

Computer Graphics Labs

Abel J. P. Gomes

LAB. 4

Department of Computer Science and Engineering
University of Beira Interior

Portugal
2020

Copyright Ó 2009-2020 All rights reserved.

 LAB. 4

WINDOWS AND VIEWPORTS
1. Learning goals
2. Getting started
3. 2D viewing and world-to-screen mapping
4. Example
5. Programming exercises
6. Interesting web links

Lab. 4

WINDOWS AND VIEWPORTS

This lecture continues with rendering of 2D scenes. But, now we use two or more
viewports to render one or more scenes.

1. Learning Goals
At the end of this chapter you should be able to:

1. Explain how a scene within a domain window is mapped onto a screen
viewport. This process involves 1 translation in the domain, 1 scaling between
the domain window and the screen viewport, and 1 translation in the screen, a
process known as window-viewport mapping.

2. Understand how this window-viewport mapping is done in an OpenGL
program.

3. Write a graphics program to map a 2D scene onto two or more viewports.
4. Program a reshape callback to automatically keep the aspect ratios in the

window-viewport mapping.

2. 2D Window-to-Viewport Mapping
Let us now see the maths behind the window-viewport mapping. Let us consider a domain
window in ℝ" defined by (𝑥%&', 𝑦%&', 𝑥%*+, 𝑦%*+) and a point (𝑥, 𝑦) such that
𝑥Î[𝑥%&', 𝑥%*+] and 𝑦Î[𝑦%&', 𝑦%*+]. Let us also consider a viewport in a screen window
given by (𝑋%&', 𝑌%&', 𝑋%*+, 𝑌%*+).
Now, the problem is to determine the pixel (𝑋, 𝑌) within the viewport that is located at the
same relative position as (𝑥, 𝑦) within (𝒙𝒎𝒊𝒏, 𝒚𝒎𝒊𝒏, 𝒙𝒎𝒂𝒙, 𝒚𝒎𝒂𝒙). That is, mapping a 2D
point (𝑥, 𝑦) of the domain window onto a pixel (𝑋, 𝑌) of a screen window (or viewport)
requires to maintain the relative position of such a pixel within the viewport.
To make sure that the relative positions of (𝑥, 𝑦) and (𝑋, 𝑌) are maintained, the following
relationships must be satisfied:

𝑥 − 𝒙𝒎𝒊𝒏
𝒙𝒎𝒂𝒙 − 𝒙𝒎𝒊𝒏

=
𝑋 − 𝑋𝒎𝒊𝒏

𝑋𝒎𝒂𝒙 − 𝑋𝒎𝒊𝒏

and

𝑦 − 𝑦𝒎𝒊𝒏
𝑦𝒎𝒂𝒙 − 𝑦𝒎𝒊𝒏

=
𝑌 − 𝑌𝒎𝒊𝒏

𝑌𝒎𝒂𝒙 − 𝑌𝒎𝒊𝒏

from where we can obtain the expressions of the pixel (𝑋, 𝑌) from the point (𝑥, 𝑦) as
follows:

𝑋 = 𝑋𝒎𝒊𝒏 +
𝑋𝒎𝒂𝒙 − 𝑋𝒎𝒊𝒏
𝑥𝒎𝒂𝒙 − 𝑥𝒎𝒊𝒏

. (𝑥 − 𝒙𝒎𝒊𝒏)

and

𝑌 = 𝑌𝒎𝒊𝒏 +
𝑌𝒎𝒂𝒙 − 𝑌𝒎𝒊𝒏
𝑦𝒎𝒂𝒙 − 𝑦𝒎𝒊𝒏

. (𝑦 − 𝑦𝒎𝒊𝒏)

That is, the window-viewport mapping involves a translation (−𝒙𝒎𝒊𝒏, −𝑦𝒎𝒊𝒏) in ℝ𝟐, a
scaling (𝑆+, 𝑆;), and a translation (𝑋𝒎𝒊𝒏, 𝑌𝒎𝒊𝒏) in the screen. Thus, 𝑆+ = (𝑋𝒎𝒂𝒙 −
𝑋𝒎𝒊𝒏)/(𝑥𝒎𝒂𝒙 − 𝑥𝒎𝒊𝒏) and 𝑆; = (𝑌𝒎𝒂𝒙 − 𝑌𝒎𝒊𝒏)/(𝑦𝒎𝒂𝒙 − 𝑦𝒎𝒊𝒏) are the scaling factors.

Note that keeping the relative positions does NOT mean to keep aspect ratios (or
proportions). If the domain window and the viewport do not have identical aspect ratios,
the image appears deformed on screen.

3. Windows and Viewports in OpenGL
As known, OpenGL (Open Graphics Library) is a cross-platform, hardware-accelerated,
language-independent, standard API that we use to produce 2D and 3D scenes, i.e.,
OpenGL is the software interface to graphics hardware.

3.1. Graphics libraries and functions

We use the following libraries in our OpenGL programs:
1. OpenGL (GL): consists of hundreds of functions, which start with the prefix "gl"

(e.g., glDrawArrays, glBindBuffer, glGenBuffers, glDeleteBuffers, glViewport). It
is this core that allows us to model objects and build up scenes using a set of
geometric primitives like, for example, point (GL_POINTS), straight line segment
(GL_LINES), and polygon (GL_POLYGON).

2. The OpenGL Extension Wrangler Library (GLEW): is a cross-platform C/C++
library designed to query and load OpenGL extensions. That is, GLEW provides
runtime mechanisms that determine which OpenGL extensions are supported on
your computer. In a way, GLEW provides platform independency (e.g., Windows,
Linux, and Mac OSX), as well as compatibility across OpenGL extensions.
http://glew.sourceforge.net/

1. Graphics Library Framework (GLFW): is a provides a lightweight utility library
that enables us to create and manage windows and OpenGL contexts. It also allows
for handling joystick, keyboard and mouse input. However, it does not allow us to
create buttons and menus.

 https://www.glfw.org/

2. OpenGL Mathematics (GLM): is a header only C++ mathematics library for

graphics programming. GLM provides a set of classes and functions designed and
encoded using the same naming conventions and functionalities than GLSL
(OpenGL Shading Language).

 https://glm.g-truc.net/0.9.9/index.html
 GLM manual:
 https://chromium.googlesource.com/external/github.com/g-truc/glm/+/refs/heads/master/manual.md

3. OpenGL Shading Language (GLSL): is a C/C++ similar high-level

programming language to program different pipeline parts of the graphics card.
GLSL programs are called shaders, which run on the GPU. There are types of
shaders, namely: vertex shaders, fragment shaders, geometry shaders, and so
forth.

https://learnopengl.com/Getting-started/Shaders
https://www.youtube.com/watch?v=uOErsQljpHs
https://www.youtube.com/watch?v=oyFFTgFcfDo

3.2. OpenGL/GML orthographic projection function

GLM provides both orthographic and perspective projections. However, in this lab, we
shall handle orthographic projections only, as needed for 2D scenes.

The 2D orthographic projection is defined by the following GLM function prototype:

whose arguments represent the left, right, bottom, and top planes of the frustum. The
viewer (or camera) is located at the infinite. By default, left=-1.0, right=1.0, bottom=-
1.0, and top=1.0.

glm::dmat4() * glm::transpose(glm::dmat4());

From GLM core library: <glm/glm.hpp>

glFrustum:
glm::mat4 glm::frustum(

float left, float right,
float bottom, float top,
float zNear, float zFar);

glm::dmat4 glm::frustum(

double left, double right,
double bottom, double top,
double zNear, double zFar);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

glOrtho:
glm::mat4 glm::ortho(

float left, float right,
float bottom, float top,
float zNear, float zFar);

glm::dmat4 glm::ortho(

double left, double right,
double bottom, double top,
double zNear, double zFar);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

5.2. GLM replacements for GLU functions
gluLookAt:
glm::mat4 glm::lookAt(

glm::vec3 const & eye,
glm::vec3 const & center,
glm::vec3 const & up);

glm::dmat4 glm::lookAt(

glm::dvec3 const & eye,
glm::dvec3 const & center,
glm::dvec3 const & up);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluOrtho2D:
glm::mat4 glm::ortho(

float left, float right, float bottom, float top);

glm::dmat4 glm::ortho(

double left, double right, double bottom, double top);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluPerspective:
glm::mat4 perspective(

float fovy, float aspect, float zNear, float zFar);

glm::dmat4 perspective(

double fovy, double aspect, double zNear, double zFar);

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp>

gluPickMatrix:
glm::mat4 pickMatrix(

3.3. Window-viewport mapping in OpenGL

Let us recall that a viewport is defined as a region of the window that you wish to map
the domain window defined by glm:ortho. Interestingly, we may define multiple
viewports for a single domain window, so that we can display different parts of a scene
into different viewports.

The OpenGL function prototype for creating a viewport is as follows:

glViewport(GLint x, GLint y, GLsizei width, GLsizei height);

where

1) x, y: denote the lower left corner of the viewport; the initial value is (0,0);
2) width, height: represent the width and height of the viewport in pixels.

To avoid distortion of an image when the window is resized, modify the aspect ratio of
the projection to match the viewport. For example, assuming we want to maintain a 1:1
aspect ratio in our image, we have:

1) the viewport defined by glViewport(0,0,400,400) and the domain window
defined by glm::ortho(-1.0,1.0,-1.0,1.0) hold the 1:1 ratio.

2) the viewport defined by glViewport(0,0,400,200) and the domain windows
defined by glm::ortho(-2.0,2.0,-1.0,1.0) and glm::ortho(-1.0,1.0,-0.5,
0.5) also hold the 1:1 ratio.

3.4. Windowing functions in GLFW

We use GLFW to create a window as follows:

GLFWwindow* glfwCreateWindow (

int width,
 int height,
 const char * title,
 GLFWmonitor * monitor,
 GLFWwindow * share
)

where

1) width, height: denote the width and height of the window;
2) title: is a string that appears as the title of the window;
3) monitor: the monitor to use for full screen mode, or NULL to use windowed mode;
4) share: the window whose context to share resources with, or NULL to not share

resources.
To set the size of the window, we use the following GLFW function:

void glfwSetWindowSize (

GLFWwindow * window,
 int * width,
 int * height
)

where

1) window: the target window;
2) width, height: denote the desired width and height for target window.

To get the size of the window, we use the following GLFW function:

void glfwGetWindowSize (

GLFWwindow * window,
 int * width,
 int * height
)

where

1) window: the target window;
2) width, height: denote the width and height of the target window;

To resize a window, we use two GLFW functions. The first function carries out the
registration of a callback that resizes the target window, and is as follows:

GLFWwindowsizefun glfwSetWindowSizeCallback (

GLFWwindow * window,
 GLFWwindowsizefun cbfun
)

where

1) window: the target window;
2) cbfun: denotes the callback function.

The second function, the callback cbfun, is called whenever the window is resized by the
user interactively. This callback function is a C function, much like we do in the legacy
OpenGL. A typical callback prototype is:

// function to be called
void myWindowsResizeCallback (

GLFWwindow * window,
 GLint width;
 GLint height;
)

For more details about GLFW window handling, the reader is referred to:

https://www.glfw.org/docs/3.0/group__window.html#gaa40cd24840daa8c62f36cafc847c
72b6

4. Example
A program to draw the same house in four viewports is available at:

http://www.di.ubi.pt/~agomes/cg/praticas/house4viewports.zip

which produces the following output:

5. Programming Exercises
1. Write a program to draw the cos function on a viewport and the sin function on another

viewport.
2. Re-write the previous program to add a third viewport displaying a bouncing ball.
3. Re-write the house-building program (with a single viewport) implemented in the

previous classes to simulate the panning operation through the arrow keys
(GLFW_KEY_UP, GLFW_KEY_DOWN, GLFW_KEY_LEFT, and
GLFW_KEY_RIGHT) of the keyboard. For that purpose, we should move the domain
window around the house. The movement step in each direction is 5 percent of the
domain window’s width. See the following pages to learn about keyboard input events
and callbacks:
https://www.glfw.org/docs/3.0/group__keys.html#gaac6596c350b635c245113b81c21
23b93
and
https://www.glfw.org/docs/3.0/quick.html#quick_key_input
As for any GLFW window, you need to implement your keyboard callback, and then
to register it with a specific GLFW registration function. This registration function is
named glfwSetKeyCallback, as described at:
https://www.glfw.org/docs/3.0/group__input.html#ga7e496507126f35ea72f01b2e6ef
6d155

4. Re-write the house-building program above to add the zooming operation. The zoom-
in operation should be controlled by the ‘+’ key, while the zoom-out operation should
use the ‘-‘ key.

5. Add the reshaping facility to the previous program.
6. Add the full-screen facility to the previous program.

