAt(0.0, 0.0, 5.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0);
glMatrixMode (GL_MODELVIEW) ;

glLoadIdentity() ;

glRotatef (30.0, 1.0, 0.0, 0.0);

glRotatef (Angle, 0.0, 1.0, 0.0);

glCallList (object) ; 36



