
Computer Graphics
11569: Licenciatura em Engenharia Informática

Lab. 1 — C++ Explained

Lab. 1: C++ Explained

Outline

Variables, pointers, and references

Functions

Variables, pointers, and references

Lab. 1: C++ Explained

VARIABLES, POINTERS, AND REFERENCES

Lab. 1: C++ Explained

Variables, pointers, and references

Variable:

– It is a name/identifier that represents a value stored in memory.

Pointer variable:

– It is a name/identifier that represents an address (of memory) stored in memory.

Reference variable:

– It is a pointer variable.

– But, it also works as an alias to the pointed variable, so that it can be used an usual
variable.

– It must be initialized at the declaration stage.

Lab. 1: C++ Explained

Variables, pointers, and references (cont’d)

Variable:

– It is a name/identifier that represents a value stored in memory.

Pointer variable:

– It is a name/identifier that represents an address (of memory) stored in memory.

Reference variable:

– It is a pointer variable, but it also works as an alias of the pointed variable.

– It must be initialized at the declaration stage.

Example: int b; // usual variable
int& a = b; // reference variable
a = 10;

int b; // usual variable
int *a = &b; // pointer variable
*a = 10;

Lab. 1: C++ Explained

FUNCTIONS

Lab. 1: C++ Explained

Function

Header:

– Specifies WHAT is done by the function.

Body:

– Describes HOW the function does the specified work.

Examples:

return-data-type function-name (parameter list)
{

constant declarations
variable declarations

other C++ statements

return value
}

void function-name (parameter list)
{

constant declarations
variable declarations

other C++ statements

}

value-returning function non value-returning function

Lab. 1: C++ ExplainedFunction’s formal parameters
Function’s prototype

Formal parameters:

– The argument names in the function header.

Example:

– x and y in the following function:

Prototype:

– The use of function prototypes permits error checking of data types by the compiler.

– It also ensures conversion of all arguments passed to the function to the declared
argument data type when the function is called.

– It the function header followed by “;”. The argument names are not necessary.

Example:
– int FindMax(int, int);

int FindMax(int x, int y)
{

int maximum;

if(x>=y)
maximum = x;

else
maximum = y;

return maximum
}

Lab. 1: C++ ExplainedFunction’s actual parameters
Calling a function

Actual parameters:

– The argument names in the function call are referred to as actual parameters.

Example:

– firstnum and secnum in the following function:

#include <iostream.h>

int FindMax(int, int); // function prototype

int main()
{

int firstnum, secnum, max;

cout << "\nEnter two numbers: ";
cin >> firstnum >> secnum;

max=FindMax(firstnum, secnum); // the function is called here
cout << "The maximum is " << max << endl;

return 0;
}

Lab. 1: C++ Explained

Calling a function by value

How does it work?:

– The function receives a copy of the actual parameter values

– The function cannot change the values of the actual parameters.

Example:

– The values of firstnum and secnum are copied into x and y arguments, respectively,
of the FindMax function (see previous transparency).

Lab. 1: C++ Explained

Calling a function by reference

How does it work?:

– Very useful when we need a function which "returns more than one value”.

– The formal parameter becomes an alias for the actual parameter.

– The function can change the values of the actual parameters.

Example: #include <iostream.h>

void newval(float&, float&); // function prototype

int main()
{

float firstnum, secnum;

cout << "Enter two numbers: ";
cin >> firstnum >> secnum;
newval(firstnum, secnum);
cout << firstnum << secnum << endl;

return 0;
}

void newval(float& xnum, float& ynum)
{

xnum = 89.5;
ynum = 99.5;

}

Lab. 1: C++ ExplainedDifferences between pointers
and references in calling functions

Two differences:

– A reference parameter is a constant pointer (after initializing it, it can’t be changed).

– References are dereferenced automatically (no need to use the dereferencing op. *).

Example:
#include <iostream.h>

void newval(float*, float*);

int main()
{

float firstnum, secnum;

cout << "Enter two numbers: ";
cin >> firstnum >> secnum;
newval(&firstnum, &secnum);
cout << firstnum << secnum << endl;

return 0;
}

void newval(float* xnum, float* ynum)
{

*xnum = 89.5;
*ynum = 99.5;

}

#include <iostream.h>

void newval(float&, float&);

int main()
{

float firstnum, secnum;

cout << "Enter two numbers: ";
cin >> firstnum >> secnum;
newval(firstnum, secnum);
cout << firstnum << secnum << endl;

return 0;
}

void newval(float& xnum, float& ynum)
{

xnum = 89.5;
ynum = 99.5;

}

calling function with reference argumentscalling function with pointer arguments

Lab. 1: C++ ExplainedCalling a function by reference
The “const” modifier

How does it work?:

– Calling by reference is the preferred way to pass a large structure or class instances
to functions, simply because the entire structure need not be copied each time it is
used!!

– C++ provides us with protection against accidentally changing the values of
variables passed by reference with the const operator

Example (function prototype):

Example (function header):

int FindMax(const int&, const int&);

int FindMax(const int& x, const int& y)

Lab. 1: C++ Explained

Function overloading

How does it work?:

– C++ provides the capability of using the same function name for more than one
function (function overloading)

– The compiler must be able to determine which function to use based on the
number and data types of the parameters.

– Warning: creating overloaded functions with identical parameter lists and different
return types is a syntax error!!

Example:
void cdabs(int x)
{

if (x<0)
x = -x;

cout << "The abs value of the integer is " << x << endl;
}

void cdabs(float x)
{

if (x<0)
x = -x;

cout << "The abs value of the float is " << x << endl;
}

Lab. 1: C++ Explained

STRUCTURES AND CLASSES

Lab. 1: C++ Explained

What is a structure?

Data type composition:

– It is an compound data type built using elements of other types.

– Declaring a structure requires declaring its members and their data types.

Example:

Declaration:

– They are declared like variables of any other type.

struct RECTANGLE
{

float height;
float width;
int xpos;
int ypos;

};

RECTANGLE R;

RECTANGLE &RRef = R;
RECTANGLE *RPtr = &R;

Lab. 1: C++ Explained

Accessing members of a structure

Dot operator (.):

– Applies to both variables and references.

Example:

Arrow operator (->):

– Applies to pointers.

Example:

R.height = 15.34;

RRef.height = 15.34;

RPtr->height = 15.34;

(*RPtr).height = 15.34;

Lab. 1: C++ ExplainedDeclaration of member functions/methods
of a structure

Member functions:

– Functions which operate on the data of the structure.

– The prototype of a member function appears within the structure definition.

– Usually, the declaration of structs appears in a separate file .h

Example:
struct RECTANGLE
{

float height;
float width;
int xpos;
int ypos;

void draw(); // draw member function
void position(int,int); // position member function
void move(int,int); // move member function

};

rectangle.h

Lab. 1: C++ ExplainedImplementation of member functions/methods
of a structure

Member functions:

– Usually, they are implemented outside the structure.

– Usually, the implementation of member functions appears in a separate file .cpp

– The :: "scope resolution operator” is necessary for that.

Example:
void RECTANGLE::draw()
{

cout << "position is " << xpos << ypos << endl;
}

void RECTANGLE::position(int x, int y)
{

xpos = x;
ypos = y;

}

void RECTANGLE::move(int dx, int dy)
{

xpos += dx;
ypos += dy;

}

rectangle.cpp

Lab. 1: C++ Explained

Referring to a member function

Accessing to a member function:

– This is done in the same way as for struct variables.

Examples:
R.draw();

RRef.position(100,200);

RPtr->move(30,30);

Lab. 1: C++ Explained

Controlling access to members

Access specifiers:

– Most common member access specifiers are: public and private.

– The private keyword specifies that the structure members following it are private to
the structure and can only be accessed by member functions (and by friend
functions).

Examples:
struct RECTANGLE
{

private:
float height;
float width;
int xpos;
int ypos;

public:
void draw(); // draw member function
void position(int,int); // position member function
void move(int,int); // move member function

};

rectangle.h

Lab. 1: C++ Explained

What is a class?

Definition:

– Practically, there are no differences between structures and classes.

§ Structures have all of their members public by default.

§ A class is a structure which has all of its members private by default.

Example:

class RECTANGLE
{

private: // only for clarity
float height;
float width;
int xpos;
int ypos;

public:
void draw(); // draw member function
void position(int,int); // position member function
void move(int,int); // move member function

};

rectangle.h

Lab. 1: C++ Explained

What is a constructor?

Definition:

– It is a member function which initializes a class instance (or object).

– A constructor has:

§ the same name as the class itself,

§ no return type.

Example: class RECTANGLE
{

private:
float height;
float width;
int xpos;
int ypos;

public:
void RECTANGLE(float,float); // constructor
void draw();
void position(int,int);
void move(int,int);

};

rectangle.h

Lab. 1: C++ Explained

What is a constructor? (cont’d)

How does a constructor work?:

– A constructor is called automatically whenever a new instance of a class is created.

– You must supply the arguments to the constructor when a new instance is created.

– If you do not specify a constructor, the compiler generates a default constructor for
you (expects no parameters and has an empty body).

– Warning: attempting to initialize a data member of a class explicitly in the class
definition is a syntax error. It is up to constructors to initialize member variables.

Example: void main()
{

RECTANGLE R(20.0,30.0);

R.position(100,100);
R.draw();

}

main.cpp

void RECTANGLE::RECTANGLE(float h, float w)
{

height = h;
width = w;
xpos = 0;
ypos = 0;

}

rectangle.cpp

Lab. 1: C++ Explained

Overloading a constructor

Multiple constructors:

– You can have more than one constructor in a class, as long as each has a different
list of arguments.

Example: class RECTANGLE
{

private:
float height;
float width;
int xpos;
int ypos;

public:
void RECTANGLE(); // constructor
void RECTANGLE(float,float); // constructor
void draw();
void position(int,int);
void move(int,int);

};

rectangle.h

void RECTANGLE::RECTANGLE()
{

height = 0;
width = 0;
xpos = 0;
ypos = 0;

}

rectangle.cpp

void main()
{

RECTANGLE R1(20.0,30.0);
RECTANGLE R2();

R1.draw();
R2.draw();

}

main.cpp

Lab. 1: C++ Explained

Object composition in classes

Definition:

– A class may have objects of other classes as members.

Example: class RECTANGLE
{

private:
float height;
float width;
int xpos;
int ypos;
COLOR c;

public:
void

RECTANGLE(float,float,int,int,int);
void draw();
void position(int,int);
void move(int,int);

};

rectangle.h

class COLOR
{

private:
int R;
int G;
int B;

public:
void COLOR(int,int,int);

};

color.h

Lab. 1: C++ Explained

Object composition in classes (cont’d)

void main()
{

RECTANGLE R(20.0,30.0,1,0,1);

R.draw();
}

main.cpp

void COLOR::COLOR(int r,int g,int b)
{

R = r; G;= g; B = b;
};

color.cp
p

void RECTANGLE::RECTANGLE(float h,float w,int r,int g,int b):c(r,g,b)
{

height = h;
width = w;
xpos = 0;
ypos = 0;

}

rectangle.cpp

Lab. 1: C++ Explained

What is a destructor?

Definition:

– Function that deletes an object.

– A destructor function is called
automatically when the object goes
out of scope:

§ the function ends;

§ the program ends;

§ a block containing temporary
variables ends;

§ a delete operator is called.

– A constructor has:

§ the same name as the class itself,
but is preceded by a tilde (~),

§ no arguments and return no values.

Example:

class STRING
{

private:
char *s;
int size;

public:
STRING(char*); //

constructor
~STRING(); // destructor

};

STRING::STRING(char *c)
{

size = strlen(c);
s = new char[size+1];
strcpy(s,c);

}

STRING::~STRING ()
{

delete []s;
}

string.cpp

string.h

Lab. 1: C++ Explained

What is a copy constructor?

Definition:

– It is a member function which
initializes an object using
another object of the same
class.

– In the absence of a copy
constructor, the C++
compiler builds a default copy
constructor for each class
which is doing a memberwise
copy between objects.

– Default copy constructors
work fine unless the class
contains pointer data members
... Why?

Example:

class STRING
{

private:
char *s;
int size;

public:
STRING(char*);
~STRING();
STRING(const STRING&); // copy

constructor

void print();
void copy(char*);

};

STRING::STRING(const STRING& aString)
{

size = aString.size;
s = new char[size+1];
strcpy(s,aString.s);

}

string.cpp

string.h

void main()
{
STRING str1("George");
STRING str2 = str1;
str1.print(); // what is printed ?
str2.print();
str2.copy("Mary");
str1.print(); // what is printed now ?
str2.print();

}

main.cpp

Lab. 1: C++ Explained

Summary

Variables, pointers, and references

Functions

Structures and classes

