~ 7 @O
Computacao Grafica
Computer Graphics
Engenharia Informatica (14350) — 3° ano, |° semestre

DLD Dl]-I]J].ID].I D].I DLLDLD 1010213010000 43 8o

000111110100101.0L00111%0L0000L00L0NLLL0L0O0L0 4
11.01010101{00.11010000410000101001010010010100003011010010101 40008111110100101

Chap. 2 — Geometry Basics

These transparencies were inspired on those due to Machiraju, Zhang, and Méller at:
https://www.cs.sfu.ca/~torsten/Teaching/Cmpt361/LectureNotes/PDF/05_geom_basics.pdf

Overview

— Scalar, point, and vector

— Vector space and affine space

— Basic point and vector operations
— Lines, planes, and triangles

— More generic geometric objects
— Rasterization

— Modern OpenGL pipeline

0000

Scalar:

Point:

Vector:

Spaces:

Definition: a quantity, e.g.,, edge length

Definition: a location in space
specified by an k-tuple

always given with respect to some coordinate system

Definition: a directed line segment between points

Examples: vector space, affine space, Euclidean space,
etc.

{—=15i—25)1

S (2,3)
(I --3 ,
Definition: g
-3 [
— A set of vectors with scalar multiplications and vector g Th o
additions —
-3 -2i-1 1 2 3 X
Operations: N
i +4-2
e b
— Scalar-vector multiplication: U = av (=1.5,-2.5)+-3
— Vector-vector addition: w=u-+v

Composition:

— Expressions like £t = u + 2v — w make sense in a
vector space

Issue:

— But vectors lack position.

— Inadequate for representing geometry — we need
positions, which are given by points

We need points to represent geometric
objects

Affine space

Definition:

a vector space + points.

Operations:

Invariant:

Scalar-vector multiplication
Vector-vector addition
Point-vector addition

Affine sum of points and convex sums

paralelism

Special affine space:

Euclidean space: a vector space +
distance/norm

https://en.wikipedia.org/wiki/Affine_space

a+b

While the lower (green) plane P, is a vector
subspace of R3, this is not true for the upper
(blue) plane P,: For any two vectors a,b€P, we
find a+b&P,. However, P, is an example of an
affine space. The difference a—b of two of its
elements lies in P| and constitutes a
displacement vector.

Basic point and vector operations

Mixing operations:
— point — point = vector

— point + vector = point

Vector operations:

— scalar * vector = vector
— vector + vector = vector
— vector - vector = scalar (dot product)

— vector x vector = vector (cross product)

https://mathinsight.org/dot product
https://en.wikipedia.org/wiki/Cross product
https://www.math10.com/en/geometry/vectors-operations/vectors-operations.html

YA

=V

bXxa
=-axb

The cross product in
respect to a right-handed
coordinate system

https://mathinsight.org/dot_product
https://en.wikipedia.org/wiki/Cross_product
https://www.math10.com/en/geometry/vectors-operations/vectors-operations.html

0000

Expressions:
- a-b=|lal]ll|b]| cos 8
- a-b=ayby+a,b,+a,b,

Geometric meanings:

— Two vectors are orthogonal iff a+b = 0

— If bis normalized (||b|| = 1), then a - b yields the
projection of @ in the direction of b

— a-a = ||al|?is always non-negative

0000

Expressions:

i j k
= axb=|ay a; aj
by by b3

— |laxb]| = ||a]|||b]] sin @ = area of the parallelogram

— axXb = —bXa

Geometric meanings:

— The direction of the cross product is determined by
the right hand rule

— Cross product aXb is a vector perpendicular to a
and b — frequently used to compute the normal to a
plane

https://en.wikipedia.org/wiki/Cross_product

A

A b -
6
S

Y

Affine sum:

— Addition of two arbitrary points is not defined in an affine space

— However, given two points Py and P,, we can always find a point P
between P; and P, as follows:

P=P,+aP,—P;y) orP=(1—-a)P,; + aP,
with o € R
— Thus, affine sum (combination) of points can be defined as:
a,Py +a,Py, +--+a, P,
with ay +a; +-+a,=1
Convex sum:
— Thus, convex sum (combination) of points can be defined as:
a,Py +a,P, +--+a, P,

with a;+a;+-+a,=1 and a; =20 foralli

R
’
’/
-

R
’/
-

R
’
,/
e

Convex sum of 3 points:

— However, given three points Py, P,, and P;, we can always find a
point Pin the triangle AP, P, P as follows:

P:a1P1+a2P2+a3P3
with a1+a2+a3:1

— According to the definition of affine sum (combination), this point
P can be defined as follows:

P =P; +a,(P, — P;) + az;(P3—P,) a, (P,

— Example: on right-hand side, we and have the point P generated
when

. 1 1
al—az—z and ag—E

— The weights a4, a3, and a3 are called barycentric coordinates of
the triangle AP, P, P; P,

http://graphics.idav.ucdavis.edu/education/GraphicsNotes/Affine-Combinations/Affine-Combinations.html

Convex hull

https://lwww.ti.inf.ethz.ch/ew/Lehre/CG13/lecture/Chapter%203.pdf

° . . *
. . °
« o * . ° .
‘ <
. o.':s...o
¢ o . :. . o o

W

R0 0000

-
:
.

Deﬁnition: (a) Input. (b) Output.
— Convex hull of a set of points: set of convex combination of these points

Another definition:

— Alternatively, the convex hull is the smallest convex object containing the set of points

Applications:

— Fast collision detection in digital games and robotics.

https://www.sciencedirect.com/science/article/pii/S001044851500113X

Straight line representations

Given two points Pand @Q on the line , we have:

Parametric: (affine sum)

p(t) =P +t(Q—-P)
Explicit:
y=mx+b

Implicit:
Ax+By+C =0

https://en.wikipedia.org/wiki/Line_(geometry)
https://www.geogebra.org/m/y9wjypyd

Explicit equation of a straight line

Implicit equation of a straight line

v=(-B,A) e

(-2,-2)

Given three points P,@ and R on the plane, we have:

Parametric: (affine sum)

pit,u)=P+t(Q—P)+u(R—-P)

Implicit:
flx,y,z) =Ax+By+Cz+D =0
— Typically, (4, B, C) is the normal vector of the plane
— If f(xg, Vo, 20) = 0, the point (xg, o, Zy) is above the plane

— It f(x0, Y0, 20) < 0, the point (xq, Vo, Z) is below the plane

— The distance from (xq, o, Z) to the plane is given by

d = ||Ax0 +By0 +CZO +D||
VA? + B2 + (?

https://en.wikipedia.org/wiki/Line_(geometry)
https://www.geogebra.org/m/y9wjypyd

(4,B,0)

Definition:
— An implicit surface is a zero set of a function: f(x,y,2) =0
— Example: the unit sphere f(x,y,2) = X+ y2 I

Other designations:

— Isosurface / Level set

Unit surface normal: %
— It is the normalized gradient vector n= V—,vvhere Vf = ﬂ
IVFI dy

Advantages: af
L9z

— The entire surface is represented by a single function.
— We can perform interesting operations with this function.

— Example: adding multiple surface functions together where

330000

Representation of solids:

— Implicit functions represent important classes of solids.

— Example:
= Ellipsoid: is a closed, manifold surface that encloses a solid.

— The surface of such a solid is said to be its boundary, which separates the interior from the
exterior of the solid.

Quadric surfaces

They are a particular case of implicit surfaces.

Definition:

— Bvery quadric surface is defined by the 2" degree polynomial:

f(x,y,2) = Ax* +2Bxy +2Cxz +2Dx + Ey* +2Fyz +2Gy + H" +2Iz+J =0
(A

Matrix form: ’
f(x,y,2)=v My =[x y Z 1]

~ T T A

D
G
I
J

Q ™ & ™

B
C
D

I,_; ~ \< ><|

http://en.wikipedia.org/wiki/Quadric

Gaussian blob surfaces

They are another particular case of implicit surfaces.

Definition:

— A Gaussian blob surface is defined by summing up Gaussian functions for a given threshold T,
each one of which is associated to a point (e.g., center of an atom) in 3D space

2 2 2
a (X-xg) +()"Y(;) +(Z-202)

N
_ f(x,y,2) = Ef, -T=0 with £.(x,,2) = ae 202 207 20
i-1

http://en.wikipedia.org/wiki/Gaussian_function

How is the geometry really rendered on
screen?

B Raster display

Definition:
— Discrete grid of elements (frame buffer of pixels).

® Shapes drawn by setting the “right” elements

= Frame buffer is scanned, one line at a time, to refresh the image (as opposed to vector display)

Properties:
— Difficult to draw smooth lines I e e e B o
— Displays only a discrete approximation of any shape “Te oA e TeTo oo e
— Refresh of entire frame buffer E : 2 “ac E

© www.scratchapixel.com

0000

Pixel: Picture Element

— Smallest accessible element in picture.
— Usually rectangular or circular.

Aspect Ratio:

— Ratio between physical dimensions of
pixel (not necessarily I).

Dynamic Range:

— Ratio between minimal (not zero!l) and
maximal light intensity emitted by
displayed pixel

Resolution:

— Number of distinguishable rows and
columns on a device measured In:

m Absolute values (nxm)
m Relative values (e.g., 300 dpi)

— Usually rectangular or circular.

Screen space:

— Discrete 2D Cartesian coordinate system
of screen pixels.

Object space:

— Discrete 3D Cartesian coordinate system
of the domain or scene or the objects live
in.

Rasterization (or scan conversion)

Definition:
— The process of converting geometry into pixels.
— From screen coordinates (float) to pixels (int)
— Writing pixels into frame buffer.
Rasterization:
— Figuring out which pixels to turn on.
Shading:
— Determine a color for each filled pixel.

Modern OpenGL Pipeline:

ya— Vertex
Data Transform
\ 4 and Lighting ———
Primitive Fragment
> Setup and Coloring and Blending
Rasterization Texturing
Pixel \
Data Texture

— Store

Graphics primitives

OpenGL Primitive Taxonomy:
— Point: POINTS
— Line: LINES, LINE STRIP, LINE LOOP
— Triangle: TRIANGLES, TRIANGLE STRIP, TRIANGLE FAN
— Polygon: QUADS, QUAD STRIP, POLYGON

Other Primitives:

— Any other geometric object must be discretized somehow into points, lines, triangles,
quadrangles, and polygons.

Most used primitive:

— triangle

oalalor

830000

Example in OpenGL

Two Triangles in Red and Green

POIl, Exercise I:
Graphics application to draw 2 triangles w/ different colors

/I Include standard headers
#include <stdio.h>
#include <stdlib.h>

/I Include GLEW
#include <GL/glew.h>

/I Include GLFW
#include <GLFW/glfw3.h>
GLFWwindow* window;

/I GLM header file
#include <glm/gim.hpp>
using namespace glm;

/I shaders header file
#include <common/shader.hpp>

I/l Vertex array object (VAO)
GLuint VertexArrayID;

/I Vertex buffer object (VBO)
GLuint vertexbuffer;

/I color buffer object (CBO)
GLuint colorbuffer;

/I GLSL program from the shaders
GLuint programiD;

/ function prototypes

void transferDataToGPUMemory(void);
void cleanupDataFromGPU();

void draw();

int main(void)
{
/I Initialise GLFW
glfwinit();
/I Setting up OpenGL version and the like
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_FORWARD_COMPAT, GL_TRUE); // To make MacOS happy; should not be needed
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
// Open a window
window = glfwCreateWindow(1024, 768, "Two Triangles in Red and Green", NULL, NULL);
/I Create window context
glfwMakeContextCurrent(window);
/I Initialize GLEW
glewExperimental = true; // Needed for core profile
glewlnit();
// Ensure we can capture the escape key being pressed below
glfwSetlnputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
// Dark blue background
glClearColor(0.0f, 0.0f, 0.4f, 0.0f);
/I transfer my data (vertices, colors, and shaders) to GPU side
transferDataToGPUMemory();
/Il render scene for each frame
do{ //drawing callback
draw();
/I Swap buffers
glfwSwapBuffers(window);
/' looking for input events
glfwPollEvents();
} while (glfwGetKey(window, GLFW_KEY_ESCAPE) = GLFW_PRESS && glfwWindowShouldClose(window) == 0);
I/ Cleanup VAO, VBOs, and shaders from GPU
cleanupDataFromGPU();
I/ Close OpenGL window and terminate GLFW
glfwTerminate();
return O;

void transferDataToGPUMemory(void)
{

glGenVertexArrays(1, &VertexArraylD);
glBindVertexArray(VertexArraylD);

programlD = LoadShaders("vertexshader.vs", "fragmentshader.fs");

static const GLfloat g_vertex_buffer_data[] = {
-1.0f, -1.0f, 0.0f,
1.0f, -1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
-1.0f, 1.0f, 0.0f,
1.0f, 1.0f, 0.0f,
0.0f, -1.0f, 0.0f,

static const GLfloat g_color_buffer_data[] = {
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,
0.0f, 1.0f, 0.0f,

glGenBuffers(1, &vertexbuffer);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_vertex_buffer_data), g_vertex_buffer_data, GL_STATIC_DRAW),

glGenBuffers(1, &colorbuffer);
glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);
glBufferData(GL_ARRAY_BUFFER, sizeof(g_color_buffer_data), g_color_buffer_data, GL_STATIC_DRAW);

8 POI, Exercise I:
| Graphics application to draw 2 triangles w/ different colors

void cleanupDataFromGPU()

glDeleteBuffers(1, &vertexbuffer);
glDeleteBuffers(1, &colorbuffer);
glDeleteVertexArrays(1, &VertexArrayID);
glDeleteProgram(programID);

void draw (void)

{
glClear(GL_COLOR_BUFFER BIT);

glUseProgram(programiD);

glEnableVertexAttribArray(0);
glBindBuffer(GL_ARRAY_BUFFER, vertexbuffer);

glVertexAttribPointer(
0, /[attribute 0. No particular reason for 0, but must match the layout in the shader.
3 Il size

GL_FLOAT, // type
GL_FALSE, // normalized?

0, /I stride

(void*)0 // array buffer offset

glEnableVertexAttribArray(1);
glBindBuffer(GL_ARRAY_BUFFER, colorbuffer);

glVertexAttribPointer(
1, /I attribute. No particular reason for 1, but must match the layout in the shader.
3 Il size

GL_FLOAT, //type
GL_FALSE, // normalized?

0, /] stride

(void*)0 /I array buffer offset

glDrawArrays(GL_TRIANGLES, 0, 6); // 6 indices starting at O

glDisableVertexAttribArray(0);
glDisableVertexAttribArray(1);

POIl, Exercise I:
Graphics application to draw 2 triangles w/ different colors

vertexshader.vs

#version 330 core

// Input vertex data and color data
layout(location = 0) in vec3 vertexPosition;
layout(location = 1) in vec3 vertexColor;

// Qutput fragment data
out vec3 fragmentColor;

void main()
// position of each vertex in homogeneous coordinates
gl_Position.xyz = vertexPosition;
gl_Position.w = 1.0;

// the vertex shader just passes the color to fragment shader
fragmentColor = vertexColor;

POIl, Exercise I:
Graphics application to draw 2 triangles w/ different colors

fragmentshader.fs

#version 330 core

// Interpolated values from the vertex shaders
in vec3 fragmentColor;

// Quput data
out vec3 color;

void main()

color = fragmentColor;

}

Summary

— Scalar, point, and vector

— Vector space and affine space

— Basic point and vector operations
— Lines, planes, and triangles

— More generic geometric objects
— Rasterization

— Modern OpenGL pipeline

