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Lab. 2 
 

GEOMETRIC TRANSFORMATIONS 
 
 
 
In this lecture, we are going to deal with geometric transformations in 2D as their 
generalization in 3D is straightforward. These geometric transformations are also called 
affine transformations. 

1. Learning Goals 
At the end of this chapter you should be able to: 

1. Explain what transformations are and why we use them in computer graphics. 
2. List the three main transformations we use in computer graphics and describe 

what each one does. 

3. Understand how to rotate a point around an arbitrary point. 

4. Understand what homogenous coordinates are and why we use them in 
computer graphics. 

5. Understand the importance of the order of operations in a matrix 
multiplication expression. 

6. Understand what a CTM (Combined Transformation Matrix) is and 
understand what order the transformations must be in to achieve the desired 
CTM. 

7. Be aware of the default facilities of OpenGL; for example, the default 2D 
domain is OpenGL is [-1,1]×[-1,1]. 

2. Getting Started 

Geometric transformations are used to fulfill two main requirements in computer 
graphics: 

1. To model and construct scenes. 

2. To navigate our way around 2- and 3- dimensional space. 
 

For example, when a street building has n identical windows, we proceed as follows: 

1. To construct a single window by means of graphics primitives; 

2. To replicate n times the window. 

3. To put each window at a desirable location using translations and rotations. 



This shows that transformations such as translations and rotations can be used as scene 
modeling operations. 

These transformations can be also used to move a bot or an avatar in the virtual 
environment of a First-Person Shooter (FPS) game.  

 

3. Euclidean Transformations  
There are two Euclidean transformations: 

1. Translation 

2. Rotation 

3.1. Translation 

Translation can be thought of as moving something. In translation, a point is moved a 
distance in a direction.  

For example, when the point 𝐴(𝑥, 𝑦) is translated 𝑑𝑥 units in the x direction and 𝑑𝑦 units 
in the y direction, it becomes: 

𝐴′(𝑥 + 𝑑𝑥, 𝑦 + 𝑑𝑦) 
 

or, equivalently,  

+𝑥
! = 𝑥 + 𝑑𝑥
𝑦! = 𝑦 + 𝑑𝑦 

 
Representing points as column matrices, we obtain 

𝐴 = -
𝑥
𝑦., 𝐴′ = /𝑥′𝑦′0, and  𝑇 = /𝑑𝑥𝑑𝑦0, 

so that the translation can be expressed as follows: 

𝐴! = 𝐴 + 𝑇 
In general, translating an object means to translate its vertices (i.e. corners or endpoints) in 
such a manner that lines or polygons can then be drawn using the transformed vertices. 

3.2. Rotation about the origin 

Using polar coordinates (r,𝜙), a given point in the plane is given by the following 
equations: 

+𝑥 = 𝑟 cos𝜙
𝑦 = 𝑟 sin𝜙  



 

By default, rotating an object by the angle q means rotating it around the origin by q. After 
rotating the previous point by the angle q  around the origin, the get the following 
transformed point: 

+𝑥′ = 𝑟 cos(𝜙 + 𝜃)
𝑦 = 𝑟 sin(𝜙 + 𝜃)  

or  

+𝑥′ = 𝑟 cos𝜙 cos 𝜃 − 𝑟 sin𝜙 sin 𝜃)
𝑦′ = 𝑟 cos𝜙 sin 𝜃 + 𝑟 sin𝜙 cos 𝜃) 

that is 

+𝑥
! = 𝑥 cos 𝜃 − 𝑦 sin 𝜃
𝑦! = 𝑥 sin 𝜃 + 𝑦 cos 𝜃 

In matrix notation, we then obtain 

/𝑥′𝑦′0 = -cos 𝜃 −sin 𝜃
sin 𝜃 cos 𝜃 . -

𝑥
𝑦. 

or 

𝐴! = 𝑅. 𝐴 
where R is the 2x2 rotation matrix. 

3.3. Homogeneous Coordinates 

We’ve seen the following matrix transformations: 

Translation:   

𝐴! = 𝐴 + 𝑇 
Rotation: 

𝐴! = 𝑅. 𝐴 
 

Translation is achieved through matrix addition while rotation is achieved by matrix 
product. This means that we can combine any number of translation matrices through 
addition, and any number of rotation matrices through multiplication. However, we cannot 
combine translation and rotation matrices into a single matrix through the product 
operation. It would be very useful if we could do this because that would enable the 
composition of geometric transformations through a single matrix operation, say matrix 
product. Besides, it would be less computationally expensive, as explained below.  
Homogenous Coordinates are just a way to overcome this problem.  With homogenous 
coordinates, a series of geometric transformations can be applied in a sequence using 
matrix product. The result is usually called combined transformation matrix or CTM.  



Therefore, translations and rotations expressed in homogenous coordinates are given by: 
Translation:   

𝐴! = 𝑇. 𝐴 
Rotation: 

𝐴! = 𝑅. 𝐴 

In homogenous coordinates a point 𝑃(𝑥, 𝑦) is represented by the homogenous point 
𝑃(𝑋, 𝑌,𝑊) where: 

𝑋 = "
#

           and       𝑌 = $
#

, 

where W usually equals 1 in computer graphics for simplicity. 

Using homogenous coordinates, the Euclidean transformation matrices are expressed as 
3x3 matrices as follows: 

Translation:   

𝑇(𝑑𝑥, 𝑑𝑦) = A
1 0 𝑑𝑥
0 1 𝑑𝑦
0 0 1

D 

Rotation: 

𝑅(𝜃) = A
cos 𝜃 − sin 𝜃 0
sin 𝜃 cos 𝜃 0
0 0 1

D 

 

3.4. Rotation about an arbitrary point 

The rotation matrix (above) works well if we intend to rotate a point around the origin. But, 
what about rotating the point (𝑥, 𝑦) around the arbitrary point (𝑥% , 𝑦%)?  
The answer lies in the following procedure of three steps:  

- Translate (𝑥% , 𝑦%) to the origin, i.e. translate by 𝑇(−𝑥% , −𝑦%).  

- Perform the rotation 𝑅(𝜃). 
- Translate so that point at the origin returns to the original location, i.e., translate by 

𝑇(𝑥% , 𝑦%). 
Therefore, to rotate an object made up of 5 vertices, each geometric transformation would 
need to be done 5 times. Overall, we have 

3 Transformations x 5 Vertices = 15 calculations 

what is computationally expensive. 

The computational cost can be reduced using the CTM (Combined Transformation 
Matrix), i.e. by combining the transformations into a single CTM: 



3 Transformations x Identity Matrix = 3 calculations 
1 Transformation (CTM) x 5 Vertices = 5 calculations 

so that the total number of calculations is equal to 8. 

3.5. Order and composition of transformations 

The order of geometric transformations of the CTM is relevant because the matrix product 
is not commutative. In fact, 

Matrix product is associative: 

When multiplying matrices, the order we carry out the multiplications is not relevant, that 
is 

𝐴. 𝐵. 𝐶 = (𝐴. 𝐵). 𝐶 = 𝐴. (𝐵. 𝐶) 
 

Matrix multiplication is not commutative: 

When multiplying matrices together, we carry out the multiplications is relevant, that is 

𝐴. 𝐵 ≠ 𝐵. 𝐴 
The question is then how do we work out the order of our matrices when creating the CTM? 
Turning back to the steps to rotate a point around the point (𝑥% , 𝑦%), let us rewrite the 
corresponding procedure: 

- Translate (𝑥% , 𝑦%) to the origin, i.e. translate by 𝑇(−𝑥% , −𝑦%). 

- Perform the rotation 𝑅(𝜃). 
- Translate so that point at the origin returns to the original location, i.e., translate 

by	𝑇(𝑥% , 𝑦%). 
Thus, the order of the CTM is: 

𝐶𝑇𝑀 = 𝑇(𝑥% , 𝑦%).	𝑅(𝜃). 𝑇(−𝑥% , −𝑦%)  
When we multiply the CTM by the point P we have 

𝐶𝑇𝑀. 𝑃 = 𝑇(𝑥% , 𝑦%).	𝑅(𝜃). 𝑇(−𝑥% , −𝑦%).P  

An important fact to bear in mind is that the transformation closest to the point P in the 
expression is the first transformation to be applied to P. 

4. Affine Transformations  
Euclidean transformations preserve the distance between points, and because of that they 
are then called rigid transformations.  

Affine transformations generalize Euclidean transformations in the sense that they don not 
preserve distance but parallelism instead. This means that two parallel lines remain 
parallel after applying a affine transformation. Because of this principal invariant, other 



properties are preserved. For example, an affine transformation also preserves collinearity 
(i.e., all points of a line remain on a line after transformation) and ratios of distances or 
proportions (e.g., the midpoint of a line segment remains the midpoint after 
transformation).  

An affine transformation is also called an affinity. Examples of affine transformations are 
contraction, expansion, dilation, reflection, rotation, shear, similarity transformations, 
spiral similarities, and translation, as are their combinations. In general, an affine 
transformation is the result of a composition of rotations, translations, dilations, and shears.   

As seen above, rotations and translations are Euclidean transformations. Let us then see the 
other two basic affine transformations. 

Dilation or Scaling: 

In scaling, we change the size of an object. Scaling makes an object bigger or smaller in 
the x and/or y direction. 

Scaling a point (𝑥, 𝑦) by a factor 𝑠" along the x axis and 𝑠$ along the y axis requires we 
multiply each coordinate by the corresponding scaling factor: 

+
𝑥! = 𝑠" . 𝑥
𝑦! = 𝑠$ . 𝑦

 

or, using the matrix notation, 

A
𝑥′
𝑦′
1
D = A

𝑠" 0 0
0 𝑠$ 0
0 0 1

D . K
𝑥
𝑦
1
L 

 
Shearing: 

Shearing enjoys the property that all points along a given line l remain fixed, while other 
points are shifted parallel to l by a distance that is proportional to their perpendicular 
distance from l. Note that shearing an object in the plane does not change its area at all. As 
a margin note, let us say that shearing can easily be generalized to three dimensions, where 
planes are translated instead of lines. 

Shearing a point (𝑥, 𝑦) by a factor ℎ" along the x axis and ℎ$ along the y axis is given by 
the following equations: 

+
𝑥! = 𝑥 + ℎ" . 𝑦
𝑦! = 𝑦 + ℎ$ . 𝑥

 

or, using the matrix notation, 

A
𝑥′
𝑦′
1
D = A

1 ℎ" 0
ℎ$ 1 0
0 0 1

D . K
𝑥
𝑦
1
L 

 

The effect of a shearing looks like “pushing” an object in a direction that is parallel to a 



coordinate axis in 2D (or coordinate plane in 3D). Note that we can do this only in the x-
direction as follows 

+𝑥
! = 𝑥 + ℎ" . 𝑦
𝑦! = 𝑦														 

or in the y-direction 

+
𝑥! = 𝑥														
𝑦! = 𝑦 + ℎ$ . 𝑥

 

 

5. 3D Transformations in OpenGL 
In modern OpenGL, geometric transformations are defined using GLM (OpenGL 
Mathematics) and GLSL (OpenGL Shading Language) as follows: 

 
 

 

 

 
 
Translation: 

In GLM, the translation is defined as follows: 

 
which transforms a matrix with a translation 4x4 matrix m created from 3 scalars. 
Let us see an example: 
 

5. OpenGL interoperability 
5.1. GLM replacements for deprecated OpenGL functions  

OpenGL 3.1 specification has deprecated some features that have been removed from OpenGL 3.2 core 
profile specification. GLM provides some replacement functions. 

glRotate{f, d}: 
glm::mat4 glm::rotate( 

glm::mat4 const & m, 
float angle,  
glm::vec3 const & axis); 

 
glm::dmat4 glm::rotate( 

glm::dmat4 const & m, 
double angle,  
glm::dvec3 const & axis); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glScale{f, d}:  
glm::mat4 glm::scale( 

glm::mat4 const & m, 
glm::vec3 const & factors); 

 
glm::dmat4 glm::scale( 

glm::dmat4 const & m,  
glm::dvec3 const & factors); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glTranslate{f, d}: 
glm::mat4 glm::translate( 

glm::mat4 const & m, 
glm::vec3 const & translation); 

 
glm::dmat4 glm::translate( 

glm::dmat4 const & m, 
glm::dvec3 const & translation); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glLoadIdentity: 
glm::mat4(1.0) or glm::mat4(); 
glm::dmat4(1.0) or glm::dmat4(); 
From GLM core library: <glm/glm.hpp> 
  
glMultMatrix{f, d}:  
glm::mat4() * glm::mat4(); 
glm::dmat4() * glm::dmat4(); 
From GLM core library: <glm/glm.hpp> 
  
glLoadTransposeMatrix{f, d}:  
glm::transpose(glm::mat4()); 
glm::transpose(glm::dmat4()); 
From GLM core library: <glm/glm.hpp> 
  
glMultTransposeMatrix{f, d}:  
glm::mat4() * glm::transpose(glm::mat4()); 
glm::dmat4() * glm::transpose(glm::dmat4()); 
From GLM core library: <glm/glm.hpp> 
  
glFrustum:  
glm::mat4 glm::frustum( 

float left, float right,  
float bottom, float top,  

N

𝑎 𝑏 𝑐 𝑑
𝑒 𝑓 ℎ 𝑖
𝑗
𝑛

𝑘
𝑜

𝑙 𝑚
𝑝 𝑞

] × ^

𝑥
𝑦
𝑧
𝑤
a= N

𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑𝑤
𝑒𝑥 + 𝑓𝑦 + ℎ𝑧 + 𝑖𝑤
𝑗𝑥 + 𝑘𝑦 + 𝑙𝑧 + 𝑚𝑤
𝑛𝑥 + 𝑜𝑦 + 𝑝𝑧 + 𝑞𝑤

] 

myMatrix myVector transformedVector 

^
1 0 0 10
0 1 0 0
0
0

0
0

1 0
0 1

a × ^
10
10
10
1

a= ^
20
10
10
1

a 



 
 

Rotation: 
In GLM, the rotation is defined as follows: 

 
which transforms a matrix with a rotation 4x4 matrix m created from an axis of 3 scalars 
and an angle expressed in degrees. 

Let us see an example: 

 
In C++: 
 
// Use #include <glm/gtc/matrix_transform.hpp> and #include <glm/gtx/transform.hpp> 
glm:vec3 myRotationAxis( 1.0f, 0.0f, 0.0f ); 
glm:mat4 rot = glm::rotate( angle_in_degrees, myRotationAxis); 

 

Scaling: 
In GLM, the scale is defined as follows: 

 
which transforms a matrix with a scale 4x4 matrix m created from a vector of 3 
components. 

Let us see an example: 
 
In C++: 
 
// Use #include <glm/gtc/matrix_transform.hpp> and #include <glm/gtx/transform.hpp> 
glm:mat4 myScalingMatrix = glm::scale(2.0f, 2.0f, 2.0f ); 

 

For more details on GLM matrices, the reader is referred to: 
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-3-matrices/ 
 
Also, the GLM manual can be found at: 
http://glm.g-truc.net/glm.pdf 
 

5. OpenGL interoperability 
5.1. GLM replacements for deprecated OpenGL functions  

OpenGL 3.1 specification has deprecated some features that have been removed from OpenGL 3.2 core 
profile specification. GLM provides some replacement functions. 

glRotate{f, d}: 
glm::mat4 glm::rotate( 

glm::mat4 const & m, 
float angle,  
glm::vec3 const & axis); 

 
glm::dmat4 glm::rotate( 

glm::dmat4 const & m, 
double angle,  
glm::dvec3 const & axis); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glScale{f, d}:  
glm::mat4 glm::scale( 

glm::mat4 const & m, 
glm::vec3 const & factors); 

 
glm::dmat4 glm::scale( 

glm::dmat4 const & m,  
glm::dvec3 const & factors); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glTranslate{f, d}: 
glm::mat4 glm::translate( 

glm::mat4 const & m, 
glm::vec3 const & translation); 

 
glm::dmat4 glm::translate( 

glm::dmat4 const & m, 
glm::dvec3 const & translation); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glLoadIdentity: 
glm::mat4(1.0) or glm::mat4(); 
glm::dmat4(1.0) or glm::dmat4(); 
From GLM core library: <glm/glm.hpp> 
  
glMultMatrix{f, d}:  
glm::mat4() * glm::mat4(); 
glm::dmat4() * glm::dmat4(); 
From GLM core library: <glm/glm.hpp> 
  
glLoadTransposeMatrix{f, d}:  
glm::transpose(glm::mat4()); 
glm::transpose(glm::dmat4()); 
From GLM core library: <glm/glm.hpp> 
  
glMultTransposeMatrix{f, d}:  
glm::mat4() * glm::transpose(glm::mat4()); 
glm::dmat4() * glm::transpose(glm::dmat4()); 
From GLM core library: <glm/glm.hpp> 
  
glFrustum:  
glm::mat4 glm::frustum( 

float left, float right,  
float bottom, float top,  

5. OpenGL interoperability 
5.1. GLM replacements for deprecated OpenGL functions  

OpenGL 3.1 specification has deprecated some features that have been removed from OpenGL 3.2 core 
profile specification. GLM provides some replacement functions. 

glRotate{f, d}: 
glm::mat4 glm::rotate( 

glm::mat4 const & m, 
float angle,  
glm::vec3 const & axis); 

 
glm::dmat4 glm::rotate( 

glm::dmat4 const & m, 
double angle,  
glm::dvec3 const & axis); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glScale{f, d}:  
glm::mat4 glm::scale( 

glm::mat4 const & m, 
glm::vec3 const & factors); 

 
glm::dmat4 glm::scale( 

glm::dmat4 const & m,  
glm::dvec3 const & factors); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glTranslate{f, d}: 
glm::mat4 glm::translate( 

glm::mat4 const & m, 
glm::vec3 const & translation); 

 
glm::dmat4 glm::translate( 

glm::dmat4 const & m, 
glm::dvec3 const & translation); 

From GLM_GTC_matrix_transform extension: <glm/gtc/matrix_transform.hpp> 
  
glLoadIdentity: 
glm::mat4(1.0) or glm::mat4(); 
glm::dmat4(1.0) or glm::dmat4(); 
From GLM core library: <glm/glm.hpp> 
  
glMultMatrix{f, d}:  
glm::mat4() * glm::mat4(); 
glm::dmat4() * glm::dmat4(); 
From GLM core library: <glm/glm.hpp> 
  
glLoadTransposeMatrix{f, d}:  
glm::transpose(glm::mat4()); 
glm::transpose(glm::dmat4()); 
From GLM core library: <glm/glm.hpp> 
  
glMultTransposeMatrix{f, d}:  
glm::mat4() * glm::transpose(glm::mat4()); 
glm::dmat4() * glm::transpose(glm::dmat4()); 
From GLM core library: <glm/glm.hpp> 
  
glFrustum:  
glm::mat4 glm::frustum( 

float left, float right,  
float bottom, float top,  



6. Example 
Let us see a program that draws a house. Then, such a house is shifted in steps of 0.1 
units along the x-axis and y-axis up to reach 10 units in each axis. 
The program is available at: 
http://www.di.ubi.pt/~agomes/cg/praticas/movinghouse.zip 
 

7. Programming Exercises 
1. Re-write the house-building program implemented above in a way that all building 

blocks (body, roof, windows and door) are constructed from the origin. Then, use 
translations to place these building blocks at the desired locations. Each building block 
is constructed in a separate function. In the case of the window, we need to call its 
function twice because we are assuming the house has two windows. 

2. Add the toggle facilities to the previous program in a manner to add/remove the house 
body by pressing the ‘b’ key, roof by pressing the ‘r’ key, windows by pressing the ‘w’ 
key, and door by pressing the ‘d’ key. 

3. Let us now replicate twice the house. The first copy of the original house must be 
reduced to ¾ and placed side-by-side on the left of the original house. The second house 
copy must be scaled up to 5/4 and placed side-by-side on the right of the original house. 

4. Let us now add the bright sun to the scene. The sun can be generated using the program 
concerning the Exercise 5 of the practical P01. The user can change the position of the 
sun by clicking on the ‘s’ key. The trajectory of the sun is a circle arc. 

5. Based on the original code of movinghouse.zip, put the elements of the house (i.e., 
windows, door, and roof) to move away from the body center. 

6. Based on the original code of movinghouse.zip, put the elements of the house (i.e., 
windows, door, and roof) to move away or translating them from the body center. 

7. Based on the original code of movinghouse.zip, put the elements of the house (i.e., 
windows, door, and roof) to rotate about the body center. 

8. Based on the original code of movinghouse.zip, put the elements of the house (i.e., 
windows, door, and roof) to rotate about and to move away from the body center 
simultaneously. 

 

8. Final Remarks 
1. Transformations are mathematical functions that allow us to model and to navigate 

within 2D and 3D spaces. 

2. In computer graphics, we use three main transformations: translation, scaling and 
rotation. 

3. Homogenous coordinates allow us to treat translation, scaling and rotation in the same 
manner.  Consequently, all affine transformations can be combined into a CTM that 
substantially reduces the calculations that need to be made. 



4. Matrix multiplication is associative but not commutative. 
5. A CTM may combine many transformations into a single matrix.  


