
Computação Gráfica
Computer Graphics
Engenharia Informática (14350) – 3º ano, 1º semestre

Chap. 2 – Geometry Basics

These transparencies were inspired on those due to Machiraju, Zhang, and Möller at:
https://www.cs.sfu.ca/~torsten/Teaching/Cmpt361/LectureNotes/PDF/05_geom_basics.pdf

T02 Geometry Basics

Overview

…:

– Scalar, point, and vector

– Vector space and affine space

– Basic point and vector operations

– Lines, planes, and triangles

– More generic geometric objects

– Rasterization

– Modern OpenGL pipeline

T02 Geometry Basics

Scalar, point, and vector

Scalar:

– Definition: a quantity, e.g., edge length

Point:

– Definition: a location in space

– specified by an k-tuple

– always given with respect to some coordinate system

Vector:

– Definition: a directed line segment between points

Spaces:

– Examples: vector space, affine space, Euclidean space,
etc.

𝑄 =
𝑥
𝑦
𝑧

𝑃 =
𝑥
𝑦

T02 Geometry Basics

Vector space

Definition:

– A set of vectors with scalar multiplications and vector
additions

Operations:

– Scalar-vector multiplication:

– Vector-vector addition:

Composition:

– Expressions like make sense in a
vector space

Issue:

– But vectors lack position.

– Inadequate for representing geometry – we need
positions, which are given by points

𝑄 =
𝑥
𝑦
𝑧

𝑃 =
𝑥
𝑦

𝒖 = 𝛼𝒗
𝒘 = 𝒖 + 𝒗

𝒕 = 𝒖 + 𝟐𝒗 − 𝒘

T02 Geometry Basics

We need points to represent geometric
objects

T02 Geometry Basics

Affine space

Definition:

– a vector space + points.
Operations:

– Scalar-vector multiplication

– Vector-vector addition

– Point-vector addition

– Affine sum of points and convex sums

Invariant:

– paralelism

Special affine space:

– Euclidean space: a vector space +
distance/norm

While the lower (green) plane P1 is a vector
subspace of R3, this is not true for the upper
(blue) plane P2: For any two vectors a,b∈P2 we
find a+b∉P2. However, P2 is an example of an
affine space. The difference a−b of two of its
elements lies in P1 and constitutes a
displacement vector.

https://en.wikipedia.org/wiki/Affine_space

T02 Geometry Basics

Basic point and vector operations

Mixing operations:

– point – point = vector

– point + vector = point

Vector operations:

– scalar * vector = vector

– vector + vector = vector

– vector . vector = scalar (dot product)

– vector x vector = vector (cross product)

The cross product in
respect to a right-handed
coordinate system

https://mathinsight.org/dot_product
https://en.wikipedia.org/wiki/Cross_product
https://www.math10.com/en/geometry/vectors-operations/vectors-operations.html

https://mathinsight.org/dot_product
https://en.wikipedia.org/wiki/Cross_product
https://www.math10.com/en/geometry/vectors-operations/vectors-operations.html

T02 Geometry Basics

More on dot product

Expressions:

–

–

Geometric meanings:

– Two vectors are orthogonal iff

– If is normalized (), then yields the
projection of in the direction of

– is always non-negative

𝒂 0 𝒃 = 𝒂𝒙𝒃𝒙 + 𝒂𝒚𝒃𝒚 + 𝒂𝒛𝒃𝒛

𝒂 0 𝒃 = 𝒂 𝒃 cos 𝜽

𝒂 0 𝒃 = 0
𝒂 0 𝒃𝒃 𝒃 = 1

𝒃𝒂
𝒂 0 𝒂 = 𝒂 𝟐

T02 Geometry Basics

More on cross product

Expressions:

–

–

–

Geometric meanings:

– The direction of the cross product is determined by
the right hand rule

– Cross product is a vector perpendicular to
and – frequently used to compute the normal to a
plane

𝒂×𝒃 =
𝒊 𝒋 𝒌
𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒃𝟏 𝒃𝟐 𝒃𝟑

𝒂×𝒃 = 𝒂 𝒃 sin𝜽 = area of the parallelogram

𝒂×𝒃 = −𝒃×𝒂

𝒂×𝒃 𝒂
𝒃

https://en.wikipedia.org/wiki/Cross_product

T02 Geometry Basics

Affine and convex sums

Affine sum:

– Addition of two arbitrary points is not defined in an affine space

– However, given two points P1 and P2, we can always find a point P
between P1 and P2	 as follows:

with

– Thus, affine sum (combination) of points can be defined as:

with

Convex sum:

– Thus, convex sum (combination) of points can be defined as:

with and for all

𝑷 = 𝑷𝟏 + 𝜶 𝑷𝟐 − 𝑷𝟏 or 𝑷 = 𝟏 − 𝜶 𝑷𝟏 + 𝜶𝑷𝟐

𝜶𝟏𝑷𝟏 + 𝜶𝟐𝑷𝟐 +⋯+ 𝜶𝒏 𝑷𝒏
𝜶𝟏 + 𝜶𝟐 +⋯+ 𝜶𝒏 = 𝟏

𝜶𝟏𝑷𝟏 + 𝜶𝟐𝑷𝟐 +⋯+ 𝜶𝒏 𝑷𝒏
𝜶𝟏 + 𝜶𝟐 +⋯+ 𝜶𝒏 = 𝟏 𝜶𝒊 ≥ 𝟎 𝒊

𝑷𝟏

𝑷𝟐

𝜶(𝑷𝟐 − 𝑷𝟏)

𝑷

𝟎 ≤ 𝛂 ≤ 𝟏

𝛂 ∈ ℝ

T02 Geometry Basics

Triangle and barycentric coordinates

Convex sum of 3 points:

– However, given three points P1, P2, and P3, we can always find a
point P in the triangle ∆P1P2P3 as follows:

with

– According to the definition of affine sum (combination), this point
P can be defined as follows:

– Example: on right-hand side, we and have the point P generated
when

– The weights are called barycentric coordinates of
the triangle ∆P1P2P3

𝑷 = 𝑷𝟏 + 𝜶𝟐 𝑷𝟐 − 𝑷𝟏) + 𝜶𝟑(𝑷𝟑−𝑷𝟏

𝑷 = 𝜶𝟏𝑷𝟏 + 𝜶𝟐𝑷𝟐 + 𝜶𝟑𝑷𝟑
𝜶𝟏 + 𝜶𝟐 + 𝜶𝟑 = 𝟏

𝑷𝟏

𝑷𝟐

𝜶𝟐(𝑷𝟐 − 𝑷𝟏)

𝑷

𝑷𝟑

𝜶𝟏 = 𝜶𝟐 =
𝟏
𝟒

and 𝜶𝟑 =
𝟏
𝟐

𝜶𝟑(𝑷𝟑 − 𝑷𝟏)

http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Affine-Combinations/Affine-Combinations.html

𝜶𝟏, 𝜶𝟐, and 𝜶𝟑

T02 Geometry Basics

Convex hull

Definition:

– Convex hull of a set of points: set of convex combination of these points

Another definition:

– Alternatively, the convex hull is the smallest convex object containing the set of points

Applications:

– Fast collision detection in digital games and robotics.

https://www.ti.inf.ethz.ch/ew/Lehre/CG13/lecture/Chapter%203.pdf

A.J.P. Gomes / Computer-Aided Design 70 (2016) 153–160 159

Fig. 5. Experimental time complexity of Graham’s, Andrew’s, Quickhull and TORCH algorithms (with reference to Table 3) for small, definite point sets: (a) linear–linear
scale; (b) log–log scale.

Fig. 6. Convex hulls (in black) partially overlapping approximate convex hulls (in blue): (a) Airplane’s point set; (b) Al Capone’s point set; (c) Vessel’s point set; (d) Formica’s
point set; (e) T800 head point set; (f) Bugatti’s point set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

note that Graham’s and TORCH are slightly faster for circle point
sets than for quad point sets; on the contrary, Andrew’s is slightly
faster for quads.

In regard to Quickhull, it is clearly sensitive to the shape of the
input point set, because its time performance degrades when we
use circle point sets rather than quad point sets with the same
size. This inferior time performance is more noticeable when one
uses Jarvis’ algorithm, as shown in Fig. 4, what is explained by the
fact that its typical wrapping process is more laborious for round
shapes; this problem can be mitigated by previously sorting the
points in x direction. Chan’s algorithm also works worse for circle
point sets than for quad point sets because it results from the
combination of Jarvis’ and Graham’s algorithms.

5.4. Definite point multisets

We also used small point multisets concerning specific 2D
objects, as those depicted in Fig. 6, which are publicly available
at http://github.com/mosqueteer/TORCH/definitesets/. Each one of
these multisets was produced from the projection of the 3D mesh
vertices (in OBJ format) onto one of the Cartesian planes (e.g., xy-
plane defined by z = 0). The contours in black represent the
convex hulls of such objects. As shown in Fig. 6, these black
contours partially overlap the corresponding approximate convex
hulls in blue.

The time results for the points sets depicted in Fig. 6 are listed
in Table 3, and graphically represented in Fig. 5. Let us advance

A.J.P. Gomes / Computer-Aided Design 70 (2016) 153–160 159

Fig. 5. Experimental time complexity of Graham’s, Andrew’s, Quickhull and TORCH algorithms (with reference to Table 3) for small, definite point sets: (a) linear–linear
scale; (b) log–log scale.

Fig. 6. Convex hulls (in black) partially overlapping approximate convex hulls (in blue): (a) Airplane’s point set; (b) Al Capone’s point set; (c) Vessel’s point set; (d) Formica’s
point set; (e) T800 head point set; (f) Bugatti’s point set. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

note that Graham’s and TORCH are slightly faster for circle point
sets than for quad point sets; on the contrary, Andrew’s is slightly
faster for quads.

In regard to Quickhull, it is clearly sensitive to the shape of the
input point set, because its time performance degrades when we
use circle point sets rather than quad point sets with the same
size. This inferior time performance is more noticeable when one
uses Jarvis’ algorithm, as shown in Fig. 4, what is explained by the
fact that its typical wrapping process is more laborious for round
shapes; this problem can be mitigated by previously sorting the
points in x direction. Chan’s algorithm also works worse for circle
point sets than for quad point sets because it results from the
combination of Jarvis’ and Graham’s algorithms.

5.4. Definite point multisets

We also used small point multisets concerning specific 2D
objects, as those depicted in Fig. 6, which are publicly available
at http://github.com/mosqueteer/TORCH/definitesets/. Each one of
these multisets was produced from the projection of the 3D mesh
vertices (in OBJ format) onto one of the Cartesian planes (e.g., xy-
plane defined by z = 0). The contours in black represent the
convex hulls of such objects. As shown in Fig. 6, these black
contours partially overlap the corresponding approximate convex
hulls in blue.

The time results for the points sets depicted in Fig. 6 are listed
in Table 3, and graphically represented in Fig. 5. Let us advance

https://www.sciencedirect.com/science/article/pii/S001044851500113X

T02 Geometry Basics

Straight line representations

Given two points P and Q on the line , we have:

Parametric: (affine sum)

Explicit:

Implicit:

𝑦 = 𝑚𝑥 + 𝑏

𝐴𝑥 + 𝐵𝑦 + 𝐶 = 0

https://en.wikipedia.org/wiki/Line_(geometry)
https://www.geogebra.org/m/y9wjypyd

Explicit equation of a straight line

𝒑(𝑡) = 𝑷 + 𝑡 𝑸 − 𝑷

T02 Geometry Basics

Plane representations

Given three points P,Q, and R on the plane, we have:

Parametric: (affine sum)

Implicit:

– Typically, (𝐴, 𝐵, 𝐶) is the normal vector of the plane

– If , the point 𝑥', 𝑦', 𝑧' is above the plane

– If , the point 𝑥', 𝑦', 𝑧' is below the plane

– The distance from 𝑥', 𝑦', 𝑧' to the plane is given by

𝑓 𝑥, 𝑦, 𝑧 = 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 + 𝐷 = 0

https://en.wikipedia.org/wiki/Line_(geometry)
https://www.geogebra.org/m/y9wjypyd

𝒑(𝑡, 𝑢) = 𝑷 + 𝑡 𝑸 − 𝑷) + 𝑢(𝑹 − 𝑷
𝑷

𝑸

𝑹

𝑓 𝑥', 𝑦', 𝑧' ≥ 0
𝑓 𝑥', 𝑦', 𝑧' ≤ 0

𝑑 =
| 𝐴𝑥' + 𝐵𝑦' + 𝐶𝑧' + 𝐷 |

𝐴(+ 𝐵(+ 𝐶(

(𝐴, 𝐵, 𝐶)

T02 Geometry Basics

Implicit surfaces

Definition:

– An implicit surface is a zero set of a function:

– Example: the unit sphere

Other designations:

– Isosurface / Level set

Unit surface normal:

– It is the normalized gradient vector

Advantages:

– The entire surface is represented by a single function.

– We can perform interesting operations with this function.

– Example: adding multiple surface functions together where

𝒏 =
𝛁𝑓
𝛁𝑓 ,where 𝛁𝑓 =

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦
𝜕𝑓
𝜕𝑧

T02 Geometry Basics

Implicit as solids

Representation of solids:

– Implicit functions represent important classes of solids.

– Example:

§ Ellipsoid: is a closed, manifold surface that encloses a solid.
– The surface of such a solid is said to be its boundary, which separates the interior from the

exterior of the solid.

T02 Geometry Basics

Quadric surfaces

Definition:

– Every quadric surface is defined by the 2nd degree polynomial:

Matrix form:

ht
tp
://
en
.w
ik
ip
ed
ia
.o
rg
/w
ik
i/Q
ua
dr
ic

They are a particular case of implicit surfaces.

T02 Geometry Basics

Gaussian blob surfaces

Definition:

– A Gaussian blob surface is defined by summing up Gaussian functions for a given threshold T,
each one of which is associated to a point (e.g., center of an atom) in 3D space

– with

They are another particular case of implicit surfaces.

ht
tp
://
en
.w
ik
ip
ed
ia
.o
rg
/w
ik
i/G
au
ss
ia
n_
fu
nc
tio
n

T02 Geometry Basics

How is the geometry really rendered on
screen?

T02 Geometry Basics

Raster display

Definition:

– Discrete grid of elements (frame buffer of pixels).

§ Shapes drawn by setting the “right” elements
§ Frame buffer is scanned, one line at a time, to refresh the image (as opposed to vector display)

Properties:

– Difficult to draw smooth lines

– Displays only a discrete approximation of any shape

– Refresh of entire frame buffer

T02 Geometry Basics

Raster terminology

Pixel: Picture Element

– Smallest accessible element in picture.

– Usually rectangular or circular.

Aspect Ratio:

– Ratio between physical dimensions of
pixel (not necessarily 1).

Dynamic Range:

– Ratio between minimal (not zero!) and
maximal light intensity emitted by
displayed pixel

Resolution:

– Number of distinguishable rows and
columns on a device measured in:

§ Absolute values (nxm)
§ Relative values (e.g., 300 dpi)

– Usually rectangular or circular.

Screen space:

– Discrete 2D Cartesian coordinate system
of screen pixels.

Object space:

– Discrete 3D Cartesian coordinate system
of the domain or scene or the objects live
in.

T02 Geometry Basics

Rasterization (or scan conversion)

Definition:

– The process of converting geometry into pixels.

– From screen coordinates (float) to pixels (int)

– Writing pixels into frame buffer.

Rasterization:

– Figuring out which pixels to turn on.

Shading:

– Determine a color for each filled pixel.

Modern OpenGL Pipeline:

Primitive
Setup and

Rasterization

Fragment
Coloring and

Texturing
Blending

Vertex
Data

Pixel
Data

Vertex
Transform
and Lighting

Texture
Store

T02 Geometry Basics

Graphics primitives

OpenGL Primitive Taxonomy:

– Point: POINTS

– Line: LINES, LINE_STRIP, LINE_LOOP

– Triangle: TRIANGLES, TRIANGLE_STRIP, TRIANGLE_FAN

– Polygon: QUADS, QUAD_STRIP, POLYGON

Other Primitives:

– Any other geometric object must be discretized somehow into points, lines, triangles,
quadrangles, and polygons.

Most used primitive:

– triangle

T02 Geometry Basics

Example in OpenGL

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

// Include standard headers
#include <stdio.h>
#include <stdlib.h>

// Include GLEW
#include <GL/glew.h>

// Include GLFW
#include <GLFW/glfw3.h>
GLFWwindow* window;

// GLM header file
#include <glm/glm.hpp>
using namespace glm;

// shaders header file
#include <common/shader.hpp>

// Vertex array object (VAO)
GLuint VertexArrayID;

// Vertex buffer object (VBO)
GLuint vertexbuffer;

// color buffer object (CBO)
GLuint colorbuffer;

// GLSL program from the shaders
GLuint programID;

// function prototypes
void transferDataToGPUMemory(void);
void cleanupDataFromGPU();
void draw();

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

int main(void)
{
 // Initialise GLFW
 glfwInit();
 // Setting up OpenGL version and the like
 glfwWindowHint(GLFW_SAMPLES, 4);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
 glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
 glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
 glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
 // Open a window
 window = glfwCreateWindow(1024, 768, "Two Triangles in Red and Green", NULL, NULL);
 // Create window context
 glfwMakeContextCurrent(window);
 // Initialize GLEW
 glewExperimental = true; // Needed for core profile
 glewInit();
 // Ensure we can capture the escape key being pressed below
 glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
 // Dark blue background
 glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
 // transfer my data (vertices, colors, and shaders) to GPU side
 transferDataToGPUMemory();
 // render scene for each frame
 do{ // drawing callback
 draw();
 // Swap buffers
 glfwSwapBuffers(window);
 // looking for input events
 glfwPollEvents();
 } while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS && glfwWindowShouldClose(window) == 0);
 // Cleanup VAO, VBOs, and shaders from GPU
 cleanupDataFromGPU();
 // Close OpenGL window and terminate GLFW
 glfwTerminate();
 return 0;
}

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

void transferDataToGPUMemory(void)
{
 // VAO
 glGenVertexArrays(1, &VertexArrayID);
 glBindVertexArray(VertexArrayID);

 // Create and compile our GLSL program from the shaders
 programID = LoadShaders("vertexshader.vs", "fragmentshader.fs");
 // vertices for 2 triangles
 static const GLfloat g_vertex_buffer_data[] = {
 -1.0f, -1.0f, 0.0f,
 1.0f, -1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 -1.0f, 1.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, -1.0f, 0.0f,
 };

 // One color for each vertex
 static const GLfloat g_color_buffer_data[] = {
 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 1.0f, 0.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 };

 // Move vertex data to video memory; specifically to VBO called vertexbuffer
 glGenBuffers(1, &vertexbuffer);
 glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW);
 // Move color data to video memory; specifically to CBO called colorbuffer
 glGenBuffers(1, &colorbuffer);
 glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
 glBufferData(GL_ARRAY_BUFFER, sizeof(g_color_buffer_data), g_color_buffer_data, GL_STATIC_DRAW);

}

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

void cleanupDataFromGPU()
{
 glDeleteBuffers(1, &vertexbuffer);
 glDeleteBuffers(1, &colorbuffer);
 glDeleteVertexArrays(1, &VertexArrayID);
 glDeleteProgram(programID);
}

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

void draw (void)
{
 // Clear the screen
 glClear(GL_COLOR_BUFFER_BIT);
 // Use our shader
 glUseProgram(programID);

 // 1rst attribute buffer : vertices
 glEnableVertexAttribArray(0);
 glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
 glVertexAttribPointer(
 0, // attribute 0. No particular reason for 0, but must match the layout in the shader.
 3, // size
 GL_FLOAT, // type
 GL_FALSE, // normalized?
 0, // stride
 (void*)0 // array buffer offset
);

 // 2nd attribute buffer : colors
 glEnableVertexAttribArray(1);
 glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
 glVertexAttribPointer(
 1, // attribute. No particular reason for 1, but must match the layout in the shader.
 3, // size
 GL_FLOAT, // type
 GL_FALSE, // normalized?
 0, // stride
 (void*)0 // array buffer offset
);

 // Draw the 2 triangles !
 glDrawArrays(GL_TRIANGLES, 0, 6); // 6 indices starting at 0
 // Disable arrays of attributes for vertices
 glDisableVertexAttribArray(0);
 glDisableVertexAttribArray(1);
}

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

vertexshader.vs

#version 330 core

// Input vertex data and color data
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexColor;

// Output fragment data
out vec3 fragmentColor;

void main()
{
 // position of each vertex in homogeneous coordinates
 gl_Position.xyz = vertexPosition;
 gl_Position.w = 1.0;

 // the vertex shader just passes the color to fragment shader
 fragmentColor = vertexColor;
}

T02 Geometry BasicsP01, Exercise 1:
Graphics application to draw 2 triangles w/ different colors

fragmentshader.fs

#version 330 core

// Interpolated values from the vertex shaders
in vec3 fragmentColor;

// Ouput data
out vec3 color;

void main()
{
 color = fragmentColor;
}

T02 Geometry Basics

Summary

…:

– Scalar, point, and vector

– Vector space and affine space

– Basic point and vector operations

– Lines, planes, and triangles

– More generic geometric objects

– Rasterization

– Modern OpenGL pipeline

