
UNIVERSITY OF BEIRA INTERIOR

DEPARTMENT OF COMPUTER SCIENCE

Study of the Impact of Intensive Attacks in the

Self-Similarity Degree of the Network Traffic in

Intra-Domain Aggregation Points

Pedro Ricardo Morais Inácio

(5-year Bachelor of Science)

Thesis submitted to the University of Beira Interior in candidature for the Degree of

Doctor of Philosophy in Computer Science and Engineering

Tese submetida à Universidade da Beira Interior para obtenção do Grau de

Doutor em Engenharia Informática

Covilhã, Portugal

2009

UNIVERSITY OF BEIRA INTERIOR

DEPARTMENT OF COMPUTER SCIENCE

Study of the Impact of Intensive Attacks in the

Self-Similarity Degree of the Network Traffic in

Intra-Domain Aggregation Points

Pedro Ricardo Morais Inácio

(5-year Bachelor of Science)

Thesis submitted to the University of Beira Interior in candidature for the Degree of

Doctor of Philosophy in Computer Science and Engineering

Tese submetida à Universidade da Beira Interior para obtenção do Grau de

Doutor em Engenharia Informática

Covilhã, Portugal

2009

Thesis written under supervision of Dr. Mário Marques Freire,

Full Professor of the Department of Computer Science of the

University of Beira Interior, Portugal, and

Performed in enterprise environment under the

Co-supervision of Dr. Paulo Miguel Nepomuceno Pereira Monteiro,

Head of the Research, Technology and Platforms group of

Nokia Siemens Networks Portugal S.A.

Tese realizada sob a orientação do Doutor Mário Marques Freire,

Professor Catedrático do Departamento de Informática da

Universidade da Beira Interior, Portugal, e

Com co-orientação em ambiente industrial do

Doutor Paulo Miguel Nepomuceno Pereira Monteiro,

Director do grupo de Investigação, Tecnologia e Plataformas da

Nokia Siemens Networks Portugal S.A.

My music and my poetry have been, among other things, Computer Science and

Mathematics. This document is technical, and maybe too hard for you to understand:

mother, father, grandparents, Mr. Leonel, Mrs. Ema, Cláudia, João and Patŕıcia.

Either way, I would like to dedicate this work to you, as well as all the effort I have put

on its term, as proof that I acknowledge that, without you, this music would not have

lyrics nor instruments; and this poetry would not have rimes nor fundament.

Thank you very much.

A minha música e a minha poesia têm sido, entre outras, a Informática e a Matemática.

O presente documento é técnico e talvez dif́ıcil de perceber para vocês: mãe, pai, avós,

Sr. Leonel, Dona Ema, Cláudia, João e Patŕıcia. Contudo, gostaria de vo-lo dedicar,

assim como todo o esforço que coloquei no seu termo, como prova de que reconheço que,

sem vocês, esta música não teria letra nem instrumentos; e esta poesia não teria rimas

ou fundamento.

A vocês, o meu muito bem-haja.

Acknowledgements

The first person I would like to acknowledge is my mother, that first gave me life, then

taught me love, and guided me trough all major steps of life until now. If today I am an

honest man of science, I owe the inspiration to that beautiful and wise woman, with whom

I learnt to write even before going to school, who showed me simple math operations,

smiled at me when she was sad and fought despite being tired.

The second person I would like to acknowledge is my father, for always treating

me with the respect I think he deserves, stimulating the hierarchy of trust and respect I

currently apply towards others, and that enables me to make friends so easily.

I want to thank my brother for being a model of honesty and loyalty, always ready

to hear me or to lighten my day with a funny joke. The fact that he looks up to me

motivates my spirit every moment of the day.

Next, I want to mention Patŕıcia, my dearest friend, to whom I am eternally grateful

for listening to all the detailed and lengthy descriptions of theories and ideas she was not

academically prepared to understand, for always helping me and encouraging me, for

being my companion 24 hours a day, for accepting the trade-off between romanticism and

the number of hours spent in front of a computer and, above all that, for accepting to

marry a guy with nothing more than a lot of good intentions in one hand and a Ph.D.

scholarship in the other.

I would also like to acknowledge my grandmother for always being worried with me

and for praying for the success of my adventure. I am sure that if there is any kind of

mystical subtract in this thesis, she is the one to blame. I am grateful to Mr. Leonel, Mrs.

Ema and Miss Cláudia Nunes for all the encouragement and for the apparently unlimited

trust they have in me.

i

One of the best outcomes of this journey concerns the people I had the pleasure

to meet along the way. I want to thank João Miguel Santos, Branka Lakic, Przemek

Lenkiewicz, Stephane Cauchie, Rui Meleiro, João Pedro, Silvia Pato, Lara Pellegrino,

Ruben Luis, Daniel Fonseca, Daniel Martins, Carlos Santiago, Jorge Castro, Fernando

Jesus, João Redol, Pan Jieke, José Pina, Ana Ferreira, Tiago Silveira, Marco Pinho,

José Miguel Santos, Margarida Pereira, Prof. Manuela Pereira, Artur Arsénio, Marek

Hajduczenia and Nuno Garcia for making this experience richer and unpredictable. I am

especially grateful to Rui Morais and João Gomes for all the invaluable discussions about

all kind of subjects and for putting up with me. I have appreciated all the conversations

with no apparent objective, all the table tennis matches with Eurico Cabrita and all the

dinners, followed by bowling sessions, with Luis Gonçalves.

This section would not be complete without acknowledging the merit of the two

men that started this project: Prof. Mário Marques Freire and Prof. Paulo Monteiro. I

thank them for always treating me as a friend, for the opportunity they gave me to work

along their side and for the sympathy demonstrated since day one.

Last but not least, I would like to make a special mention concerning the two

persons that are no longer with me physically (grandfather Morais and grandfather José),

but that accompanied me every step of the way, including in my dreams. The knowledge

they passed to me comes in handy in many different aspects of life and their fantastic

sayings appear in my mind spontaneously when needed, reminding me of Plato theory.

ii

Foreword

This thesis is the result of the Ph.D. research programme performed in the enterprise

environment of Nokia Siemens Networks Portugal S.A. (NSN SA), made possible by the

special collaboration protocol between former Siemens S.A. and the University of Beira

Interior. This work was also partially supported by Fundação para a Ciência e a Tecnolo-

gia, Portugal, through the grant contract SFRH/BDE/15592/2006, and by TRAMANET

Project contract PTDC/EIA/73072/2006.

During three years, the above mentioned environment has constantly changed, in-

spired by the evolution the telecommunications industry is suffering. In 2005, Information

and Communications (IC) was one of the major business divisions of the multinational

company Siemens AG, with headquarters in Germany and several centres of competence

around the world, namely in Portugal. The contract that delimits the beginning of this

Ph.D. was signed in September that year with the Research (R) group of the Research

and Development 1 (RD1) department of the IC division at Portugal. After accepting

the proposal for a fifty-fifty joint venture from the Finnish telecommunications company

Nokia, the IC division of Siemens AG was separated from the mother company, originat-

ing the Siemens Networks Company. Nokia Siemens Networks (NSN) started operations

in April 2007, as a result of a merger between the Networks Business Group of Nokia and

Siemens Networks. During this process, the Portuguese IC RD1 R group demarcated its

position inside the long term research frame of the company, denominated by Research,

Technology and Platforms (RTP), by obtaining funding for an integrated project, by hav-

ing a very active role in the creation of intellectual property inside NSN and by conducting

research of recognised quality. Besides being a researcher in the RTP group, the author

worked also as a system architect of the BroadBand Access Business Unit (BBA BU)

during 6 months, in a project concerning next generation optical access.

The unique characteristics of the environment in which this work was conducted

iii

translated themselves into advantages and disadvantages. The most obvious benefits of

being part of a multinational company lies on the fact that one is constantly surrounded

by different cultures and opinions, that ultimately results in a crash course on maturity

and tolerance.

The telecommunications industry is mostly interested in practical solutions that can

be quickly adapted to fit the consumer needs, while the academy is not so concerned with

the immediate results. Being exactly in the middle of these two worlds gives one the

discernment to conclude that, although most of the times the academy has the perfect

solution to a problem, the small gap between the two impedes the first from adopting it

in the short term. The difference lies with the apparently different language that is spoken

in the two types of organization. However, it is interesting to notice that the academy is,

most of the times, ahead of the needs of the moment.

The development of new solutions in the short-term is (obviously) more accentuated

outside the research division of the company, and the work there is not oriented towards

the formalisation and in-depth analysis of the problems. The urge for fixing a problem

results typically from a well-defined need of a client, for which the developers devise often

a best effort solution. It is of the opinion of the author that the collaboration between

the university and the industry results particularly interesting not only in the design of

future solutions, but also during the process of finding a better option for a problem.

Nonetheless, as the bound between the academy and the student gets weaker, it is easier

to be influenced by the business perspective of the company.

As a final remark, the author would like to add that the NSN portfolio did not include

a stand-alone security product (as an Intrusion Detection System (IDS)) at the time this

thesis was written. NSN considers network security as one of the key factors that have to

be taken into account when devising network equipment, but that prerequisite is fulfilled

by buying the solutions (or the service) to partners specialized in that field, or by adapting

the standardized mechanisms to their products. For now, research on security matters is

interesting in the scope of the collaboration with those partners and for the creation of

intellectual property. In spite of the efforts made in the direction of experimenting some

of the concepts described herein in a real network monitoring equipment, such attempt

was not successful to the date this thesis was ended.

iv

Abstract

The possibility to interconnect information networks in a global scale system contracted

the World to a virtual village, where the distances are measured in clicks, information

is compressed in keywords, people are communicating and business is being made. Un-

fortunately, the digital world is frequently menaced by malicious (or, sometimes, naive)

intents, aiming to profit from the disturbance of its normal functioning. Due to the mass

adoption of the networks as working tools or as content delivery platforms, the appli-

cation of security policies is not only becoming more important, but also more difficult.

The reinforcement of these measures in central network points has been gaining the inter-

est of network operators and administrators, preoccupied with maintaining the levels of

availability and of Quality of Service (QoS) as high as possible. As the amount of traffic

handled by those nodes is significantly larger than the one arriving to, or transmitted by,

terminal nodes, several techniques based on the fast characterisation of the flows have

been tried out. Studies conducted for the traffic captured in central nodes show that the

flows resulting from aggregation display a somewhat unusual characteristic, designated by

self-similarity. This characteristic, which now defines partially the nature of the aggre-

gated traffic, is the consequence of a combination of several factors, being the probability

distribution of the sizes of the transmitted files one of the most important ones.

This thesis is focused on the statistic used to measure the degree of self-similarity,

known as the Hurst parameter, and investigates how that metric is altered by a network

attack. To accomplish that, the investigation draws first on the concept of self-similarity

and on the several means to estimate its intensity. Each estimator is observed from the

points of view of its mathematical formulation and practical implementation, since both

perspectives are equally important for the achievement of the proposed objectives, and for

the efficient application of these mathematical tools in high-speed network systems. The

approach is directed towards the identification of the methods with the potential to be

v

altered so as to return an up-to-date value of the Hurst parameter per point submitted to

analysis. The first type of methods herein presented enable the assessment of the referred

parameter for an increasing set of values, and are designated by point-by-point estimators.

After discussing the importance of studying the local scope self-similarity characteristics,

and under the excuse that the sensibility of the incremental estimates to departures from

normality in the data series decreases with the number of points under analysis, the set

of alterations that enable the methods to operate on a fixed size, but iterative, window

of values is described.

Next, the best way of testing the precision of the modified estimators is pursued,

starting with a complete revision to the state of the art in terms of procedures for gener-

ation of series of values with the self-similarity structure, giving special emphasis on the

ones that are able to assure the value of the Hurst parameter of the produced sequences.

After reaching the conclusion that the complexity or operational model of the available

procedures was not compatible with that of the modified estimators, a new generator of

sequences exhibiting persistence and following the Gaussian distribution is described with

detail and evaluated. The algorithm is exact for aggregation scales that are powers of 2,

and configures the ideal solution for the problem at hand.

Inspired by the previous success, a second algorithm, based on a different reasoning

that improves significantly the precision of the procedure without compromising its com-

putational speed, is proposed and developed. Its advantages as a number generator are

notorious, since it is, at the present time, one of the most efficient generators of its class

of precision. Presenting a complexity of O(n) and requiring extremely small memory re-

sources, the procedure is particularly useful in the simulation of arbitrarily long processes,

as for example synthetic network traffic traces.

To guarantee that all the simulation results are supported by a righteous source of

events, a new algorithm for generation of pseudo random sequences, whose bedding lays

on an intuitive and simple idea that confers it great quality (in terms of the randomness

of the sequences produced), is also presented. The procedure is described with detail, and

compared with one of the best pseudo random number generators available in the litera-

ture. Its quality is assessed by submitting the outputs of the algorithm to a well known

and stringent battery of statistical tests of randomness. Because the above mentioned

vi

generators are built on top of Gaussian variables, the explanation on how the uniformly

distributed numbers can be efficiently transformed into normally distributed sequences is

also included.

The theory described or developed along the thesis converges to the definition of

the type of attack with potential of being detected by means of analysis of the Hurst

parameter, and it is on the basis of the proposal of a traffic simulator with approximate

self-similar structure. The proposal, which includes modelling both the packet sizes and

the inter-arrival times processes, inherits the performance of the procedure for synthesis

of self-similar sequences, built on top of the pseudo random number generator.

The analysis of the impact of the anomalies designated by network intensive attacks

is initially performed by resorting to traces containing real intrusions, captured during

a well known experiment of the Lincoln laboratory of the Massachusetts Institute of

Technology, which are available for download from the Internet. The results are then

consolidated via the application of the modified estimators to synthetic traffic traces

injected with data units representative of an intrusion of the above mentioned type. It

is demonstrated that the occurrence of such anomalies affects the constant component of

the sequence under investigation, leading the windowed estimators to signal an increase

of the (self-)similarity between relatively close values, even when the former culminate in

an expressive loss of stationarity (and of the property of self-similarity). Starting from

these observations, an intrusion detector based on the continuous and real-time analysis

of the local scope self-similarity degree is presented. After enumerating the limitations of

this traffic characterisation in the dark mechanism and discussing the weight of its main

assumption, it is concluded that the usefulness of the approach is written in terms of a

first line of defence, and that the new windowed and incremental perspectives are better

defined as indicators of the network health status.

vii

Resumo

A possibilidade de interligar as redes de informação num sistema à escala global transfor-

mou o Mundo numa aldeia virtual, onde as distâncias se medem em cliques, a informação

está compressa em palavras-chave, as pessoas comunicam e milhares de negócios são feitos

a todo o instante. Infelizmente, este mundo digital é constantemente ameaçado por in-

tenções maliciosas (ou, por vezes, ingénuas) que visam lucrar, de alguma forma, com a

perturbação do seu normal funcionamento. Devido à adopção em massa das redes de

informação como ferramentas de trabalho ou como meio de distribuição privilegiado de

conteúdos de entretenimento, a aplicação de poĺıticas de segurança não só se está a tornar

cada vez mais importante, como também mais dif́ıcil. O reforço destas medidas em pontos

de rede centrais tem vindo a ganhar o interesse dos operadores e dos administradores de

rede, preocupados em manter os ńıveis de disponibilidade e de Qualidade de Serviço o

mais elevados posśıvel. Como o volume de tráfego que passa nesses nós é significativa-

mente maior do que aquele que é produzido em nós extremos, várias técnicas baseadas

na rápida caracterização dos fluxos de dados têm sido tentadas. Estudos efectuados ao

tráfego capturado nesses dispositivos centrais mostram que o fluxo resultante da agregação

exibe uma propriedade algo invulgar, designada por auto-semelhança. Esta propriedade,

que agora define parcialmente a natureza do tráfego agregado, resulta da combinação de

vários factores, sendo que o mais importante deriva da distribuição de probabilidade dos

tamanhos dos ficheiros transmitidos.

Esta tese foca-se na estat́ıstica conhecida como o parâmetro de Hurst, usada para

medir o grau de auto-semelhança, e investiga de que forma é que a referida métrica

é alterada por um ataque de rede. Para tal, começa-se por estudar o conceito de auto-

semelhança e as várias maneiras de estimar a sua intensidade. Cada estimador é observado

do ponto de vista da sua formulação matemática e da sua implementação prática, já que

ambas as perspectivas são igualmente importantes para a concretização dos objectivos

ix

propostos e para a aplicação eficaz destas ferramentas matemáticas em dispositivos de

rede de alto débito. A abordagem é direccionada à identificação dos métodos pasśıveis de

ser alterados de maneira a devolverem um valor actualizado do parâmetro de Hurst, por

cada ponto do processo que lhes é submetido para análise. O primeiro tipo de método

desenvolvido é designado por estimador ponto-a-ponto, e permite obter o valor do referido

parâmetro para uma sequência crescente de pontos. Porque a sensibilidade das estimativas

de carácter incremental decresce à medida que o número de pontos processados aumenta,

e depois de se constatar a importância do estudo das caracteŕısticas de auto-semelhança

de âmbito local, investigam-se e descrevem-se as alterações que transformam os métodos

em estimadores móveis eficientes, que operam sobre uma janela de tamanho fixo, mas

ambulante.

De seguida, procura-se a melhor maneira de testar a precisão dos métodos modifi-

cados, fazendo uma revisão ao estado da arte em termos de procedimentos de geração de

processos auto-semelhantes, recaindo o interesse sobre aqueles que são capazes de assegu-

rar o valor do parâmetro de Hurst da sequência produzida. Depois de se chegar à conclusão

de que a complexidade ou o modelo operacional dos procedimentos dispońıveis não é com-

pat́ıvel com a dos estimadores modificados, é detalhadamente descrito e avaliado um novo

gerador de sequências com distribuição de Gauss e dependências de longo-alcance. O

algoritmo é exacto para escalas de agregação que são potências de 2, e configura a solução

ideal para o problema a ser momentaneamente resolvido.

Inspirado pelo sucesso anterior, é proposto e desenvolvido um segundo algoritmo,

baseado numa teoria diferente que melhora significativamente a precisão do procedimento,

sem com isso comprometer a velocidade computacional do mesmo. As suas vantagens

como gerador são notórias, visto ser actualmente um dos mais eficazes geradores do seu

ńıvel de precisão. Ostentando uma complexidade computacional de O(n) e escassos req-

uisitos de memória, o procedimento revela-se particularmente útil na simulação de pro-

cessos aproximadamente auto-semelhantes extremamente longos, como registos sintéticos

de tráfego de rede.

Para garantir que todos os resultados de simulação são suportados por uma fonte

idónea de eventos, é também apresentado um novo algoritmo de geração de números

pseudo aleatórios, cujo fundamento assenta numa ideia intuitiva e simples, mas que lhe

x

confere uma grande qualidade em termos da aleatoriedade das sequências produzidas.

O procedimento é descrito com afinco e comparado com um dos melhores geradores do

mesmo género da actualidade. A sua qualidade é provada com recurso a uma bateria

de testes estat́ısticos de aleatoriedade. É ainda inclúıda a explicação de como é que os

números uniformemente distribúıdos são transformados em números gaussianos, sendo

estes últimos aqueles que alimentam os dois geradores acima mencionados.

Toda a teoria descrita ou desenvolvida ao longo da tese converge para a definição

do tipo de ataque com potencial para ser detectado usando o parâmetro de Hurst, e é

a base da proposta de um simulador de tráfego com estrutura aproximadamente auto-

semelhante. A proposta inclui a modelização dos processos do tamanho dos pacotes e

dos intervalos entre chegadas, e herda a performance do procedimento para a śıntese de

incidências de um processo auto-semelhante que, por sua vez, é constrúıdo sobre o gerador

de números pseudo aleatórios.

A análise do impacto das anomalias aqui designadas por ataques de rede intensos

é inicialmente conduzida recorrendo a registos contendo ataques reais, capturados du-

rante uma conhecida experiência do laboratório Lincoln do Instituto de Tecnologia de

Massachusetts, dispońıveis para download da Internet. A consolidação das conclusões

é posteriormente efectuada através da aplicação dos estimadores modificados a registos

sintéticos, aos quais são injectadas unidades de dados representativas de uma intrusão

do tipo antes indicado. Demonstra-se que tais anomalias afectam a componente con-

stante do processo estudado, levando a que os novos estimadores móveis assinalem um

aumento da (auto-)semelhança entre pontos relativamente próximos, mesmo quando es-

tas ocorrências se traduzem numa expressiva perda de estacionariedade (e da propriedade

da auto-semelhança). Partindo destes resultados, é apresentado um detector de intrusões

baseado na análise cont́ınua e em tempo-real do grau de auto-semelhança de âmbito local.

Depois de se enumerarem as limitações aplicacionais deste método de caracterização de

tráfego no escuro e o peso da sua principal assumpção, justifica-se a sua utilidade como

primeira linha de defesa, e definem-se as estimativas móvel e incremental como potenciais

indicadores da saúde da rede.

xi

Keywords

Anti-Persistence, Correlated Random Walk, Flood Attack, fractional Brownian motion,

fractional Gaussian noise, Intrusion Detection, Long Range Dependence, Modified Em-

bedded Branching Process, Modified Variance Time, Monte-Carlo Simulation, Network

Aggregation Point, Network Traffic Behavior, Network Intensive Attacks, Online Analy-

sis, Persistence, Prime Remainder Revolution, Pseudo Random Number Generator, Real-

Time Analysis, Self-Similarity, Self-Similar Sequences Generator, Sequential Generation

Algorithm, Traffic Characterisation in the Dark Mechanism, Traffic Simulation, Win-

dowed Hurst Parameter Estimator.

Palavras Chave

Algoritmo de Geração Sequencial, Análise em Linha, Análise em Tempo-Real, Anti-

Persistência, Ataque de Inundação, Ataques de Rede Intensivos, Auto-Semelhança, Com-

portamento de Tráfego de Rede, Dependência de Longo Alcance, Detecção de Intrusões,

Estimador Móvel do Parâmetro de Hurst, Gerador de Números Pseudo Aleatórios, Ger-

ador de Sequências com Estrutura Auto-Semelhante, Mecanismo de Caracterização de

Tráfego no Escuro, movimento Browniano fracionário, Passeio Aleatório Correlacionado,

Persistência, Ponto de Agregação de Rede, Processo Ramificado Embutido Modificado,

rúıdo Gaussiano fracionário, Revolução dos Restos de um Primo, Simulação de Tráfego

de Rede, Simulação Monte-Carlo. Variância Tempo Modificado.

xiii

Contents

Acknowledgements i

Foreword iii

Abstract v

Resumo ix

Keywords xiii

Contents xviii

List of Figures xxvii

List of Tables xxx

Acronyms and Abbreviations xxxi

Extended Abstract in Portuguese xxxv

1 Introduction 1

1.1. Thesis Focus and Scope . 1

1.2. Problem Definition and Objectives . 4

1.3. Thesis Organisation . 6

1.4. Main Contributions for the Advance of the Scientific Knowledge 8

2 Self-Similarity and Hurst Parameter Estimation 11

2.1. Introduction . 11

2.2. Self-Similarity, Hurst Parameter, Walks, Motions and Noise 12

2.2.1. Self-similarity and Hurst parameter 12

xv

2.2.2. First Order Differences Process . 13

2.2.3. Random Walk . 15

2.2.4. Brownian Motion . 16

2.2.5. Fractional Brownian Motion . 17

2.2.6. Fractional Gaussian Noise . 18

2.2.7. Normalised Fractional Brownian Motion 19

2.3. Self-Similarity in Network Traffic . 20

2.3.1. Network Aggregation Point . 20

2.3.2. The Origin of Self-Similarity . 21

2.3.3. The Face of Self-Similarity . 24

2.3.4. The Consequences of Self-Similarity 25

2.4. Hurst Parameter Estimation . 28

2.4.1. Rescaled Range Statistics . 30

2.4.2. Variance Time . 33

2.4.3. Absolute Moments Time . 36

2.4.4. Embedded Branching Process . 37

2.4.5. Detrended Fluctuation Analysis . 42

2.4.6. Periodogram . 44

2.4.7. Whittle Estimator . 46

2.4.8. Wavelets-Based Estimator . 48

2.4.9. Higuchi Method . 50

2.4.10. Hurst Exponent by Autocorrelation Function 50

2.5. Conclusion . 53

3 Fast and Windowed Estimation of the Hurst Parameter 55

3.1. Introduction . 55

3.2. Point-by-Point Estimators . 56

3.2.1. Modified Embedded Branching Process 57

3.2.2. Modified Variance Time . 60

3.2.3. Modified Absolute Moments Time 63

3.3. Windowed Estimators . 65

3.3.1. Windowed Modified Embedded Branching Process 68

3.3.2. Windowed Modified Variance Time 70

xvi

3.3.3. Windowed Modified Absolute Moments Time 73

3.4. Critical Analysis and Comparison . 75

3.4.1. Computational Complexity and Memory Requirements 75

3.4.2. Data (In)sufficiency . 77

3.4.3. Comparison Between Modified and Retrospective Hurst Parameter
Estimators . 78

3.4.4. Comparison Between Locally and Globally Estimated Hurst Param-
eter Values . 82

3.4.5. Comparison Between Windowed-Modified and Windowed-Retrospective
Estimation . 86

3.5. Conclusion . 89

4 Efficient Generation of Self-Similar Sequences 91

4.1. Introduction . 91

4.2. Overview to the State of the Art in Terms of fractional Brownian motion
Generators . 92

4.2.1. Exact methods . 93

4.2.2. Approximate methods . 94

4.2.3. Desirable Features of Self-Similar Sequences Generators 100

4.3. Fast and Sequential Generation of Persistent Fractional Brownian Motion . 101

4.3.1. Fractional Brownian Motion Sequential Generation Algorithm . . . 102

4.3.2. Quality Assessment via Hurst Parameter Estimation 113

4.3.3. Computational Performance and Memory Requirements of fBm-SGA123

4.3.4. Usefulness of fBm-SGA Within the Scope of the Thesis 125

4.4. The Simple Self-Similar Sequences Generator 125

4.4.1. The 4SG Algorithm . 126

4.4.2. Quality Assessment via Hurst Parameter Estimation 134

4.4.3. Computational Performance and Memory Requirements of 4SG . . 144

4.4.4. Usefulness of 4SG Within the Scope of the Thesis 148

4.5. The Source of Randomness: Prime Remainder Revolution Pseudo Random
Number Generator . 148

4.5.1. The Prime Remainder Revolution Pseudo Random Number Generator152

4.5.2. Analysis of the Pseudo Random Number Generator 161

4.5.3. The Generation of Normally Distributed Numbers 166

4.6. Conclusion . 168

xvii

5 Traffic Simulation and Study of the Impact of Network Intensive At-
tacks 171

5.1. Introduction . 171

5.2. Application Scope of an Intrusion Detection Method based on Self-Similarity
Analysis . 172

5.2.1. Information Sources . 173

5.2.2. Analysis Approach . 173

5.2.3. Response Type . 177

5.2.4. Analysis Timing . 178

5.3. Overview of Open Source and Commercial NIDSs, and Critical Analysis of
the Related Works . 178

5.3.1. Overview of Open Source and Commercial NIDSs 178

5.3.2. Critical Analysis of the Related Works 184

5.4. Self-Similar Traffic Generation and Attacks Simulation 188

5.4.1. Model Description and Formalisation 189

5.4.2. Implementation Details and Pictorial Proof of Self-Similarity 193

5.4.3. Demonstration of the Fractal Properties of the Bit Count per Time
Unit Through VT Analysis . 196

5.4.4. Definition and Simulation of Network Intensive Attacks 197

5.5. Analysis of the Impact of an Attack in the Self-Similarity Degree of the
Network Traffic . 200

5.5.1. Analysis of the MIT/DARPA Traces 200

5.5.2. Analysis of Completely Synthetic Traces - Length of the Attack is
Smaller Than the Observation Window Size 204

5.5.3. Analysis of Completely Synthetic Traces - Length of the Attack is
Bigger Than the Observation Window Size 208

5.5.4. Reaction of the Windowed-Modified Estimators to High Intensity
Attacks . 210

5.5.5. Detection of Network Intensive Attacks Based on Self-Similarity
Analysis . 211

5.5.6. The Loss of Self-Similarity . 216

5.5.7. Discussion on the Theoretical Framework of the Results 221

5.6. Conclusion . 222

6 Final Conclusions and Future Work 227

6.1. Main Conclusions . 227

6.2. Directions for Future Work . 234

xviii

List of Figures

2.1 Graphical representation of a random walk with increments equal to 1 or -1. 15

2.2 Graphical representation of several Brownian motions. 17

2.3 Example of fractional Gaussian noise for H = 0.5. Because of its flat power

spectral density, this process is often denominated by white noise. 18

2.4 Conceptual representation of the Internet and of its constituent compu-

ter networks. Also depicted by black circles and (bi)directional arrows

are network aggregation points and communication flows, respectively. A

graphical explanation of how the several renewal processes contribute to

the self-similarity of the network traffic is included at the bottom. 21

2.5 Self-similar vs. non self-similar trace. The classical pictorial representation

of self-similarity (persistence) in the bit count per time unit process of a

network trace is depicted on the left side of the figure; the typical behaviour

of the effect of aggregation on a random variable is shown on the right side. 26

2.6 Pox-plot for the RS analysis of two fBms (H = 0.3 and H = 0.7) and of

Brownian motion (H = 0.5). The aggregation scales were all powers of 2,

starting at 1, and the estimated Hurst parameter values were approximately

0.35 and 0.70 for the fBms, and 0.53 for the Brownian motion. 32

2.7 The Variance/Time plot for two fBms (H = 0.3 and H = 0.7) and for

Brownian motion (H = 0.5). The aggregation scales were all powers of 2,

starting at 1. The estimated Hurst parameter values were approximately

0.30 and 0.70 for the fBms and 0.5 for the Brownian motion. 35

2.8 Graphical representation of the rationale behind the EBP method. 41

xix

2.9 The DFA log-log plot for two fBms (H = 0.3 and H = 0.7) and for Brown-

ian motion (H = 0.5). The aggregation scales were all powers of 2, starting

at 1. The estimated Hurst parameter values were approximately 0.32 and

0.69 for the fBms and 0.5 for the Brownian motion. 43

2.10 The Periodogram log-log plot for an fGn with expected Hurst parameter

equal to 0.85. The estimated Hurst parameter value (obtained using 10%

of the points most to the left in the chart) was 0.79. 46

3.1 Point-by-point Hurst parameter estimation using a modified method: every

time a new point of the series is available, it is fed to the estimator as its

only input, originating a new estimate for the Hurst parameter in return. . 57

3.2 The sliding window philosophy: each time a new realisation of the pro-

cess becomes available, the oldest point within the observation window is

discarded and the window is shifted to the right by one position, so as to

include the new value. 66

3.3 Step-by-step Hurst parameter estimation using a windowed-modified method.

Every time a new point of the series becomes available, it is fed to the es-

timator as its only input. The modified algorithm erases the impact of

the exiting point from the auxiliary variables, and adds the information

concerning the new one. 67

3.4 Performance of two different implementations of a windowed Hurst param-

eter estimator. The values in the chart concern the number of points that

WMVT and VT (windowed but retrospective) can process per second. The

y-axis is in logarithmic scale. 76

3.5 The evolution curve of the Hurst parameter estimated using the point-

by-point version of EBP. This curve was obtained for a 2048 points long

sequence with an expected self-similarity degree of 0.80, generated using

the algorithm described in section 4.3.. The last value returned by MEBP

was approximately 0.80. 79

xx

3.6 The evolution curve of the Hurst parameter estimated using MVT. This

curve reflects the analysis of a sequence with 2048 values and an expected

self-similarity degree of 0.80, generated using the algorithm described in

section 4.3.. The last value returned by MVT was approximately 0.78. . . . 80

3.7 Local and global context Hurst parameter evolution curves. The local scope

Hurst parameter values where calculated using WMEBP for two different

observation windows: 1024 (gray line) and 4096 (black line). The global

scope (blue line) Hurst parameter value was calculated by MEBP. 83

3.8 Local and global context Hurst parameter evolution curves. In this chart,

the Hurst parameter values calculated using MVT (blue line) were plotted

along with the values calculated by WMVT. The windowed estimator was

instantiated twice for different observation window sizes: 1024 (grey line)

and 4096 (black line). 84

3.9 Comparison between different implementations of a windowed estimator

based on EBP. The chart plots three different time series: (i) the values

returned by the windowed-modified estimator (WMEBP), as a blue line;

(ii) the values returned by the retrospective estimator (EBP) applied to

the observation window, as a black line; and (iii), the absolute differences

between the values outputted by the windowed-modified and the retrospec-

tive estimator, in grey. 87

3.10 Comparison between different implementations of a windowed estimator

based on VT. The chart plots three different time series: (i) the values

returned by the windowed-modified estimator (WMVT), as a blue line;

(ii) the values returned by the retrospective estimator (VT) applied to the

observation window, as a black line; and (iii), the absolute differences be-

tween the values outputted by the windowed-modified and the retrospective

estimator, in grey. 87

4.1 The values of the persistence probabilities for different Hurst parameter

values. This values were obtained using the formulas described herein. . . . 108

xxi

4.2 Using the sum and normalisation of independent correlated random walks

to approximate an fGn. Example of the multiple transitions of 20 processes.110

4.3 Direct and indirect relations (dependencies) between realisations of a cor-

related random walk or of an approximate fBm generated using the fBm-

SGA. Long-range dependence is assured for all scales of type 2× 2Np 112

4.4 Direct and indirect relations (dependencies) between realisations of a cor-

related random walk or of an approximate fBm generated using the fBm-

SGA. The process is long-range dependent for the scales of 2, 4, 8 and

16. When aggregated for scales larger than 16, the process behaves like a

(memoryless) Random Walk. 113

4.5 Examples of fBm processes generated using the fBm-SGA and exhibiting

persistent behaviour with pre-determined Hurst parameter: a) H = 0.6, b)

H = 0.7 and c) H = 0.8. 115

4.6 Examples of fGn processes, generated using the fBm-SGA, with pre-determined

Hurst parameter: a) H = 0.6, b) H = 0.7 and c) H = 0.8. 116

4.7 VT log-log plots for a sequence with 106 points, generated with the fBm-

SGA. In this case, the expected Hurst parameter was equal to 0.6, the

aggregation scales are of type 2 × 2Np for the log-log plot on the left, and

of type 3× 2Np for the chart on the right. The estimated Hurst parameter

was 0.60 for the first, and 0.61 for the second. 118

4.8 RS log-log plots for a sequence with 106 points, generated with the fBm-

SGA. In this case, the expected Hurst parameter was equal to 0.70, the

aggregation scales were of type 2× 2Np for the log-log plot on the left, and

of type 3× 2Np for the chart on the right. The estimated Hurst parameter

was 0.71 for the first, and 0.70 for the second. 118

xxii

4.9 DFA log-log plots for a sequence with 106 points, generated with the fBm-

SGA. In this case, the expected Hurst parameter was equal to 0.80, the

aggregation scales were of type 2× 2Np for the log-log plot on the left, and

of type 3× 2Np for the chart on the right. The estimated Hurst parameter

was 0.80 for the first, and 0.79 for the second. 119

4.10 Comparison between the expected and the estimated Hurst parameter val-

ues. The VT, the DFA and the RS estimators were testing scales of type

2× 2Np . 121

4.11 Comparison between the expected and the estimated Hurst parameter val-

ues, this time for scales of type 3× 2Np . 122

4.12 Chart where the average time spent by fBm-SGA to generate an fBm pro-

cess is plotted against the total number of points generated, for different

levels of quality (expressed in terms of number of precision scales supported).124

4.13 Graphical representation of the reasoning behind 4SG. 127

4.14 Charts where the estimated Hurst parameter values are plotted against

their expected value, for different estimators. In this particular case, the

data series were generated using the Hosking method. The chart on the

left reflects the results for the estimators that performed worst (generally

speaking); the chart on the right reflects the results for the estimators that

were (generally) closer to the expected values. 138

4.15 Charts where the estimated Hurst parameter values are plotted against

their expected value, for different estimators. The data series were gen-

erated using the Wavelets-based method. Once more, the results were

partitioned into two charts, being the estimates that most closely follow

the line of expected values plotted in the chart on the right. 140

xxiii

4.16 Charts where the estimated Hurst parameter values are plotted against

their expected value, for different estimators. In this particular case, the

data series were generated using 4SG. The chart on the left reflects the

results for the estimators that performed worst (generally speaking); the

chart on the right reflects the results for the estimators that were (generally)

closer to the expected values. 143

4.17 Performance comparison between different generators: on the left, the av-

erage time spent by Hosking, Wavelets-based generator and 4SG (in loga-

rithmic scale) is plotted against the total number of points generated; on

the right, the same analysis is conducted only for Wavelets-based generator

and 4SG. 145

4.18 Example of a 7 × 4 table containing the remainders of the prime 7. The

sequence of numbers in each column is the result of the application of

(F × In) mod 7 to different values of F (one per column), where In denotes

the index of the line. 154

4.19 Example of a 7×4 table containing the remainders of the prime 7, disposed

in an order different than in Figure 4.18. In this table, the sequences are

obtained via the application of (F × In + c2) mod 7, where c denotes the

index of the column. 154

4.20 Graphical representation of the PRR algorithm: the simple version. 157

4.21 Graphical representation of the PRR algorithm: the less simple version. . . 159

4.22 Time spent (in seconds) to generate a pseudo random sequence contain-

ing 70000000 integer values using PRR, Java Class PRNG and Mersenne

Twister (MT). 165

5.1 The position of the fGn in the bit count per time unit process, and the

illustration of the limits after which the value of IAmin is retrieved. (This

figure is valid for ts = E(PS)
L

.) . 192

xxiv

5.2 Classical pictorial representation of self-similarity in network traffic: the

aggregation scale increases from 0.1 s to 10 s as we move from chart a) to

chart c). All traces were generated using the 4SG with a predefined Hurst

parameter equal to 0.8 and load parameter equal to 0.4. 195

5.3 Demonstration that the procedure described in section 5.4.1. can, in fact,

be used to generate self-similar traces. The value of the Hurst parameter

for the particular trace is 0.83. 197

5.4 Graphical representation of the procedure used to inject a network intensive

attack into self-similar traffic. 199

5.5 Manifestation of the intensive probe SATAN (Thursday) and of the Nep-

tune attack (Thursday), when observed from the self-similarity analysis

perspective. Values of the Hurst parameter were obtained using MVT and

WMVT for the byte count per millisecond, being the size of the observation

window of 214 samples. 202

5.6 Manifestation of the intensive probe SATAN (Wednesday) and of the Nep-

tune attack (Tuesday), when observed from the self-similarity analysis per-

spective. Values of the Hurst parameter were obtained using MEBP and

WMEBP for the byte count per millisecond, being the size of the observa-

tion window of 214 samples. 203

5.7 Histogram that reflects the self-similarity analysis conducted using MVT

and WMVT for one of the many synthetic traces generated during this

work. In this particular instantiation, the legitimate traffic simulator was

initialised with BW = 1 Gbps, L = 10%, I = 10% and H = 0.75. A 4 s

long attack was injected at the 10th second. 205

5.8 Focus on three key moments of the histogram depicted in Figure 5.7: a)

the traffic concerning the attack enters the observation window; b) the

intrusion is completely inside of the observation window; and c), the effect

of the attack disappears from the estimates of WMVT. 205

xxv

5.9 Evolution of the Variance/Time plots during the continuous analysis to a

trace containing a network intensive attack (for exemplification purposes,

BW = 1 Gbps, L = 50%, I = 20% and H = 0.75): a) only legitimate

traffic is being analysed; b) the attack is entering the observation window;

and c), the attack is completely inside of the observation window. 207

5.10 Histogram that reflects the self-similarity analysis conducted using MEBP

and WMEBP for one of the many synthetic traces generated during this

work. In this particular instantiation, the legitimate traffic simulator was

initialised with BW = 1 Gbps, L = 10%, I = 10% and H = 0.80. A 16 s

long attack was injected at the 8th second. 209

5.11 Variance/Time plot and histogram reflecting the self-similarity analysis

conducted using MVT and WMVT for a synthetic trace containing a high

intensity attack. The Variance/Time plot was obtained immediately before

of the sudden increase of the estimates. The legitimate traffic simulator was

initialised with BW = 1 Gbps, L = 30%, I = 75% and H = 0.75, and a

4 s long attack was injected at the 8th second. 210

5.12 Maximum (normalised) difference between estimates of the local scope

Hurst parameter taken before and during a network intensive attack. The

chart on the left concerns the analysis conducted with WMVT; the chart

on the right concerns the analysis conducted with WMEBP. 214

5.13 Graphical representation of the moments that the detector based on self-

similarity analysis indicated as being the beginning (left side of the figure)

and the end (right side of the figure) of the network intensive attacks. . . . 215

5.14 Part of the results that summarise the tests made to the resilience of self-

similarity. On the left, the average number of well succeeded KS tests

(out of 10) is represented as a function of the Hurst parameter and of the

shift induced to the series under analysis; on the right, one may find the

representation of the cumulative distribution functions of 10 aggregations

of a normalised self-similar series with 219 points (with an intended Hurst

parameter of 0.85), to which has been applied a shift of 0.5 units. 219

xxvi

5.15 On the right side of the figure, the minimum values of the R2 statistic

are plotted against the network load and attack intensity parameters. The

plotted values of R2 concern the linear regressions performed by the MVT

method during the analyses of the simulated traces; the surface on the left

shows the relation between the expected and the estimated Hurst parameter

values, as a function of the shift induced to series with 219 points. 220

5.16 Illustration of the effect of summing a constant component to part of a

self-similar signal. Analogy with the anomalous situation that may induce

such effect in the network traffic trace. 222

6.1 The schematics of the concept machine of the network online simulator.

The top of the figure illustrates the inner workings of the machine, while

the bottom part presents a possible use case scenario. 236

xxvii

List of Tables

3.1 Statistical compilation of the precision tests made to MEBP and to MVT. 81

3.2 Statistical compilation of the (precision) tests made to WMEBP and to

WMVT. 85

3.3 The average and the standard deviation (in brackets) of the absolute error

between the windowed-modified and the retrospective estimators. 88

4.1 Target and estimated Hurst parameter values for scales of type 2 × 2Np .

Each cell contains the average and the variance (in brackets) of the results

of 100 simulations. 120

4.2 Target and estimated Hurst parameter values for scales of type 3 × 2Np .

Each cell contains the average and the variance (in brackets) of the results

of 100 simulations. 121

4.3 Target and (average of) estimated Hurst parameter values for the sequences

generated using the Hosking method. Each cell contains the average and

the variance (in brackets) of the results of 50 simulations. 137

4.4 Target and (average of) estimated Hurst parameter values for the sequences

generated using the Wavelets-based method. Each cell contains the average

and the variance (in brackets) of the results of 50 simulations. 141

4.5 Target and (average of) estimated Hurst parameter values for the sequences

generated using 4SG. Each cell contains the average and the variance (in

brackets) of the results of 50 simulations. 142

xxix

4.6 Time taken by Hosking, Wavelets-based, 4SG and fBm-SGA (for compari-

son) to generate self-similar processes with different lengths. The time unit

is millisecond. 144

4.7 Summary of the quality tests results for the three considered PRNGs. . . . 163

5.1 The difference between what should be declared, and what should be ex-

pected, in terms of the self-similarity degree of the traces generated using

4SG. 194

xxx

Acronyms and Abbreviations

Acronyms

4SG Simple Self-Similar Sequences Generator

AMT Absolute Moments Time

AMTn=1 Absolute Moments Time with n = 1

AV Abry Veitch

AIDS Application based Intrusion Detection System

BBA BU BroadBand Access Business Unit

CERT Computer Emergency Response Team

DDoS Distributed Denial of Service

DRDoS Distributed Reflected Denial of Service

DoS Denial of Service

DPI Deep Packet Inspection

DWT Discrete Wavelet Transform

DFA Detrended Fluctuation Analysis

EBP Embedded Branching Process

FARIMA Fractional Autoregressive Integrated Moving Average

fBm fractional Brownian motion

fBm-SGA fractional Brownian motion Sequential Generation Algorithm

FFT Fast Fourier Transform

xxxi

FTP File Transfer Protocol

fGn fractional Gaussian noise

GCD Greatest Common Divisor (test)

GRNG Gaussian Random Numbers Generator

HEAF Hurst Exponent by Autocorrelation Function

HDTV High Definition Television

HIDS Host Based Intrusion Detection System

HTTP Hypertext Transfer Protocol

IC Information and Communications

IDS Intrusion Detection System

IP Internet Protocol

IPS Intrusion Prevention System

IPSec Internet Protocol Security

IPTV Internet Protocol Television

IPv6 Internet Protocol version 6

LAN Local Area Network

LCG Linear Congruential Generator

MAMT Modified Absolute Moments Time

MEBP Modified Embedded Branching Process

MIT/DARPA Massachusetts Institute of Technology / Defense Advanced Research

Projects Agency

MPLS Multi Protocol Label Switching

MT Mersenne Twister

MVT Modified Variance Time

NLNAR National Laboratory for Applied Network Research

xxxii

NIDS Network Intrusion Detection System

NSN Nokia Siemens Networks

NSN SA Nokia Siemens Networks Portugal S.A.

OS Operating System

OSI Open Systems Interconnect

P2P Peer-to-Peer

P2PTV Peer-to-Peer Television

PC Personal Computer

POTS Plain Old Telephone Service

PRR Prime Remainder Revolution

PRR PRNG Prime Remainder Revolution Pseudo Random Number Generator

PRNG Pseudo Random Number Generator

OPSO Overlapping-Pairs-Sparse-Occupancy

OQSO Overlapping-Quadruples-Sparse-Occupancy

QoS Quality of Service

R Research

RAM Random Access Memory

RD1 Research and Development 1

RFC Request For Comments

RMD Random Midpoint Displacement

RNG Random Number Generator

RS Rescaled Range Statistics

RTP Research, Technology and Platforms

SP Service Provider

xxxiii

TCD Traffic Characterization in the Dark

TCP Transmission Control Protocol

TCP/IP Transmission Control Protocol over Internet Protocol

TMS Traffic Monitoring System

UDP User Datagram Protocol

VoIP Voice over Internet Protocol

VR Variance of Residuals

VT Variance Time

WMAMT Windowed Modified Absolute Moments Time

WMEBP Windowed Modified Embedded Branching Process

WMVT Windowed Modified Variance Time

WWW World Wide Web

Abbreviations

Please consider the meaning of the following abbreviations when you find them later in

the text:

a.k.a. also known as;

e.g. for example;

i.e. that is to say; in other words;

i.i.d. independent and identically distributed;

KS test Kolmogorov Smirnoff test;

Ph.D. Doctor of Philosophy;

std. dev. standard deviation;

SYN Syncronization;

vs. versus.

xxxiv

Extended Abstract in Portuguese

Introdução

Esta secção, escrita em ĺıngua Portuguesa, resume com algum detalhe o corpo da

tese com o t́ıtulo “Study of the Impact of Intensive Attacks in the Self-Similarity De-

gree of the Network Traffic in Intra-Domain Aggregation Points”. A sua estrutura é

semelhante à do documento principal. O seu propósito é o de enunciar o problema a ser

tratado, os principais objectivos dos trabalhos de doutoramento e suas contribuições para

o avanço da ciência. Cada uma das contribuições é, então, melhor descrita durante o re-

sumo das fases mais importantes da investigação. Por último, apresentam-se as principais

conclusões desta tese e mencionam-se algumas linhas de investigação futura. A śıntese

não inclui quaisquer figuras e omite alguns dos pormenores mais técnicos ou justificações

matemáticas, sendo tal facto complementado com apontamentos para o corpo da tese.

Âmbito e Motivação da Tese

A massificação do uso dos computadores como ferramentas de trabalho ou de lazer

deve-se não só à sua capacidade de armazenar e processar enormes quantidades de dados

rapidamente, como à possibilidade de se ligarem em redes de informação. As facilidades

oferecidas e os serviços suportados por estes sistemas de informação tornam-nos não só

ferramentas de apoio ao negócio por excelência, como também num ı́man de más intenções,

que normalmente visam lucrar com o distúrbio do seu normal funcionamento. O tipo de

ameaças que assombram estas redes vai desde a tentativa de roubo da informação, para

fins lucrativos pessoais ou corporativos, até à intenção, por parte alheia, de provocar

estragos nas comunicações, só pelo relevo social (louro) que dáı possa provir, dentro de

uma determinada comunidade de atacantes [5]. O combate a estes problemas motivou

xxxv

a criação de várias equipas (como por exemplo as equipas conhecidas pela designação

inglesa Computer Emergency Response Team - CERT [6]) e o desenvolvimento de vários

sistemas especializados na área da segurança informática. Um importante grupo destes

sistemas são os Sistemas de Detecção de Intrusões (tradução literal da expressão inglesa

Intrusion Detection Systems - IDSs [7, 10]).

A maior parte dos IDSs são baseados na detecção de assinaturas de ataques con-

hecidos, cuja base de dados é actualizada regularmente. Ao ńıvel de rede, a detecção com

base em assinaturas acarreta, normalmente, o tratamento de enormes quantidades de in-

formação, sendo a tarefa agravada em nós de reencaminhamento, onde passam unidades

de dados vindos de, ou destinados a, várias máquinas da rede. Porque a sofisticação dos

ataques está a aumentar, as máquinas verdadeiramente especializadas são desenvolvidas

sobre o conceito de inspecção do pacote e, mais recentementente, de inspecção profunda

do pacote (tradução literal da expressão inglesa Deep Packet Inspection - DPI), sendo ca-

pazes de analisar automaticamente o conteúdo integral (ou quase) das unidades de dados,

e até de reconstruir e investigar os fluxos antes que estes cheguem ao seu destino final. A

inspecção profunda de pacotes é uma das técnicas que mais tem vindo a ganhar interesse

nas soluções de detecção de intrusões para redes, mas o seu modo de operação é uma

tarefa computacionalmente intensiva, que obriga a uma troca notável entre a eficiência

do sistema e o seu custo.

O segundo tipo de mecanismos de detecção de intrusões é normalmente denominado

de detecção baseada em anomalias. A anomalia é entendida como um desvio ao com-

portamento esperado, dado pelo modelo de sistema adoptado. Tal modelo é programado

na máquina de rede, ou aprendido por esta, que se encarrega de tomar as providências

necessárias à sua comparação com o modelo de registo de tráfego que está a receber. Nestes

casos, o processamento do tráfego restringe-se à análise dos cabeçalhos das unidades de

dados ou a campos espećıficos do seu conteúdo. Quando levado ao limite inverso do

modo de actuação da inspecção profunda do pacote, este modo de proceder recáı sobre a

categoria de classificação do tráfego no escuro (tradução literal da expressão inglesa Traf-

fic Characterization in the Dark - TCD [15]), sobretudo pela tentativa de filtrar tráfego

baseado em pouca informação e pressupostos. Os mecanismos com este modelo opera-

cional são computacionalmente mais leves, apresentando-se como uma solução atractiva

xxxvi

para nós de alto débito.

Apesar de alguns modelos de sistema poderem ser aprendidos automaticamente

por via de algoritmos de inteligência artificial, há aqueles que dependem da observação

emṕırica e análise cŕıtica de resultados para que possam ser implementados de modo

adequado. É precisamente no estudo de uma das mais emblemáticas caracteŕısticas do

tráfego de rede agregado que esta tese se enquadra. A referida caracteŕıstica é conhecida

como auto-semelhança [16, 17].

O estudo da auto-semelhança com vista ao seu potencial uso na identificação de

intrusões foi motivado por uma combinação de diferentes factores, que podem ser e-

numerados como se segue: (i) vários estudos provaram que a auto-semelhança é uma

das caracteŕısticas que definem a natureza do tráfego de rede em pontos de agregação

[16, 17, 18, 19]; (ii) à data de ińıcio dos trabalhos de doutoramento (2005), existiam

apenas dois estudos relativos à aplicação daquele modelo como meio de identificação

de intrusões [20, 21], mas baseavam-se na perda da auto-semelhança, e não na análise

da evolução do seu grau durante um ataque; (iii) apesar da noção intuitiva da auto-

semelhança ser relativamente simples de obter, o seu tratamento emṕırico é por vezes

rodeado de alguma ambiguidade que deriva, na opinião do autor, da própria formulação

matemática e interpretação pessoal; (iv) os estudos existentes não se debruçam neces-

sariamente sobre as ferramentas usadas para medir a auto-semelhança, contrariamente à

abordagem aqui descrita; (v) o aumento sustentado da velocidade de transmissão das re-

des de informação justifica a investigação de potenciais mecanismos de detecção baseados

em anomalias; e (vi) apesar das soluções de inspecção profunda de pacotes apresentarem

vantagens indiscut́ıveis em termos do grau de certeza dos resultados, a tendência crescente

para a aplicação de encriptação integral das comunicações resulta favorável ao desenvolvi-

mento de técnicas de caracterização de tráfego [15] baseadas em modelos estat́ısticos.

Descrição do Problema e Objectivos

O problema a resolver nesta tese é o de perceber se a propriedade conhecida como

auto-semelhança pode ser directamente usada na detecção de intrusões ao ńıvel da rede.

Um dos seus principais objectivos é, portanto, o de identificar os ataques que afectam a

xxxvii

referida caracteŕıstica estat́ıstica, e de que modo é que esse impacto se pode descrever.

Para isso, é necessário entender o modelo do tráfego de rede auto-semelhante, bem como

estudar os meios usados para medir a intensidade com que a mencionada propriedade se

reflecte nele.

Uma das componentes mais importantes a ter em conta é a aplicabilidade das con-

clusões e procedimentos desenvolvidos ao longo do trabalho em equipamentos de rede.

As análises efectuadas para registos pré-gravados de tráfego (a expressão inglesa offline

analysis é usada para referir tal investigação), assim como as simulações de rede, de-

vem imitar a análise e o funcionamento em linha, temendo sobretudo as limitações de

processamento e memória nesses equipamentos. O funcionamento em linha presume a

potencial análise e actuação do dispositivo em tempo útil, sobre conjuntos de valores que

são constantemente actualizados.

A maior parte dos estimadores do grau de auto-semelhança dispońıveis na literatura

são usados de modo retrospectivo, acarretando uma ordem de complexidade que não é

compat́ıvel com a sua implementação em linha. Um dos objectivos desta tese é identificar

os motivos da onerosidade destes procedimentos, e procurar maneiras de contornar esse

problema. A investigação é orientada de modo a apontar a melhor maneira de observar a

evolução do grau de auto-semelhança em tempo real, e a maximizar a sua susceptibilidade

a potenciais intrusões.

Porque o tema da auto-semelhança está por vezes exposto a alguma ambiguidade,

torna-se mais vincada a necessidade de conciliar os resultados práticos com o argumento

teórico. O estudo do impacto de ataques no grau de auto-semelhança segue ambas as

vertentes, de modo a obter uma descrição mais exacta do comportamento em análise. A

análise prática incorpora o processamento de registos de tráfego verdadeiros e simulados,

sendo particularmente útil a modelização de tráfego em nós de agregação de elevado

débito, visto ser nesses pontos que a auto-semelhança encontra maior enlevo.

xxxviii

Principais Contribuições para o Avanço do Conhecimento Cient́ıfico

A primeira contribuição desta tese é a descrição e formulação matemática de es-

timadores móveis e ponto-a-ponto do parâmetro de Hurst. A modificação a que estes

estimadores foram submetidos permite a sua implementação em máquinas de monitori-

zação de tráfego de rede e o estudo da evolução do grau de auto-semelhança de uma série

de dados em tempo real. Os referidos métodos foram constrúıdos a partir de estimadores

existentes na literatura, e todas as modificações que sofreram foram descritas com detalhe

no caṕıtulo 3 desta tese, e referidas nos artigos [29, 30].

A segunda contribuição é a proposta de dois geradores de processos auto-semelhantes.

Os dois novos algoritmos apresentam um excelente rácio qualidade / eficiência, e são des-

critos como os mais eficientes da sua classe de precisão. Para além de modestos, em

termos de requisitos de memória e processamento, estes algoritmos são capazes de gerar

sequencialmente (ponto-a-ponto), sem que isso aflija a sua performance. A teoria sobre a

qual os dois geradores foram constrúıdos encontra-se detalhada no caṕıtulo 4 desta tese e

nos artigos [31, 32].

A terceira contribuição diz respeito à proposta de um novo gerador de números

aleatórios chamado Revolução dos Restos de um (Número) Primo (tradução literal da

designação inglesa Prime Remainder Revolution - PRR). A versão descrita no caṕıtulo 4

desta tese é uma das posśıveis implementações óptimas da famı́lia de geradores descrita

e amplamente analisada em [33].

A quarta e última contribuição desta tese concretiza-se nos meios usados e nas

conclusões do estudo do impacto de ataques intensivos no grau de auto-semelhança do

tráfego de rede. Esta análise inclui a modelização e simulação de tráfego em pontos de

agregação intra-domı́nio, bem como a simulação de ataques intensivos ao ńıvel da rede. O

simulador elabora numa teoria fácil de entender que, aliada aos geradores de sequências

auto-semelhantes apresentados, permite a geração de registos de tráfego arbitrariamente

longos, possuindo a propriedade da auto-semelhança. A referida aliança permite a criação

dos registos pacote-a-pacote e a simulação de ligações de alto débito com poucos recursos

computacionais. A conclusão desta tese delimita claramente a aplicabilidade da teoria da

auto-semelhança na detecção de intrusões de rede. A simulação de tráfego em pontos de

xxxix

agregação intra-domı́nio usando um gerador de processos auto-semelhantes sequencial foi

discutida com detalhe em [31], e o estudo aos registos de tráfego, bem como as principais

conclusões que dáı foram obtidas, foram relatados em [29, 30]. Nesta tese, os dois relatos

fazem parte do caṕıtulo 5.

Auto-Semelhança e Métodos de Estimação do

Parâmetro de Hurst

O ińıcio deste trabalho focou-se na investigação do conceito da auto-semelhança e

da sua relação com o tráfego de rede. Dado a intensidade dessa caracteŕıstica se poder

medir pela estat́ıstica conhecida como parâmetro de Hurst, redireccionaram-se depois os

esforços para os meios usados na sua estimação. O caṕıtulo 2 desta tese contém a definição

matemática da auto-semelhança e discute o porquê da sua presença nos registos de tráfego

agregado. A última parte do caṕıtulo é dedicada à descrição dos métodos mais populares

para determinar o valor do parâmetro de Hurst.

Auto-Semelhança e Parâmetro de Hurst

A auto-semelhança é uma propriedade estat́ıstica. A sua definição é normalmente

feita recorrendo a uma das duas equações seguintes:

X(t)
d
= a−HX(at), a ∈ N; (1)

Y (t)
d
= m1−HY (m)(i), onde Y (m)(i) = m−1

(i+1)m−1∑
j=im

Y (j), m ∈ N. (2)

A equação (1) aplica-se a processos estocásticos incrementais {X(t)}t∈N, como o

movimento Browniano fraccionário (tradução da expressão inglesa fractional Brownian

motion - fBm) (ver Figura 2.2), enquanto que a segunda é normalmente aplicada ao

processo dos incrementos {Y (t)}t∈N, como o rúıdo Gaussiano fraccionário (tradução da

expressão inglesa fractional Gaussian noise - fGn) (ver Figura2.3). O segundo tipo de

processos deriva do primeiro (ou vice-versa) por intermédio de uma expressão equivalente

xl

a Y (t) = X(t)−X(t−1) (para t > 0). Repare-se que os processos estão definidos para um

domı́nio temporal discreto (a definição pode estender-se a domı́nios cont́ınuos, mas essa

possibilidade é irrelevante no contexto deste resumo). O śımbolo
d
= denota igualdade em

distribuição, e afirma que os processos de um lado e do outro das expressões só precisam

ser iguais em termos probabiĺısticos. As concretizações de m são por vezes denominadas

por blocos ou escalas de agregação.

O processo {X(t)}t∈N é dito auto-semelhante, com parâmetro de Hurst 0 < H < 1,

se e somente se, a equação (1) for verdadeira para todo o a ∈ N ou, alternativamente,

se o processo das diferenças de primeira ordem {Y (t)}t∈N respeitar a equação (2) para

qualquer m ∈ N. Por vezes também se diz que {Y (t)}t∈N é auto-semelhante no sentido

dado por (2) [44].

Se a autocorrelação de {Y (t)}t∈N e de {Y (m)(i)}i∈N for a mesma para todo o m ∈ N,

então {Y (t)}t∈N é dito ser exactamente auto-semelhante de segunda ordem. Se, por outro

lado, a autocorrelação de {Y (t)}t∈N e a de {Y (m)(i)}i∈N só coincidirem para m → ∞,

o processo é dito ser assimptoticamente auto-semelhante de segunda ordem. Quando o

parâmetro de Hurst é superior a 0.5 e inferior a 1, {X(t)}t∈N (ou {Y (t)}t∈N no sentido

dado por (2)) exibe a propriedade da persistência ou da dependência de longo-alcance,

enquanto que para valores entre 0 e 0.5 (exclusivamente), os mesmos processos exibem

a propriedade da anti-persistência, sendo sobretudo regidos por dependências de curto-

alcance. Quando o parâmetro de Hurst é 0.5, diz-se que o processo estocástico não possui

memória [40, 41].

Expressão da Auto-Semelhança no Tráfego de Rede

O estudo que chamou a atenção da comunidade cient́ıfica para a relação entre auto-

semelhança e o tráfego de rede foi levado a cabo por Leland et al. e reportado exaus-

tivamente em [39], publicado em 1994. O artigo entitulado On the Self-Similar Nature

of Ethernet Traffic apresenta os resultados do estudo conduzido para registos de tráfego

de uma rede de área local implementada sobre Ethernet. Segundo a referida análise, a

dependência de longo-alcance é fruto da agregação de processos com memória curta, mas

cuja função de distribuição de probabilidades é uma curva com cauda alargada (como

xli

exemplo, considere a distribuição de Pareto). Em [19, 39], cada fonte de tráfego (cada nó

terminal) é modelada como uma variável independente que toma o valor 1 (=ON) sempre

que o terminal está a transmitir, e o valor 0 (=OFF) quando está em silêncio. O número

de bits por unidade de tempo que chegam a um determinado ponto de rede meeiro é então

o resultado da agregação (soma) de diversos processos concorrentes, independentes e iden-

ticamente distribúıdos, e é precisamente nesse aspecto do tráfego que a auto-semelhança

se revela (considere visitar a secção 2.3.2. para obter uma figura matemática destas

palavras). O processo do número de bits por unidade de tempo é auto-semelhante no

sentido dado por (2) e a sua fisionomia é parecida com a do fGn (a chamada prova gráfica

da auto-semelhaça no modelo de tráfego de rede é dada pela Figura 2.5). O sustento deste

modelo recai sobre a distribuição dos tamanhos dos ficheiros ou mensagens transmitidas,

e na própria forma como o tráfego é tratado (guardado na memória da placa de rede ou

na da aplicação que o gerou) antes de ser enviado para a rede.

Os Estimadores do Parâmetro de Hurst

A maior parte dos métodos de estimação do parâmetro de Hurst elabora no carácter

retrospectivo da definição de auto-semelhança, e propõem a repetida análise da mesma

série de dados para diferentes ńıveis de agregação como meio de o obter. O seu modelo

operacional traduz-se muitas vezes num custo computacional que inviabiliza a aplicação

em tempo-real dos procedimentos, se implementados na sua forma original. Métodos como

o das Estat́ısticas Re-escaladas (da designação, em inglês, Rescaled Range Statistics - RS),

da Variância Tempo (Variance Time - VT), dos Momentos Absolutos Tempo (Absolute

Moments Time - AMT), do Processo Ramificado Embutido (Embedded Branching Process -

EBP), da Análise da Flutuação não Inclinada (adaptação da designação inglesa Detrended

Fluctuation Analysis - DFA), de Higutchi, ou daquele baseado em Onduletas, elaboram em

concretizações das fórmulas (1) ou (2) para diferentes operadores estat́ısticos conhecidos

ou propositadamente concebidos para o efeito (ver por exemplo a medida definida por

Higuchi [93]). A aplicação de uma medida estat́ıstica a ambos os lados de
d
= reduz aquele

operador a uma simples igualdade, permitindo baixar o expoente H por via da função lo-

garitmo. A forma final das transformações é linear e H é uma função do declive da recta,

podendo ser obtido através de análise regressiva. Já o método baseado na função de

xlii

autocorrelação, o do Periodograma ou o de Whittle são constrúıdos sobre as propriedades

espectrais dos processos auto-semelhantes, e dependem da aproximação paramétrica das

suas transformadas, ou do tratamento adequado da função autocorrelação.

A investigação inicial foi portanto direccionada à identificação dos métodos com

potencial de serem usados como ferramentas de monitorização de sequências de dados

crescentes. Da análise foram destacados os métodos VT, AMT e EBP, sendo evidenciadas

ao longo da secção 2.4. as razões por não se considerarem os outros métodos. Apesar de

serem aqui considerados separadamente, o AMT não é mais do que a generalização do

VT, já que a variância é o momento absoluto de ordem 2. Por uma questão de coerência,

a demonstração de como o AMT pode ser implementado no modo ponto-a-ponto e móvel

para momentos absolutos de ordem par ou de ordem 1 é inclúıda no caṕıtulo 3 desta tese.

Contudo, este estimador não é usado na prática para momentos de ordem superior a 2, por

não adicionar nada de novo às estimativas devolvidas pelo VT. A versão retrospectiva do

AMT para momentos de ordem 1 foi usada na avaliação do segundo algoritmo de geração

de sequências auto-semelhantes, descrito no caṕıtulo 4.

O Método Variância Tempo

O VT elabora na particularização de (2) dada por V(Y) = m2−2HV(Y (m)), onde

V(Y) denota a variância do processo a que está aplicada (neste caso {Y (t)}t∈N e

{Y (m)(i)}i∈N). Se a sequência de pontos estudada possuir a estrutura da auto-semelhança,

as coordenadas
(
log(m), log

(
V
(
Y (m)

)))
devem ser razoavelmente bem aproximadas por

uma recta, para quaisquer concretizações de m ∈ N (por exemplo, para mk = 2k, k =

1, 2, ..., K,K ∈ N). Do declive β dessa recta deduz-se uma estimativa de H usando a

fórmula H = 1 − 0.5β. É o facto do estimador VT ser constrúıdo sobre uma estat́ıstica

que pode ser calculada (recalculada) cumulativamente que permite a sua exploração no

âmbito deste trabalho, e a sua promoção a estimador ponto-a-ponto e móvel.

O Método do Processo Ramificado Embutido

O proponente do EBP [69] baseou-se no facto da expansão espacial de qualquer

processo auto-semelhante no sentido dado por (1) ser dependente do parâmetro de Hurst.

xliii

Em [69], esta dependência é explorada por via da definição de famı́lias de linhas horizontais

de cruzamento f(k) = δ2kZ (onde δ denota a distância mı́nima de cruzamento considerada

e k = 1, 2, ..., K), que são atravessadas várias vezes pelo processo em análise durante a sua

evolução temporal. Se Nk contar o número de vezes que cada famı́lia de linhas é cruzada

pelo processo e µ for a média ponderada desses valores, então uma estimativa do parâmetro

de Hurst pode ser obtida de H = log(2)/ log(µ), ou do declive da recta que aproxima os

pontos com coordenadas
(

log
(
Nk−1

NK

)
, log(2k)

)
. O motivo pelo qual o autor se decidiu

pela modificação deste método deve-se ao facto da contagem do número de cruzamentos

poder ser feita de modo incremental, o que deixa adivinhar a sua predisposição para tal

adaptação.

O EBP é especialmente útil na análise de processos persistentes, e apresenta proble-

mas de convergência (em termos de significância estat́ıstica da estimativa) acentuados para

processos anti-persistentes. O método requer que o processo das diferenças de primeira

ordem esteja devidamente centrado na origem e, caso não esteja normalizado, que o valor

de δ seja escolhido em conformidade com o desvio padrão do processo das diferenças

absolutas.

Estimação Eficiente e Móvel do Parâmetro de Hurst

É no caṕıtulo 3 da tese que se colocam as hipóteses de implementação ponto-a-ponto

e móvel (adaptação da designação inglesa windowed [estimator]) como meio de obter uma

perspectiva da evolução do parâmetro de Hurst cont́ınua, compat́ıvel com a operação em

tempo-real. A descrição inclui a formalização matemática das modificações aos métodos

EBP, VT e AMT, embora neste resumo não se considere este último, por motivos já aqui

mencionados.

Estimação Ponto-a-Ponto

O estimador ponto-a-ponto é um algoritmo de O(n) capaz de devolver um valor do

parâmetro de Hurst para cada ponto da série em análise. O seu modelo operacional é

ilustrado pela Figura 3.1, onde se realça a necessidade de definir variáveis auxiliares (que

xliv

basicamente sumarizam o processamento já efectuado sobre pontos anteriores do sinal) e

de formalizar um algoritmo recursivo que opera sobre estas variáveis.

Método do Processo Ramificado Embutido Modificado

O primeiro método para o qual se apresentam as modificações necessárias ao seu

funcionamento em linha é o EBP, intitulando-o de EBP modificado ou, em inglês, Modified

Embedded Branching Process (MEBP). A implementação deste método no modo ponto-a-

ponto requer que a construção do processo ramificado embutido se faça segundo uma pers-

pectiva de verticalidade, que obriga a que todas as famı́lias de cruzamento f(k) = δ2kZ

sejam visitadas sempre que um novo ponto se torna dispońıvel. As variáveis auxiliares são

os pontos de cruzamento do sinal até ao momento mais recente, denotados por CLk(t−1),

e o número total de cruzamentos Nk(t − 1) para cada um dos ńıveis em consideração.

Quando um novo ponto X(t) chega, verifica-se se o sinal atravessou alguma(s) das rectas

f(k) = δ2kZ e, em caso afirmativo, conta-se o número de vezes que o fez através da

fórmula Ck(t − 1) =
⌊
|X(t)−CLk(t−1)|

δ2k

⌋
. O número total de cruzamentos pode então ser

renovado usando Nk(t) = Nk(t− 1) + Ck(t− 1), tal como o último ponto de cruzamento

(CLk(t) = CLk(t − 1) + sinal (X(t)− CLk(t− 1)) × δ2kCk(t − 1), onde b.c é a função

chão, por vezes conhecida como função de truncagem). O parâmetro de Hurst pode ser

obtido dos novos valores, já de acordo com o racional do EBP.

A normalização em tempo real da série emṕırica à entrada do MEBP é conseguida

à custa do cálculo incremental da média e da variância, formalizado pelas expressões (3)

e (4), respectivamente:

Et(Y) =
(t− 1)× Et−1(Y) + Y (t)

t
; (3)

Vt(Y) = Et(Y)2 − (Et(Y))2 . (4)

O valor X(t) que deve ser usado na contagem de cruzamentos é obtido de X(t) = X(t−

1) + Y (t), onde Y (t) é o resultado da normalização do valor emṕırico mais recente da

série das diferenças de primeira ordem, simbolizado por Y ′(t) (i.e. Y (t) = (Y ′(t) −

Et(Y ′))/
√

Vt(Y ′)). Infelizmente, o viés introduzido por esta operação afecta a contagem

xlv

de cruzamentos do processo às várias famı́lias de rectas, pelo que se deve ter em conta

que o MEBP pode estar a sobrestimar o parâmetro de Hurst no caso da série de valores

emṕırica ter um desvio padrão maior que o esperado, ou a subestimá-lo no caso contrário.

Método Variância Tempo Modificado

O segundo método para o qual são apresentadas modificações é o VT, sendo a sua

implementação ponto-a-ponto designada, em inglês, de Modified Variance Time (MVT).

As variáveis auxiliares deste método foram identificadas como sendo as variâncias do pro-

cesso e das suas respectivas agregações, que podem ser actualizadas de maneira recursiva

usando fórmulas equivalentes a (3) e a (4). Contudo, neste caso, há que ter em conta

que o bloco de agregação mais recente da escala mk, Y
(mk)(Tk), pode não estar com-

pleto à chegada do valor mais recente de {Y (t)}t∈N (note que Y (t) contribui apenas com

1/mk para o valor de Y (mk)(Tk)). Para colmatar este problema, é proposta a substituição

de Y (mk)(Tk) pela aproximação definida por Y
(rk)
aux (Tk) = r−1k

Tkmk+rk∑
j=Tkmk

Y (j), que converge

para Y (mk)(Tk) à medida que o número de valores dispońıveis para a construção do bloco

Y (mk)(Tk) tende para mk, ou seja, à medida que o número inteiro rk evolui para mk (rk

denota o número de valores dispońıveis para construção do bloco Y (mk)(Tk)). As várias

variâncias vão sendo actualizadas com estas variáveis auxiliares, até serem definitivamente

substitúıdas pelo seu valor correcto quando Y
(rk)
aux (Tk) iguala Y (mk)(Tk).

O estratagema aplicado não respeita rigorosamente a definição do VT durante toda

a execução ponto-a-ponto, mas a discussão contida na secção 3.2.2. deixa claro que os

efeitos deste desvio são tangenciais (só a realização mais recente de {Y (mk)(i)}i∈N é que é

aproximada). Porque todos os valores aproximados utilizados na estimação estão constan-

temente a convergir para os valores exactos, independentemente da série de entrada estar

normalizada ou não, este método não herda viés de nenhuma dessas causas, apresentando-

se como uma escolha mais robusta que o MEBP.

xlvi

Estimação Móvel

As ferramentas brevemente enunciadas anteriormente permitiram ao autor obter

um gráfico da evolução do grau de auto-semelhança de uma sequência de pontos, mas

cedo levou também à conclusão de que essas ferramentas não eram suficientes para al-

cançar os objectivos dos trabalhos de investigação. Os estimadores incrementais sofrem

do efeito da lei dos grandes números pelo que, após a amostra da população ter atingido

um certo tamanho, o estimador deixa de ser senśıvel a potenciais variações no sinal de

entrada (a confirmação desta afirmação pode ser obtida, por exemplo, da observação da

Figura 3.5 e da Figura 3.6). Esta constatação cativou a investigação dos estimadores

móveis, cujo racional assenta na definição de uma janela de observação deslizante, re-

tratada na Figura 3.2. A máquina conceptual de um estimador móvel é, por sua vez,

ilustrada na Figura 3.3, onde é realçado o facto do estimador móvel continuar a produzir

um valor do parâmetro de Hurst por cada ponto da série, através da incorporação do

efeito de novos valores à medida que chegam e da eliminação do efeito dos pontos que

saem da janela de observação. Note-se que a verdadeira novidade desta abordagem está,

contudo, na eficiência e na operação ponto-a-ponto do algoritmo, e não na possibilidade

de estimar o grau de auto-semelhança de âmbito local.

Tanto o EBP como o VT foram adaptados à filosofia móvel. As respectivas im-

plementações foram apelidadas (em Ĺıngua Inglesa) de Windowed Modified Embedded

Branching Process (WMEBP) e de Windowed Modified Variance Time (WMVT). O

funcionamento do WMEBP ou do WMVT admite dois estados posśıveis: (i) operação

ponto-a-ponto, como antes discutido, empregue enquanto a janela de observação não está

cheia; e (ii), operação janela deslizante, aplicada após número suficiente de pontos hajam

sido processados. As variáveis auxiliares destes procedimentos são, portanto, parecidas

àquelas definidas para os métodos ponto-a-ponto, tal como a sua actualização, apesar de

serem em maior número. Para além de algumas variáveis auxiliares espećıficas, o fun-

cionamento do estimador móvel presume o armazenamento de todos os valores da janela

de observação. As variáveis auxiliares definidas para o ponto mais antigo da janela de

observação são em tudo parecidas com aquelas usadas na adição do efeito de valores de

entrada no estimador incremental, inclusive na sua actualização. A maior diferença é que

em vez de esses valores serem somados ao estado do estimador, são subtráıdos.

xlvii

No caso do WMEBP e à chegada de um novo valor normalizado, soma-se o número

de vezes que este cruza cada famı́lia de cruzamentos e subtráı-se o número de vezes que o

ponto na última posição da janela de observação o faz, renovando a janela logo de seguida.

A normalização do sinal deve, neste caso, ser feita com recurso à média móvel e à sua

respectiva generalização para o cálculo do desvio padrão.

No caso do WMVT, a remoção do efeito do valor à sáıda da janela de observação

não é assim tão directa, e de modo a evitar problemas de consistência nos resultados, foi

necessário divergir um pouco das assumpções base da filosofia de iteração do estimador

móvel. Mais uma vez, o problema prende-se com o facto dos blocos de agregação relativos

ao ponto de sáıda, simbolizados por Y
(ek)
aux (Ek), só se encontrarem completos a cada mk

execuções. Em alguns casos, Y
(ek)
aux (Ek) pode estar a sobrestimar o real valor do bloco de

sáıda, pelo que o seu uso associado ao sinal de subtracção em fórmulas como a (5) ou a

(6), pode resultar em valores da variância negativos. A solução para este problema passa

por forçar o WMVT a actuar como um estimador incremental enquanto os blocos de sáıda

não estão completos. Para cada escala de agregação individual e durante esses peŕıodos

de tempo, a janela expande temporariamente, sendo a sua integridade restaurada logo

que Y
(ek)
aux (Ek) iguale Y (ek)(Ek), altura em que o seu valor é terminantemente removido do

estado do método através das duas recursões seguintes:

ETk,w/mk
(Y (mk)) = ETk−1(Y

(mk)) +
Y

(rk)
aux (Tk)− Y (ek)

aux (Ek)

w/mk

; (5)

ETk,w/mk

(
Y (mk)

)2
= ETk−1

(
Y (mk)

)2
+

(
Y

(rk)
aux (Tk)

)2
−
(
Y

(ek)
aux (Ek)

)2
w/mk

. (6)

Análise Cŕıtica e Comparação

Após apresentação formal dos estimadores modificados, discutem-se vários aspectos

da sua utilização prática recorrendo a simulação computacional. O gráfico da Figura 3.4,

por exemplo, ilustra a análise comparativa de performance efectuada para o WMVT. A

comparação é feita em relação à versão retrospectiva do VT, para janelas de observação

diferentes, e demonstra que o número de operações que o WMVT efectua não depende

do tamanho daquela estrutura de dados. Por outro lado, a secção 3.4.2. chama a atenção

xlviii

para o facto de que a operação de agregação diminui o número de amostras em análise,

o que pode incorrer em situações em que a quantidade de dados é insuficiente para aferir

correctamente algumas estat́ısticas. É argumentado que a escolha do tamanho máximo

dos blocos deve ser feita de modo a que as estat́ısticas sejam calculadas para um número

razoável de amostras, e que neste trabalho se considerou o 32 como limite inferior a esse

número.

A análise cŕıtica prossegue com a comparação entre estimadores ponto-a-ponto e

retrospectivos, e com a avaliação da precisão do MEBP e do MVT. A perspectiva da

evolução do grau de auto-semelhança constrúıda a partir destes métodos é ilustrada nos

gráficos na Figura 3.5 e na Figura 3.6, respectivamente, e a Tabela 3.1 é composta pelos

valores resultantes da compilação estat́ıstica dos resultados de simulações intensivas à pre-

cisão dos estimadores ponto-a-ponto. Nela se dispõem os valores esperados do parâmetro

de Hurst contra a média (e desvio padrão) das estimativas dadas pelos dois métodos incre-

mentais para 1000 sequências aproximadamente auto-semelhantes, e dela se pode concluir

que nenhuma das modificações afecta irreversivelmente a exactidão dos métodos.

A diferença entre as estimativas devolvidas por estimadores móveis e incrementais

é estudada na secção 3.4.4.. Os gráficos da Figura 3.7 e da Figura 3.8 são o mais perfeito

exemplo da vantagem de calcular o grau de auto-semelhança para uma janela deslizante de

valores, visto demonstrarem que a referida propriedade toma intensidades diferentes para

diferentes peŕıodos de tempo. O sumário da análise à precisão dos estimadores móveis

pode ser encontrado na Tabela 3.2, onde os valores esperados do parâmetro de Hurst

para séries sintéticas são colocados lado a lado com a média (e desvio padrão) dos valores

devolvidos pelo WMEBP e WMVT.

A última comparação do caṕıtulo 3 da tese tem como objectivo prinćıpal demonstrar

que as modificações infligidas aos estimadores não afectam de modo irreverśıvel a sua

precisão. Para tal, compararam-se os valores devolvidos pelos novos estimadores com os

devolvidos pelas respectivas versões retrospectivas. A excelente performance do WMEBP

e do WMVT é realçada nos gráficos da Figura 3.9 e da Figura 3.10, respectivamente, onde

as curvas de evolução dos dois métodos coincidem quase perfeitamente. Contudo, é na

Tabela 3.3 que as declarações de exactidão encontram suporte emṕırico, por áı se fazer

notar que a média do erro absoluto entre as estimativas devolvidas pelas implementações

xlix

retrospectivas e as devolvidas pelos estimadores móveis nunca é superior a 1.78E-02.

Geração Eficiente de Sequências Auto-Semelhantes

No caṕıtulo 4, o foco da investigação deixa de estar sobre a estimação do parâmetro

de Hurst para se centrar na śıntese computacional de sequências com estrutura fractal.

Os dois motivos que fomentaram o estudo ao estado da arte nesta área e, mais tarde,

o desenvolvimento de dois novos geradores de sequências auto-semelhantes foram: (i) a

necessidade de testar os estimadores ponto-a-ponto e móveis e (ii), a necessidade de cons-

truir um simulador de tráfego que requer, por sua vez, a utilização de um mecanismo

computacional capaz de criar sequências de números que exibam dependência de longo-

alcance.

Revisão do Estado da Arte Sobre Geradores de Processos Auto-

Semelhantes

A primeira grande secção do caṕıtulo resume os procedimentos que podem ser us-

ados para gerar auto-semelhança mais populares. Estes procedimentos são normalmente

divididos em geradores exactos e em geradores aproximados [38], dependendo a classi-

ficação do fundamento teórico e do modo como são implementados. Os geradores exactos

são normalmente constrúıdos sobre a matriz de covariância do processo estocástico, e

elaboram na definição altamente retrospectiva da auto-semelhança para produzir proces-

sos com a estrutura fractal. Cada vez que uma ocorrência do processo é produzida, o

número de relações que têm de ser tomada em conta pelo procedimento desde a última

iteração aumenta, pelo que a sua complexidade nunca pode ser inferior a O(n log(n)).

Já os geradores pertencentes à segunda categoria são constrúıdos sobre simplificações às

assumpções iniciais da auto-semelhança e compreendem uma troca entre a eficiência do al-

goritmo e a precisão das sequências produzidas, apesar de poderem atingir complexidades

de O(n). Em termos de requisitos de memória, os geradores da primera classe são natu-

ralmente mais ambiciosos que os da segunda, já que aqueles presumem o armazenamento

integral da série de pontos sintetizada ou de uma representação igualmente exigente.

l

Da discussão a 3 geradores exactos e a 9 geradores aproximados conclúıram-se al-

gumas das propriedades mais desejadas deste tipo de algoritmos: (i) a sua qualidade, em

termos do valor esperado para o parâmetro de Hurst; (ii) a eficência computacional, quer

a ńıvel de processamento, quer de memória; (iii) a sua capacidade de produzir resulta-

dos ponto-a-ponto e à medida que são necessários; e (iv) a sua capacidade para produzir

sequências das quais não é conhecida a exacta extensão à partida. De acordo com a linha

de investigação tomada no caṕıtulo 3, assumiu-se que qualquer algoritmo que ocupasse

não mais que um pequeno múltiplo de log(n) em memória seria adequado.

O Algoritmo de Geração Sequencial do Movimento Browniano

Fraccionário - fBm-SGA

A explicação matemática do primeiro gerador de sequências auto-semelhantes, bati-

zado de Algoritmo de Geração Sequencial do movimento Browniano fraccionário (ou, em

inglês, fractional Brownian motion Sequential Generation Algorithm - fBm-SGA), pode

ser encontrada na secção 4.3., dividida em duas partes principais. Começa-se por se

descrever um modo de gerar passeios aleatórios persistentes, passando depois para a gen-

eralização que permite a aplicação directa das (aqui denominadas de) probabilidades de

persistência na geração de valores com distribuição de Gauss.

Por construção, o algoritmo é apenas útil na forja de processos com dependência

de longo-alcance, em parte porque a persistência é definida como a probabilidade de

determinado ponto ser igual a um homólogo mais ou menos lonǵınquo e, por outro, porque

essas probabilidades só se encontram definidas para valores do parâmetro de Hurst entre

0.5 e 1. Para esses valores, as referidas probabilidades tomam também valores entre 0.5

e 1, respectivamente. O esquema de dependências definido pelo fBm-SGA encontra-se

ilustrado na Figura 4.3 e na Figura 4.4.

Na primeira das duas subsecções antes mencionadas, o racioćınio por detrás do

fBm-SGA é apresentado com detalhe para passeios aleatórios com incremento unitário

{S(t)}t∈N (com passos iguais a 1 ou−1). O foco é colocado na dedução da fórmula expĺıcita

para o cálculo das probabilidades de persistência pmk
= P (S(t) = S(t+mk/2), t ∈ mkN),

definidas para o intervalo [0.5, 1[e para mk = 2k, com k = 1, 2, A segunda parte

li

da exposição elabora no modo de descrever o algoritmo em termos de rúıdo Gaussiano

correlacionado.A explicação parte do facto da soma de vários processos incrementais

unitários poder ser entendida como o número de sucessos (= 1) e insucessos (= −1)

de uma variável com distribuição Binomial com probabilidade de sucesso pmk
, de resto

ilustrado na Figura 4.2. Ocorrências de um fGn com estrutura aproximadamente auto-

semelhante {YN(t)}t>0 podem então ser geradas por uma codificação da expressão recur-

siva (7) partindo de Y (0) = G(0, 1), onde G(µ, σ2) simboliza uma incidência particular

da variável com distribuição gaussiana com média µ e variância σ2:

YN(t) = G((2pmk
− 1)× YN(t−mk/2), 4pmk

(1− pmk
)). (7)

A última parte da discussão matemática do fBm-SGA diz respeito ao procedimento

para obtenção do valor de mk para cada instante t (o alcance da dependência), culmi-

nando na apresentação das expressões (4.30) e (4.31). A completa descrição do algoritmo

concretiza-se então no último conjunto de condições da secção 4.3.1..

O fBm-SGA foi usado para testar os estimadores modificados apresentados no

caṕıtulo 3 desta tese. Por isso, a avaliação da precisão do algoritmo foi feita recorrendo

a implementações retrospectivas de vários estimadores do parâmetro de Hurst (o EBP,

seguindo a sugestão em [69], e em concordância com o que foi escrito no caṕıtulo 2 da

tese; o VT, como descrito em e.g. [38, 82]; o RS, como descrito em [38]; e o DFA, como

descrito e.g. em [85, 86]). A avaliação é levada a cabo através da instanciação do gerador

para valores do parâmetro de Hurst que vão desde 0.5 a 0.99 (com incrementos de 0.01),

seguida da śıntese e análise de várias sequências com supostas propriedades fractais. O

parâmetro de Hurst estimado é então comparado com o esperado. A maior parte dos

resultados dos testes de precisão foi compilada estatisticamente e inclúıda na Tabela 4.1,

na Tabela 4.2, e representados nos gráficos da Figura 4.10 ou da Figura 4.11. Todas as

experiências foram feitas para escalas do tipo 2 × 2k, k ∈ N (para as quais o método é

teoricamente exacto) e do tipo 3 × 2k, k ∈ N. Os resultados contidos na Tabela 4.1 e na

Figura 4.10 defendem a natureza exacta do método para o primeiro tipo de escalas de

agregação, enquanto que os resultados da Tabela 4.2 e da Figura 4.11 mostram que para

escalas que não são potências de 2, as sequências geradas parecem ser levemente atráıdas

para a aleatoriedade e que, portanto, o grau de auto-semelhança tende a ser um pouco

lii

menor que o esperado para tais escalas (a diferença máxima de 4 centésimas entre o valor

esperado e o estimado foi obtida para o valor do parâmetro de Hurst de 0.95 usando o

RS).

O Gerador Simples de Sequências Auto-Semelhantes - 4SG

A explicação matemática e análise do algoritmo de geração de sequências auto-

semelhantes intitulado, nesta tese, de Gerador Simples de Sequências Auto-Semelhantes

(da designação inglesa Simple Self-Similar Sequences Generator - 4SG) podem ser encon-

tradas na secção 4.4.. O 4SG é resultado da preocupação do autor em colmatar algumas

das falhas do fBm-SGA, nomeadamente a que remonta à incapacidade de assegurar mel-

hores relações entre pontos e blocos de agregação para escalas diferentes de potências de

2. A ideia sobre a qual se construiu o 4SG é a de que cada ocorrência de um processo

auto-semelhante é a soma de várias componentes que podem ou não mudar ao longo

da evolução temporal do processo. O desafio consistiu na definição dessas partes, e na

discriminação do peso que têm na referida soma.

O primeiro ponto que o 4SG devolve é Y (0) =
Np∑
k=1

(w2kd2k(0)), onde d2k(0) é uma

incidência de uma variável gaussiana, para cada k = 0, 1, ..., Np. A afectação das várias

componentes d2k(0) é feita por w2k =
√

(p2)k−1(1− p2), para k < Np, ou por w2k =√
(p2)Np−1, se k = Np, onde p2 = 22H−2. O número inteiro positivo Np é, neste caso,

o número finito de componentes suportado, determinado durante a inicialização do al-

goritmo. A demonstração de que estes pesos são dados, como se antevia, em função do

parâmetro de Hurst está implicitamente contida na explicação, mas interessa realçar a

forma simples de p2, que resulta em parte do facto de se continuar a lidar com blocos de

agregação com tamanho 2k, onde k ∈ N e que, em última análise, inspirou a designação

dada ao algoritmo.

Cada iteração seguinte requer o cálculo do número de componentes K que mudam

no instante t, e a actualização de algumas delas de acordo com a expressão recursiva

d2k(t) = G
(

(2p2 − 1)d2k(t− 1), 4
√
p2(1− p2)

)
. É sabido, na parte final da secção 4.4.1.,

que K é o menor número inteiro a verificar a condição t mod 2K = 2K−1, facto que é

utilizado na sua resolução. Y (t) é escrito como uma repercussão de Y (t − 1), ao qual

liii

são retirados os efeitos de todas as componentes que mudam o seu valor ou sinal, e

somadas as novas contribuições ou espelhamentos. Contrariamente ao que acontece com

outros geradores aproximados que procuram a redução da complexidade computacional

pela truncagem do impacto do passado na sequência produzida, o 4SG atinge o mesmo

objectivo pela decomposição da sequência de valores nas componentes que guardam a

parte imutável por um peŕıodo de tempo virtualmente infinito, concentrando-se apenas

na manipulação das partes variáveis.

De modo análogo ao que foi feito para o seu congénere, a precisão do 4SG foi

avaliada por via da simulação de diversos processos auto-semelhantes e da sua subsequente

submissão a estimadores do parâmetro de Hurst. Contudo, e desta feita, o intervalo de

variação do parâmetro de Hurst ı́a de 0.01 a 0.99. Os estimadores escolhidos para arbitrar

a exactidão do 4SG foram: o MEBP, implementado como descrito na secção 3.2.1.; o

MVT, implementado como descrito na secção 3.2.2.; o DFA, codificado como descrito

em [67, 86]; o RS, implementado como descrito em [38]; o AMTn=1, codificado como

descrito em [38] para a métrica do erro absoluto (n = 1); e a versão retrospectiva do

estimador AV, implementado como dito em [38, 91].

Na tese, a análise do 4SG é feita após se conhecerem algumas das vicissitudes de

um método de geração de fGn exacto mas altamente retrospectivo (o método utilizado

foi o de Hosking - ver secção 4.4.2.) e de outro aproximado com com uma complexidade

computacional de O(n log(n)) (um gerador baseado em Onduletas - ver secção 4.4.2.). Da

cuidada observação dos gráficos contidos na Figura 4.16 e dos resultados na Tabela 4.5

conclui-se que os estimadores que melhor defendem a precisão do gerador são o AV, o MVT

e o AMTn=1. Apesar de serem também estes os métodos que mais abonam em favor do

gerador baseado em Onduletas, avaliado antes do 4SG, as estimativas são ligeiramente

melhores do que as anteriormente dispostas. Quanto aos restantes estimadores, sobressai

um comportamento em tudo semelhante ao demonstrado para o gerador baseado em

Onduletas e para o de Hosking, com alguns dos métodos a sobrestimarem sobejamente o

parâmetro de Hurst quando este se aproxima de 0. A evolução do parâmetro de Hurst

de 0 para 1 é acompanhada por uma aproximação gradual das estimativas devolvidas

por qualquer um dos métodos utilizados aos valores esperados, revelando claramente a

especial apetência do gerador para garantir dependências de longo-alcance. Todos os

liv

resultados conduzem manifestamente à conclusão de que, em termos de qualidade, o 4SG

é pelo menos tão bom como o método baseado em Onduletas, mas obviamente não tão

bom como um método altamente retrospectivo.

A complexidade computacional do fBm-SGA e do 4SG foi inicialmente testada

através de simulações cronometradas, e depois teoricamente comprovada. Os gráficos

da Figura 4.12, na secção 4.3.3., bem como os valores da Tabela 4.6 e os gráficos da

Figura 4.17, ambos contidos na secção 4.4.3., são demonstrativos do cariz linear da com-

plexidade dos algoritmos, assim como da sua soberba performance em relação a outros

geradores usados nas experiências. A discussão teórica clarifica que existe um limite su-

perior ao número de operações necessárias para gerar cada ponto, e que esse limite não

depende nem do ı́ndice de iteração dos algoritmos nem do número de ńıveis de precisão

ou componentes tomados em consideração. O assunto dos requisitos computacionais dos

dois algoritmos é encerrado com o argumento de que a sua execução não requer mais do

que o espaço para armazenar mais que um pequeno múltiplo de blog2(n)c variáveis, onde

n é o tamanho da sequência a ser sintetizada.

A possibilidade de sintetizar incidências de um fGn por um peŕıodo indeterminado

de tempo, e de um modo sequencial, permitiu criar os registos de tráfego pacote-a-pacote,

e imitar na perfeição o procedimento de captura de unidades de dados em linha. A análise

dos registos é também feita dessa forma, visando um dos objectivos desta tese. A elevada

performance dos algoritmos permitiu, adicionalmente, que a carga de tráfego simulada

fosse na ordem dos Gbps, sem que isso implicasse a exaustão dos recursos de simulação.

A Fonte de Aleatoriedade: a Revolução dos Restos de um Primo

A correcta implementação dos dois algoritmos apresentados depende da capacidade

de obtenção de sequências de valores com distribuição de Gauss não correlacionados. O

autor desta tese debruçou-se sobre este assunto na secção 4.5., onde é descrito um novo

gerador de sequências pseudo aleatórias com distribuição uniforme (com designação, em

inglês, de Pseudo Random Number Generator - PRNG). A última secção do caṕıtulo 4

discute precisamente a transformação dessas sequências em ocorrências de uma variável

gaussiana, através daquele que é conhecido como o método Polar [142, 143], e remata o

lv

assunto da complexidade computacional dos algoritmos propostos nesse caṕıtulo.

O PRR é uma das posśıveis concretizações da famı́lia de geradores descrita em [33]

e a figura que melhor o descreve é a Figura 4.21. O conjunto de expressões matemáticas

que formalizam a implementação usada no âmbito deste trabalho vão desde aquela ref-

erenciada por (4.60), até à que exibe o rótulo (4.66). De acordo com o racional por elas

indiciado, o algoritmo produz sequências finitas de números inteiros [Rn]n=0,1,...,N entre 0

e M−1, em última análise determinados por Rn = (F (Xn+1)Wn+1+X2
n+1) mod M , onde

Xn+1 e Wn+1 são as n + 1-ésimas ocorrências de duas sequências lineares congruenciais

diferentes, isto é, Xn+1 = (A1 × Xn + 1) mod M1 e Wn+1 = (A2 ×Wn + 1) mod M2.

F (Xn+1) denota uma transformação dos números inteiros 0, 1, ...,M − 1 em valores deste

mesmo conjunto, sendo a sua representação computacional reflectida do armazenamento

integral um vector de inteiros, preenchido durante o processo de inicialização do algo-

ritmo, com recurso a uma fonte de dados aleatória ou pseudo aleatória. Em conjunção

com a expressão (4.60), esta estrutura de dados comprime uma tabela de números aqui

denominada de tabela dos restos, por causa da operação modular.

A explicação contida na secção 4.5. só é válida para o caso particular em que M é

primo, apesar do procedimento poder ser generalizado (dentro de certas circunstâncias)

para outros valores de N. A descrição contempla os vários pré-requisitos que devem

ser preenchidos para a correcta codificação e inicialização do PRR, bem como algumas

das suas propriedades. Inclui ainda a proposta de mecanismos de actualização frequente

para os parâmetros A1 e A2, que não só aumentam o peŕıodo do gerador, como também

melhoram o grau de aparente aleatoriedade.

A análise qualitativa do PRR foi feita recorrendo a uma bateria de testes de aleato-

riedade denominada, em inglês, por The Diehard Battery of Stringent Tests of Random-

ness [137, 141]. A Tabela 4.7, contida na secção 4.5.2., contém os resultados dos testes

de aleatoriedade conduzidos para o PRR e para outros dois geradores conhecidos da liter-

atura (o Mersenne Twister-MT [119, 129] e o PRNG nativo da linguagem Java [130, 131]),

que basicamente servem o propósito de fornecer substrato comparativo à análise. A tabela

antes mencionada abona a favor da qualidade do PRR e do MT (que passaram todos os

testes a que foram submetidos), mas também expõe várias lacunas de aleatoriedade no

gerador nativo do Java. Destas experiências foi ainda conclúıdo que a largura da tabela

lvi

de números teria de ser maior que 512 unidades, ou alguns dos testes não seriam ultrapas-

sados com sucesso. A implementação usada durante os trabalhos de investigação utiliza

um total de 1024 factores de inicialização, por questões de eficiência de processamento e

armazenamento.

É feita também uma análise comparativa à velocidade computacional da imple-

mentação em Java do algoritmo proposto. Da observação do gráfico que resume essa

análise (ver Figura 4.22), pode-se concluir que a velocidade do PRR se equipara à do

procedimento da classe Java Random, e que estes últimos são cerca de 2,5 vezes mais

lentos que a implementação optimizada do MT, usada no âmbito desta cŕıtica. O PRR

corre a uma velocidade aproximada de 13× 106 pontos produzidos por segundo.

Simulação de Tráfego e Análise do Impacto de Ataques

Intensivos de Rede

O caṕıtulo 5 contém a análise detalhada à evolução do grau de auto-semelhança

durante intrusões com expressão significativa ao ńıvel da largura de banda. Os resultados

ali contidos foram obtidos maioritariamente por simulação de registos de tráfego. A

posśıvel perda da auto-semelhança, durante os referidos ataques, é testada recorrendo a

duas abordagens estat́ısticas diferentes, e todos os resultados são analisados do ponto de

vista teórico. O caṕıtulo está, portanto, organizado de modo a contextualizar o assunto

da detecção de intrusões, a formalizar a geração de tráfego com estrutura auto-semelhante

embutida e a discriminação dos ataques com relevância no trabalho.

Âmbito Aplicacional de um Método de Detecção de Intrusões

Baseado no Parâmetro de Hurst

A primeira parte do caṕıtulo 5 discute o âmbito aplicacional de um posśıvel método

de detecção de intrusões baseado na análise da auto-semelhança. Para tal, são descritas

as formas mais comuns de classificar IDSs, procurando convergir para as categorias que

melhor enquadram a referida abordagem.

lvii

Um IDS é um dispositivo ou um módulo de software especializado na detecção de

incidentes de segurança, partindo da análise de ficheiros, logs, tráfego ou actividade de

rede [7, 8, 9, 25, 10]. A sua classificação é usualmente feita nos seguintes quadrantes:

o da fonte da informação ou localização do sistema, que os subdivide em sistemas lo-

calizados no anfitrião ou em nós de interligação (em inglês, são usadas as designações

Network Intrusion Detection System - NIDS ou Host Based Intrusion Detection System -

HIDS, respectivamente); o do tipo de abordagem anaĺıtica, que os categoriza em sistemas

baseados em assinaturas ou em anomalias; o do tipo de resposta, que engloba os sistemas

que aplicam medidas de segurança após detecção de uma intrusão e aqueles que apenas

emitem alarmes; e, finalmente, o da celeridade da análise, que os determina em termos

da velocidade de resposta.

Dado a auto-semelhança ser uma propriedade estat́ıstica do tráfego de rede, e atingir

a sua máxima expressão em pontos de elevada agregação de fluxos, a sua análise com vista

à aplicação em sistemas de segurança incorpora um potencial mecanismo para NIDS com

funcionalidade de detecção baseada em anomalias. Os métodos de estimação do parâmetro

de Hurst desenvolvidos no âmbito deste trabalho permitem a actuação em tempo-real,

mas por se tratar de uma tentativa de caracterizar o tráfego no escuro, a resposta não

pode tomar contornos maiores que o despoletar de outros procedimentos de investigação

e alarmes.

Após o enquadramento da ferramenta, foram descritas várias soluções de segurança

comerciais ou de código aberto. Tanto quanto foi posśıvel apurar, a análise da auto-

semelhança não faz parte de nenhuma delas, provavelmente porque a construção da per-

spectiva cont́ınua da evolução do parâmetro de Hurst de âmbito local é nova, ou porque

o conceito sempre esteve mais associado a estudos offline de gestão de filas de tráfego.

Trabalhos Relacionados

Porque a auto-semelhança é uma das caracteŕısticas que distinguem o tráfego em

pontos de agregação, alguns estudos [20, 21, 25, 26] encontraram nessa propriedade uma

oportunidade para categorizar o tráfego, e para detectar anomalias relacionadas com

intrusões. A maior parte desses estudos [20, 21, 26] partem do pressuposto de que a

lviii

auto-semelhança é perdida durante um ataque de rede intenso.

No ińıcio do artigo de Ming [25], a análise parece direccionada ao entendimento do

comportamento do parâmetro de Hurst durante um ataque, mas acaba por concretizar

um trabalho confuso, cujas conclusões colidem com as dos outros, e mesmo com as desta

tese. A conclusão de que o parâmetro de Hurst decresce durante uma intrusão é fruto

de uma análise ao tamanho das unidades de dados, e não de um estudo do processo da

quantidade de informação por unidade de tempo.

O trabalho relatado em [21] é mais vocacionado para a descoberta do melhor tamanho

da amostra de tráfego, que para a análise da auto-semelhança. O artigo é constrúıdo

à volta do que Idris, Abdullah and Maarof chamaram de método de optimização, cujo

racional se resume à análise sucessiva do mesmo registo de tráfego com ataques para

tamanhos amostrais cada vez maiores, e à identificação do volume de pontos da melhor

taxa de detecção. Após escassa discussão, e sem apresentarem razões teóricas para o facto,

o tamanho amostral de 1400 s é indicado como aquele para o qual a taxa de detecção de

intrusões com duração superior a 500 s é melhor.

O trabalho descrito em [26] faz referência ao estudo de [25], parecendo corroborar as

suas conclusões mas, contrariamente ao esperado, no seu conteúdo é demonstrado que os

valores do parâmetro de Hurst aumentam durante as anomalias investigadas. No artigo

são usadas janelas de observação de 30 minutos, e os registos de tráfego são agregados para

unidades de tempo que variam entre os 10 e os 1000 ms. A perda de auto-semelhança é

sinalizada por desvios médios superiores a 10−3 entre a função de autocorrelação emṕırica

e teórica, mas nada é dito acerca da intensidade ou duração das anomalias que podem

provocar esses desvios.

O tipo de ataques que Allen et al. se propõem detectar em [20] corresponde ao tipo

de ataques abrangidos pelo presente estudo. O tamanho das quantidades amostrais varia

entre os 10 e os 30 minutos, dependendo do tamanho dos registos dispońıveis e da carga

de tráfego, e o valor do parâmetro de Hurst é calculado de 5 em 5 minutos. Um ataque

de exploração de tráfego (designação usada na referência) é sinalizado quando o valor do

parâmetro de Hurst, devolvido pelo método do Periodograma ou pelo método de Wittle,

é superior a 1, ou inferior a 0.5. O artigo não contém um estudo à evolução do parâmetro

lix

de Hurst, nem refere a possibilidade de existirem ataques de exploração de tráfego que

não resultem na perda da auto-semelhança.

Em nenhum dos artigos mencionados é mostrada uma evolução cont́ınua dos valores

do parâmetro de Hurst, sendo esse um dos principais factores de diferenciação do estudo

aqui descrito. As simulações levadas a cabo durante este trabalho de investigação permi-

tiram verificar uma panóplia mais abrangente de cenários de anomalia, e tirar conclusões

dáı. De igual modo, a implementação dos estimadores aqui proposta permitiu estudar o

comportamento do grau de auto-semelhança para janelas temporais mais pequenas (na

ordem dos 8 segundos) que em qualquer outra contribuição cient́ıfica. A interpretação

teórica dos resultados não só explica os valores observados, como permite generalizar as

conclusões para qualquer cenário de rede que se coadune com a condição do tráfego ser

auto-semelhante.

Simulação de Tráfego de Rede

A maior parte dos resultados expressos no caṕıtulo 5 foram obtidos através de sim-

ulação computacional. Dado a especificidade do problema não requerer mais do que

emulação do tráfego ao ńıvel inferior da camada de ligação de dados, todos os registos

de tráfego foram modelados como sequências de tamanhos de pacotes e intervalos entre

chegadas. Convencionou-se que os tamanhos de pacotes eram incidências de uma variável

aleatória com distribuição emṕırica conhecida (por exemplo de [173]) e que, por con-

seguinte, o seu valor esperado E(PS) era sabido a priori. {PS(t)}t∈N designa a sequência

dos tamanhos dos pacotes (do inglês Packet Sizes - PS(t)), ordenada pela variável natural

t. A simulação de uma carga de rede efectiva L (Load), dada em relação a uma largura de

banda total de BW (BandWidth), é conseguida através da geração de npackets tamanhos de

pacotes e npackets intervalos entre chegadas por unidade de tempo, onde npackets = BW×L
E(PS) .

Nestas circunstâncias, a média dos tempos entre chegadas E(IA) é necessariamente de-

scrita por E(IA) = BW×(1−L)
npackets

e, dado a sequência ordenada de intervalos entre chegadas

{IA(t)}t∈N ser inferiormente limitada por um valor mı́nimo positivo IAmin, decidiu-se que

o seu intervalo de variação se devia confinar a [IAmin, 2× (E(IA)− IAmin)].

A impressão da auto-semelhança no processo da quantidade de informação por

lx

unidade de tempo foi conseguida através da modelização dos tempos entre chegadas como

sendo incidências de um processo fGn, de acordo com IA(t) = GH(t)×
√

V(IA)+E(IA),

onde GH(t) denota a ocorrência t de um fGn com parâmetro de Hurst H. Note-se que o

desvio padrão do processo pode ser escolhido de modo a que 95.4% ou 99.7% das vezes,

o valor sintetizado desta maneira esteja contido no intervalo de variação definido. Para

isso, e de acordo com a definição de variável Gaussiana, é apenas necessário decidir se√
V(IA) = (E(IA)− IAmin)/2 ou se

√
V(IA) = (E(IA)− IAmin)/3.

O gerador de tráfego usado neste trabalho de investigação trunca automaticamente

todos os valores que estejam fora do referido intervalo, para evitar inconsistências. A

simulação das incidências do fGn é feita através da utilização do algoritmo 4SG e, de

modo a minimizar o efeito da truncagem,
√
V(IA) é sempre inicializada com o valor

(E(IA)− IAmin)/3.

Definição e Simulação de Ataques de Rede Intensos

Antes de prosseguir com a descrição do modo de como os ataques foram simulados,

é feito o comentário ao tipo de anomalias que um método baseado em auto-semelhança

tem possibilidades de detectar. Dado a principal estat́ıstica em análise estar dependente

de uma quantidade amostral necessariamente grande (o parâmetro de Hurst reflecte de-

pendências de longo-alcance), o interesse incide naqueles ataques que, a determinada

altura da sua investida, ocupam uma quantidade de largura de banda não negligenciável.

São estes os ataques que aqui são denominados de ataques de rede intensos.

A simulação dos ataques de rede intensos foi feita recorrendo à especificação do

parâmetro de Intensidade (I), que determina a quantidade de pacotes que chega ao nó

de agregação fict́ıcio, por unidade de tempo e em função da largura de banda dispońıvel.

Depois de se escolher o tamanho do pacote malicioso (por exemplo, o tamanho de um

pacote SYN referente ao protocolo Transmission Control Protocol (TCP)), calcula-se a

média do ritmo de geração dos pacotes maliciosos. A injecção do tráfego relativo ao ataque

é conseguida pela implementação directa do procedimento ilustrado na Figura 5.4. As

unidades de dados do tráfego malicioso são simplesmente inseridas no tráfego leǵıtimo por

ordem de chegada, podendo isso incorrer no atraso de ambos os tipos de tráfego.

lxi

Análise do Impacto de um Ataque no Grau de Auto-Semelhança

do Tráfego de Rede

A primeira tentativa de observar o comportamento dos valores devolvidos pelos

(recentemente implementados) WMVT e WMEBP perante anomalias materializou-se na

aplicação dos dois métodos a um conjunto de registos de tráfego contendo ataques, cap-

turados nos laboratórios MIT/DARPA e dispońıveis para download em [145]. Alguns

dos gráficos escolhidos para representar este primeiro conjunto de experiências podem ser

encontrados na Figura 5.5 e na Figura 5.6, onde as manifestações dos ataques de rede in-

tensos designados por SATAN, SYN Flood e MailBomb [178] são ilustradas. Em todos eles

é flagrante o aumento das estimativas devolvidas pelo WMVT ou pelo WMEBP durante

o ataque, apesar da fraca garantia que estes registos oferecem em termos de estrutura

fractal [23] e do posśıvel viés introduzido por scripts de emulação de tráfego de fundo.

Foram os dois motivos apontados em último, e a necessidade de controlar melhor a

carga de rede e o grau de auto-semelhança do registo analisado, que levaram ao desen-

volvimento do simulador de tráfego e ao estudo retratado nas secções 5.5.2., 5.5.3. e 5.5.6..

É áı que se discutem os dois cenários principais que um estimador móvel do parâmetro

de Hurst pode enfrentar, e os três posśıveis resultados da confrontação.

Um dos primeiros cenários examinados é aquele em que a duração do ataque é menor

do que o tamanho da janela de observação. A representação gráfica na Figura 5.7 mostra

um dos cerca de 150 histogramas constrúıdos durante esta parte do trabalho, e refere-se

mais concretamente à simulação de um ponto de agregação capaz de operar a 1 Gbps

durante 30 s, mas cuja carga útil é de 10%. O parâmetro de Hurst do gerador de tráfego

leǵıtimo foi inicializado a 0.75, e um ataque com intensidade de 10% e duração de 4 s

foi injectado aos 10 s da experiência. Para além da quantidade de bits por milissegundo

e da respectiva média móvel (calculada para uma janela de observação de 8192 ms), são

também apresentadas no gráfico as curvas de evolução do parâmetro de Hurst, calculado

usando o WMVT e o MVT. Os três pontos chave da análise são enfatizados na Figura 5.8,

onde a janela de observação está também representada (à escala). Ambos mostram que

para as circunstâncias em análise, e no caso em que intensidade do ataque não incorre

numa perda expressiva da estacionariedade, o valor do parâmetro de Hurst de âmbito

lxii

local aumenta enquanto o ataque perdura, retornando ao valor normal apenas quando o

tráfego relativo à intrusão sai completamente da janela de observação.

A encenação seguinte diz respeito à situação onde a duração do ataque supera o

tamanho da janela de observação. Uma posśıvel ilustração é inclúıda na Figura 5.8,

conseguida quando o gerador de tráfego foi instrúıdo a simular uma carga de rede de 70%

e um ataque com 10% de intensidade aos 8 s. O parâmetro de Hurst do tráfego leǵıtimo

foi ajustado para 0.80 e o tamanho da janela de observação valia metade da duração da

anomalia. Desta feita, o valor das estimativas aumenta apenas durante a fase transitória

em que o tráfego relativo ao ataque está a entrar ou a sair da janela de observação. Durante

a fase em que o estimador móvel está a observar a parte do registo constitúıda pela soma

do tráfego leǵıtimo e ileǵıtimo, o valor do parâmetro de Hurst diminui para aquele que

foi estimado antes do ataque. Isto acontece porque assim que o ataque é completamente

absorvido pela janela de observação, os estimadores actualizam totalmente o conjunto das

estat́ısticas para as do processo deslocado, que são aproximadamente iguais às do processo

inicial. Nessa situação espećıfica, os estimadores móveis não conseguem distinguir a parte

translada do processo em análise, daquele que é considerado leǵıtimo. Assim que o ataque

termina, e o tráfego que o concretiza começa a sair da janela de observação, regista-se

novo acréscimo significativo nas estimativas antes do seu regresso ao valor considerado

leǵıtimo.

Partindo das constatações antes mencionadas, é proposto um detector de anomalias

que elabora na perspectiva cont́ınua da evolução do grau de auto-semelhança, o qual

foi testado para cerca de 324 combinações do par (L, I). De entre várias estat́ısticas,

o procedimento devolve a diferença máxima entre valores do parâmetro de Hurst local,

antes e durante o ataque, o momento apontado como sendo o ińıcio do ataque e a duração

do mesmo. O ińıcio do ataque era sinalizado por estimativas locais do parâmetro de Hurst

superiores ao valor esperado em cerca de 0.01, por peŕıodos de tempo superiores a 100 ms;

o fim do ataque correspondia ao regresso do parâmetro de Hurst a valores próximos

daqueles observados antes da intrusão ocorrer. Para facilitar a sua análise cŕıtica, as

diferenças máximas entre valores do parâmetro de Hurst foram normalizadas (divididas

pelo supremo de todos os valores calculados) e representadas nos gráficos da Figura 5.12,

em função de L e de I. As diferenças atingem máxima expressão para aproximadamente

lxiii

metade das combinações simuladas, tornando-se mais notáveis à medida que a intensidade

do ataque aumenta. Já a capacidade do detector em apontar o inicio e o fim dos ataques

pode ser extrapolada dos gráficos da Figura 5.13. Qualquer ataque com expressão superior

a 30% (em termos de largura de banda total) produz efeito suficiente para que ao menos

o ińıcio do ataque seja apontado com alguma exactidão.

O tema da potencial destruição da estrutura da auto-semelhança durante um ataque

de rede intenso é abordado na secção 5.5.6., onde são discutidos dois testes estat́ısticos im-

plementados propositadamente para o efeito. O teste baseado no de Kolmogorov Smirnov

(teste K-S) foi usado para apurar se a distribuição de um registo de tráfego contendo

um ataque é ou não semelhante à distribuição de várias agregações da série de dados em

análise. O segundo teste avalia a qualidade da estimativa devolvida pelo WMVT (para

mais detalhes, ver secção 2.4.2.), através do estudo da estat́ıstica conhecida como o coe-

ficiente de determinação, normalmente simbolizada por R2 [80]. A análise foi efectuada

para o peŕıodo temporal em que o ińıcio do ataque está situado no primeiro quarto da

janela de observação.

Os resultados obtidos para o teste K-S mostram que a resiliência da propriedade

a desfasamentos aplicados à sequência de valores em análise depende do grau de auto-

semelhança. Apesar da dependência não aparentar ter uma fórmula expĺıcita que a ex-

plique, depreende-se da leitura do gráfico do lado esquerdo da Figura 5.14 que, à medida

que o parâmetro de Hurst aumenta, maior é o desfasamento que o processo suporta, antes

da destruição da auto-semelhança. Para valores do parâmetro de Hurst entre 0.75 e 0.85,

o processo analisado parece ser especialmente resistente às transformações a que foi su-

jeito, sendo capaz de suportar ataques com intensidades próximas de 30% (igual ao desvio

padrão do processo). Já a superf́ıcie exposta à esquerda na Figura 5.15 sugere que, se a

perda da propriedade estudada fosse definida em função de R2, só após uma intensidade

considerável é que se podia concluir acerca do falhanço da regressão linear da última fase

do VT. O valor de R2 mantém-se elevado mesmo na presença de ataques com intensidade

média, pelo que nessas condições não seria posśıvel descartar a possibilidade de existir

uma relação exponencial (fractal) entre o processo e as suas agregações com base nessa

estat́ıstica.

Dos resultados antes discutidos, conclui-se que: (i) apesar da inserção de tráfego ma-

lxiv

licioso resultar sempre numa perda de estacionariedade, essa perda pode não resultar na

destruição da auto-semelhança; e que (ii) o parâmetro de Hurst aumenta sempre que um

fluxo constante de tráfego é injectado na rede. É sabido, por exemplo de [38], que a esta-

cionariedade dos processos com dependências de longo alcance é dif́ıcil de avaliar, já que a

própria natureza dos processos fractais dita o deslocamento das propriedades estat́ısticas

a ńıvel local. Estes deslocamentos podem, numa primeira análise, ser confundidos com

falta de estacionariedade, mas na verdade são apenas produto das autocorrelações. A

introdução de modestos (em relação à carga de rede) fluxos de tráfego malicioso pode

nalguns casos resultar num deslocamento local e pequeno da largura de banda ocupada,

que aumenta momentaneamente a componente constante da série em análise. Alheios à

qualidade exacta da série de valores estudada, tudo o que os estimadores utilizados são

capazes de observar é, basicamente, a transformação de um processo variável em um mais

estável, para o qual a estimativa do parâmetro de Hurst nunca pode ser inferior.

Conclusões Finais

Os quatro caṕıtulos intermédios da tese constituem um dos estudos mais sistemáticos

e completos no contexto da análise da auto-semelhança em tráfego de rede. No decurso

do trabalho de investigação, foram propostas e testadas várias modificações a estimadores

do grau de auto-semelhança. As versões incrementais e móveis do VT e do EBP são algo-

ritmos pouco exigentes em termos de requisitos de memória e apresentam uma complexi-

dade computacional de O(n). Os métodos modificados podem ser vistos como excelentes

ferramentas de monitorização em tempo real do tráfego da rede, embora o seu âmbito

aplicacional não se confine a essa área. A transformação dos estimadores do parâmetro de

Hurst em métodos de cálculo de estat́ısticas móveis é acompanhada por algumas desvan-

tagens, sobretudo relacionadas com as instabilidades temporais causadas pela construção

incremental dos blocos de agregação, mas também por algumas vantagens. Os estimadores

móveis permitem o ajuste da relação inversamente proporcional entre a sensibilidade a

modificações efémeras do grau de auto-semelhança e a significância estat́ıstica das esti-

mativas. Por outro lado, os métodos modificados são também mais tolerantes a perdas

de estacionariedade momentâneas, facto que favorece a sua aplicação na análise em linha

de séries emṕıricas.

lxv

Foram também propostos dois novos métodos para aproximar processos fBm com

estrutura auto-semelhante. Um dos dois (4SG) é apresentado como um dos métodos mais

eficientes da sua classe de precisão e, na opinião do autor desta tese, concretiza um dos

melhores resultados do trabalho de investigação. Uma média de quatro somas, duas mul-

tiplicações e duas execuções de um GRNG por cada ponto gerado fazem da complexidade

do algoritmo um marco dif́ıcil de superar. Num processador Pentium IV 1.61 GHz, o

4SG debita mais de 1300 pontos por milissegundo e não precisa de mais do que 1 KB

de memória para sintetizar uma série com 2128 ≈ 3.4 × 1038 pontos. O algoritmo repre-

senta uma solução particularmente atractiva para simulações que pretendam reproduzir

situações em que a análise é feita ao mesmo tempo que os pontos se tornam dispońıveis,

ou para a geração rápida de sequências de valores arbitrariamente grandes, sendo por isso

perfeito para a geração de tráfego com estrutura auto-semelhante.

Inclúıda na tese está também a proposta de um novo procedimento de geração de

números pseudo aleatórios com distribuição uniforme. O conceito base do PRR é sim-

ples de entender, e o algoritmo é portátil, em termos da sua codificação em linguagem

máquina. Na lista das suas melhores propriedades inclui-se a sua eficiência computa-

cional e a possibilidade de melhorar a aparente aleatoriedade das sequências produzidas

à custa de recursos de memória, mas não à custa da degradação da sua performance.

A implementação do PRNG usada no âmbito deste trabalho passou todos os testes de

aleatoriedade a que foi submetido, e o seu peŕıodo é de 260. O PRR é capaz de produzir

uma sequência com aproximadamente 11 × 106 números pseudo aleatórios em menos de

1 segundo num processador Pentium IV 2.4 GHz, usando apenas 4140 B de memória.

O gerador de tráfego usado no âmbito dos trabalhos de investigação reportados

nesta tese foi desenhado para sintetizar os registos pacote-a-pacote, através da devolução

ordenada do tamanho das unidades de dados e do intervalo de tempo que as separa. O

simulador é apresentado como uma aplicação directa do fBm-SGA ou do 4SG, dos quais

herda a capacidade de geração sequencial e o excelente desempenho computacional. Uma

das suas maiores vantagens reside no facto de poder ser utilizado na simulação de registos

de tráfego extremamente longos, exibindo a propriedade da persistência, sem que isso se

reflicta num peso de computação proibitivo para a máquina onde a simulação é posta a

correr: a implementação em linguagem Java do simulador é capaz de simular o tráfego de

lxvi

rede a uma taxa de transferência de dados superior a 8 Gbps, e produz um registo com

100 GB com menos de 340 B de memória.

O completo desenvolvimento de um simulador de tráfego de rede com estrutura

aproximadamente auto-semelhante foi um dos maiores desafios deste trabalho, mas dele

resultou não só uma excelente ferramenta de experimentação, como também uma nova

perspectiva sobre a teoria da auto-semelhança. O esquema por detrás do algoritmo 4SG

atingiu, neste caso, particular relevância, já que foi usado na construção da justificação

teórica dos resultados obtidos. De acordo com o referido esquema, uma sequência de val-

ores auto-semelhante pode ser aproximada através da soma ponderada de diversos compo-

nentes com duração e pesos estat́ısticos fixos, mas dependentes do valor do parâmetro de

Hurst. A ocorrência de alguns tipos de ataques traduz-se na injecção de uma nova compo-

nente constante, que pode apenas reforçar a propriedade da persistência, ou destruir-la,

mas nunca diminuir o grau de auto-semelhança. Ambos casos foram estudados com de-

talhe nesta tese.

Com base nos resultados obtidos, conclui-se que a auto-semelhança pode ser us-

ada para detectar anomalias cuja natureza pode estar relacionada com ataques de rede

intensos. Tal pode ser conseguido utilizando uma técnica que elabore na monitorização

cont́ınua dos valores do parâmetro de Hurst, detectando variações abruptas das esti-

mativas, durante peŕıodos de tempo predeterminados. Usando o tamanho da janela de

observação como uma variável de entrada é posśıvel apontar o prinćıpio e duração aproxi-

mada de qualquer fluxo de tráfego particularmente intenso e longo. Da discussão contida

no caṕıtulo 3, pode-se inclusivamente afirmar a possibilidade de aplicar os estimadores ao

processo da quantidade de informação por décima de milissegundo usando um processador

a 2.8 GHz e menos de 4 KB de memória. Devido às métricas em que este tipo de análise

se baseia, qualquer método que elabore na estimação do grau de auto-semelhança pode

ser colocado imediatamente após os mais simples colectores de informação de tráfego, e

usado para levantar alertas úteis acerca de fluxos de dados potencialmente perigosos ou

para despoletar outros procedimentos de investigação.

Independentemente dos resultados mais promissores, o tipo de análise aqui inves-

tigada não pode ser vista como uma solução isolada ou extraordinária para o problema

da detecção de intrusões. O âmbito de aplicação de qualquer método baseado na análise

lxvii

da auto-semelhança confina-se à intersecção das áreas de acção de NIDSs e dos mecanis-

mos de caracterização de tráfego no escuro. Mais do que com qualquer outra estat́ıstica

comum, a estimação do parâmetro de Hurst requer necessariamente um grande número

de amostras, pelo que as únicas intrusões com potencial para afectar a auto-semelhança

são aquelas cujo modo de operação recáı na categoria de ataques de rede intensos, como

é o caso de ataques DoSs (e DDoSs). Para além disso, e no que se refere às estimati-

vas do parâmetro de Hurst, fluxos de dados particularmente intensos produzem o mesmo

tipo impacto que os referidos ataques, sendo portanto imposśıvel decidir a legitimidade

do tráfego baseado apenas nessa métrica. Por último, há que ter em conta que as as-

sumpções por detrás de uma detecção deste tipo são especialmente ambiciosas, dado ser

necessário presumir que o tráfego sob análise exibe (e continuará a exibir), a propriedade

da auto-semelhança.

Face a tudo o que foi dito, o autor termina a secção 6.1. com o argumento de que

o grau de auto-semelhança do tráfego de rede é melhor definido se compreendido como

uma das medidas da sua integridade num dado ponto de agregação. Nesses termos, os

estimadores incrementais e móveis não são mais do que as ferramentas que possibilitam a

observação da evolução dessa métrica, permitindo que a gestão da rede seja feita também

com esse factor em conta.

Posśıveis Direcções Para Trabalho Futuro

As principais orientações de trabalho futuro dizem respeito à possibilidade de imple-

mentar alguns dos algoritmos e mecanismos desenvolvidos ao longo do doutoramento em

máquinas de monitorização de rede reais, e às posśıveis repercussões de estar a estimar o

grau de auto-semelhança para uma janela de observação deslizante. A análise de registos

reais (e em tempo-real) é uma das linhas de investigação futura mais interessantes.

No que se refere aos geradores de sequências pseudo aleatórias e auto-semelhantes,

o autor ambiciona investigar a possibilidade de gerar tráfego de rede em tempo real,

sob a perspectiva de usar os registos simulados (em paralelo) na antecipação do estado

da rede nos momentos que sucedem a análise e geração. A modelização e incorporação

de diferentes aspectos do tráfego de rede no simulador apresentado no caṕıtulo 5, como

lxviii

por exemplo o dinamismo de protocolos das camadas superiores do modelo OSI ou os

conteúdos produzidos por aplicações telemáticas, apresentam-se igualmente interessantes.

A descrição formal das alterações que fortificam as dependências entre os pontos devolvi-

dos pelo fBm-SGA são também um tópico de trabalho futuro, apesar de já se encon-

trarem devidamente implementadas e testadas. A explicação de como o 4SG pode ser

utilizado para a śıntese de processos multi-fractais está também agendada para breve,

bem como a descrição do uso do algoritmo para a śıntese de ocorrências de uma variável

com distribuição gaussiana, partindo de sequências com distribuição uniforme. É ainda

insinuado o facto do valor do PRR como primitiva criptográfica não ter sido determinado,

e sugerida a análise do comportamento do algoritmo perante outras baterias de testes de

aleatoriedade.

A participação num projecto cujo objectivo seja o de criar (e tornar dispońıveis)

registos de tráfego contendo ataques, capturados em ambientes laboratoriais controlados,

faz parte dos planos de investigação futura, já que a detecção de intrusões e ameaças à

rede é um tópico com bastante interesse na comunidade académica e na indústria, embora

seja dif́ıcil encontrar registos de tráfego com tais caracteŕısticas. Outro tópico a que o

autor gostaria de dedicar especial atenção é o dos mecanismos DPI e sua interacção com

os estimadores móveis, ou com outros mecanismos de classificação de tráfego no escuro.

Os ataques baseados em ligações aparentemente leǵıtimas, que perduram como normais

durante peŕıodos indeterminados de tempo até atingirem um ponto cŕıtico de ataque,

constituem também um bom tópico de investigação, estando o aumento de ataques do

tipo DDoS vindos de endereços leǵıtimos na base da motivação para o seu estudo.

lxix

Chapter 1

Introduction

1.1. Thesis Focus and Scope

History is the best witness of the popularity that the computational devices have

gained in the last few years. Their success is not only due to their ability to quickly

perform enormous amounts of operations over equally large sets of data, but also to the

possibility to interconnect and organise them in information networks, where the space

is said to be virtual and mankind communicates freely. The most popular and largest

information system interconnects several information networks at the planetary scale,

and is known as Internet. It allows computational devices to interchange data through

a standardized communications suite, known as the Transmission Control Protocol over

Internet Protocol (TCP/IP) suite [1, 2], and it organises its constituents in a globally

unique address space based in the Internet Protocol (IP) [3, 4]. Along with the telematic

applications and devices comprising their interface, these information networks embody

nowadays valuable business tools, constituting the origin or the destiny of significant

amounts of data. The ease of usage and the diversity of services supported by the Inter-

net or by other peripheral or private networks make them the perfect means to transport

important, and often confidential, information (money transaction orders, industrial se-

crets, etc.). Unfortunately, the reasons that make the technology attractive, are also the

reasons that make it a potential target for malicious users, which normally aim to profit

from the disturbances of its normal functioning.

New forms of attacking the networks or their constituent components are developed

every day. This fact is easily explained if one takes into account that security breaches

1

arise from a wide combination of factors, as the growth of the Internet or the software

applications running on its nodes. The motives and purposes of an attack are numerous:

some aim for the retrieval or exposure of private, or confidential, information; others for

blackmailing remote entities or to simply erase important data; others yet to distribute

publicity to the end users; etc. Some attacks are perpetrated with the malicious intent of

gaining something in return; others are simple bad taste jokes, conducted by irresponsible

users, just for the pleasure of doing them and receiving the credits for it [5] (within a

community of attackers, a successful attempt may be used as a measure of the skill of the

attacker). It soon became evident that it was necessary to create specialised communities

(e.g. Computer Emergency Response Teams (CERTs) [6]) and systems (or modules of

software) whose main function is to try to prevent the network from being affected by ma-

licious intents. The systems or modules specialised in the detection of network intrusions

are commonly known by Network Intrusion Detection Systems (NIDSs) [7, 8, 9, 10].

It is common to categorise Intrusion Detection Systems (IDSs) according to the

analysis technique they employ. Signature-based IDSs (a.k.a. Misuse-based IDSs) are

designed on top of fast pattern matching procedures, whose main function is to compare

the sequence of bits under investigation with an entire database with signatures of known

attacks. At the network level, misuse-based detection requires the device to be capable

of handling huge amounts of data in real-time, being that task particularly aggravated

in popular aggregation nodes, since they receive a tribute from numerous devices. As

the attacks became more sophisticated, the scope of action of the technology behind the

NIDSs had to be extended to the payload of the protocol data units, leading to the

development of packet inspection techniques.

Within the scope of action of packet inspection techniques, the concept of Deep

Packet Inspection (DPI) is one of the features that most sells NIDSs, for it is seen as

the best way of assuring total control over the traffic [11]. Nevertheless, the repetitive

comparison of sequences of bits with long lists of signatures is computationally expensive,

and it results in a remarkable trade-off between the efficiency of the system (in terms of

detection rate) and its cost. Handling the traffic flows in high-debit nodes is only possible

by resorting to parallel processing, and scales at the expense of the development and

installation of dedicated processing cards [12]. This may become a serious limitation with

2

the advent of higher transmission technologies, as for example the 40 Gbps or the 100 Gbps

Ethernet technologies [13, 14], which are currently in the standardisation process.

The second type of IDSs is often termed Anomaly-based IDSs (a.k.a. Behaviour-

based IDSs). The underlying mechanism of this kind of IDSs relies on the description

of the correct behaviour of the system (if the scope of action of the IDS is the device it

is monitoring) or of the traffic (in the case of a traffic monitoring equipment), and on

the means to detect possible deviations from normal behaviour. Contrarily to Signature-

based IDSs, Anomaly-based IDSs rely on the definition of normality, instead of defining

and storing all the possible undesired occurrences, resulting in a computational benefit for

the IDS. The construction of the model or set of premisses that define normal behaviour

may either be done by a person skilled in the art of security, or automatically learnt via

artificial intelligence algorithms, which are programmed in the device and ran during an

initial learning phase. The comparison between what is expected and what is observed

is commonly done resorting to statistics, reason by which it is also common to describe

the normal behaviour under probabilistic terms. DPI techniques may be employed prior

to the application of the anomaly detection function, but that is not so common in this

type of IDSs. Due to its nature, DPI is more suitable for Signature-based NIDSs.

The inspection module of an Anomaly-based NIDSs restricts itself to the retrieval

of header information, as for example addressing information, transport layer ports, etc.

or to specific fields of the contents of the protocol data units. When the reduction of

the scope of action of DPI is taken to the opposite limit, it is said that the system is

performing (or trying to perform) Traffic Characterization in the Dark (TCD) [15]. The

last mentioned operational model requires a small amount of information and may be used

to suspect about a malicious intent in situations where the analysis of the contents of the

protocol data units is meaningless (e.g. the payload of the protocol data unit follows

encrypted) or the attack is unknown. This functional model is inherently associated with

a certain degree of uncertainty, which may be reflected in the issuance of false alarms.

The scope of this thesis falls within the area of traffic monitoring and analysis, and

it is focused on the investigation of the statistical properties of the network traffic, under

the perspective of using them to detect anomalies. The investigation is focused around the

property referred to as self-similarity, which has been shown to be present in the process

3

of the bit count per time unit of the traffic in network aggregation points [16, 17, 18, 19],

as further detailed in chapter 2 of this thesis.

1.2. Problem Definition and Objectives

The problem this thesis aims to investigate is the one of understanding to what

extent the self-similarity property of aggregated traffic is affected by network level intru-

sions, and the feasibility of using the analysis of the referred property as an intrusion

indicator. The motivation for the study of self-similarity under the perspective of its

application as a network intrusion mechanism resulted from the combination of different

factors, which may be enumerated as follows:

1. The self-similar nature of the network aggregated traffic was already proved by sev-

eral prominent studies [16, 17, 18, 19]. Thus, it was logical to expect that some

intrusion related anomalies would produce some kind of impact in the aforemen-

tioned characteristic.

2. At the beginning of this Ph.D. research programme (2005) there were only two

studies concerning the application of the aforementioned mathematical model as a

means of intrusion detection [20, 21], but they draw on the loss of self-similarity

during an attack, and not on the analysis of the evolution of the self-similarity de-

gree. Other papers available at the time [22, 23, 24] establish a relation between the

two subjects (self-similarity and intrusion detection), but they are mostly focused

on the importance of assuring the self-similar properties of the traffic when conduct-

ing tests to an intrusion detection proposal than on the usage of the metric as an

indicator of the intrusion. The pertinence of the subject has motivated the studies

in [25, 26], published in the last few years. Despite some of these works present

some common points with the one presented herein, they did not alter significantly

the initial line of research, being the reasons for that explained in chapter 5 of this

thesis.

3. Even thought the intuitive notion of self-similarity is relatively easy to grasp, its

application in real-life events is sometimes surrounded by ambiguity [27]. In the

4

opinion of the author of this thesis, this fact is mostly due to the ambivalence of

the mathematical formulation of the concept, and to erroneous (sometimes forced)

interpretations of its consequences or origins. A large part of this thesis is thus

dedicated to the consolidation of the theoretical framework in which the conclusions

of the practical analysis are drawn.

4. Previously published studies concerning self-similar network traffic analysis are

mostly preoccupied with the conclusions taken from such analysis, rather than with

the possible online application of the tools used to measure the self-similarity degree.

Most of these tools are not optimized for online monitoring. Herein, these tools are

also subject to examination.

5. The increase of the speed of transmission and the proliferation of bandwidth de-

manding services (High Definition Television (HDTV), Internet Protocol Television

(IPTV), Interactive Games, Voice over Internet Protocol (VoIP), Peer-to-Peer (P2P)

file sharing applications, Peer-to-Peer Television (P2PTV), web-based multimedia

services as Youtube, etc.) justifies the investigation of potential means to classify

the traffic with fewer resources. In spite of being unsuited for the identification of

specific threats flowing in the contents of the protocol data units (malicious code),

mechanisms based on statistical models (like the one studied herein) may help to

rapidly isolate some menaces, before the application of heavier DPI techniques.

6. Last but not least, the tendency towards the adoption of end-to-end encryption and

(protocol) evasion mechanisms results in favour of the development of anomaly-

based techniques for traffic classification and intrusion detection [15, 28].

One of the main objectives of this thesis concerns the identification of the attacks

whose operational model may produce a measurable effect in the fractal structure of the

network traffic. It was critical to study and understand the self-similar nature of the

aggregated traffic, as well as the means used to measure the intensity of the referred

property (the self-similarity degree).

The applicability of the findings and procedures developed along the investigation

on real network equipment was one of the most important objectives of this work. The

analysis taken over pre-collected traffic traces (off-line analysis) was carried out as if it

5

was being performed online, while taking into consideration the potential processing and

memory limitations of the network devices. Network simulations were also conducted so

as to imitate online operation.

As reported in chapter 2, at the time this thesis was written, most of the estimators

of the self-similarity degree available in the literature were used in a retrospective manner,

presenting an order of complexity that was not compatible with an online implementation.

One of the objectives of this thesis was to identify the reasons behind their poor perfor-

mance, and seek ways to circumvent that issue. The investigation was focused on finding

the best means to observe the evolution of the self-similarity degree in real-time, and on

the identification of the method or calculation philosophy with greater susceptibility to

potential anomalies.

Because the subject of self-similarity is at times surrounded by some ambiguity, it

was important to reconcile any practical result with a theoretical argument. The study

of the impact of network attacks in the self-similarity degree was made in both planes

(theoretical and observational), so as to obtain a more precise and coherent description

of the observed behaviour. The practical analysis included the examination of both real

and synthetic traffic traces, being particularly useful the modelling of traffic in high-debit

aggregation nodes, since those are the ones where self-similarity finds its best empirical

approximation. The goal was to draw conclusions based on the theoretical explanation

of the facts, rather than seeking those on experiments only. The accomplishment of this

objective was dependent from the correct modelling and simulation of the network attacks

as well.

1.3. Thesis Organisation

The body of the thesis is constituted by four main chapters, preceded and succeeded

by the Introduction and Final Conclusions and Future Work chapters, respectively. The

compilation of the bibliographic references used along the work is included after chapter 6.

The contents of each one of the chapters composing this manuscript can be summarised

as follows.

6

Chapter 1 provides the context for the subject on which this thesis is going to

elaborate on, identifying the main objectives and the problem to be solved. The synopsis

of this manuscript is also included in this first chapter, along with the enumeration and

brief description of its main contributions for the advance of Science.

Chapter 2 introduces the mathematical concepts of self-similarity and of Hurst pa-

rameter, and contains the definition of one of the most well known self-similar processes:

the so-called fractional Brownian motion. The important notion of fractional Gaussian

noise is also formalised there. The mathematical introduction is followed by an expla-

nation on how that concepts relate to the networking area. The chapter ends with the

description of a fairly big list of techniques to estimate the self-similarity degree of a data

series, discussing their advantages and real-time applicability.

Chapter 3 draws on some of the methods for the estimation of the Hurst parameter,

presented in chapter 2, and elaborates on the modifications they require in order to be

applicable as real-time estimators. The chapter is composed by three major sections.

The first section includes the discussion and mathematical formalisation of the set of

modifications that enable the implementation of the methods as point-by-point estimators.

The second section discusses the importance of assessing the self-similarity degree inside a

limited context observation window, and includes the formal description of the adaptations

the methods have suffered to comply with that requirement. The comparison between

the newly proposed estimators and the legacy (retrospective) ones is included in the third

main section, along with a critical analysis of the results.

Chapter 4 commences by presenting a survey of the most common means to si-

mulate self-similar processes, observing them from the perspective of the computational

complexity, and of the quality of the sequences produced, in terms of expected / estimated

Hurst parameter values. From that study, the exposition evolves to the detailed descrip-

tion and evaluation of two completely new self-similar sequences generators, devised for

the purpose of simulating network traffic, and for testing the previously mentioned win-

dowed and point-by-point estimators. As the algorithms are build on top of a Pseudo

Random Number Generator (PRNG), and because the quality of the sequences of num-

bers that feed the procedures is critical, a completely new PRNG is proposed and formally

described. A brief analysis to the algorithm is also included, along with the results of

7

its submission to a third party battery of tests of randomness. Finally, the means to

transform the uniformly distributed numbers into occurrences of a Gaussian variate are

briefly discussed, while paying special attention to their efficient implementation for the

sake of the purposes of this thesis.

Chapter 5 unifies most of the previously discussed concepts in favour of the objec-

tives of this thesis. It starts by providing a context for the subject of intrusion detection,

aiming for the preliminary identification of the type of system that could benefit from the

usage of an Hurst parameter estimator. It then evolves to the description of a network

traffic model and simulator, which is succeeded by the discussion on the type of the at-

tacks that may impact the self-similarity degree of the network traffic. The effect that

an attack may produce in the Hurst parameter estimates, and the potential loss of the

self-similarity structure, are then assessed via the analysis of synthetic and real traces,

using the windowed estimators and two other well known statistical tests. The findings

of this analysis are on the basis of a proposal for an intrusion detection procedure.

Chapter 6 wraps up the most important conclusions of this thesis, and discusses

briefly some research topics for future work.

Please notice that most of the chapters contain their own overview of the state-of-

the-art in an introductory section, for it was thought to be the most appropriate way to

explain each topic.

1.4. Main Contributions for the Advance of the Sci-

entific Knowledge

This section presents the main contributions of this thesis for the advance of the

Scientific Knowledge, in accordance with the opinion of the author.

The first contribution of this thesis concerns the description and mathematical for-

mulation of the windowed and point-by-point Hurst parameter estimators. The modifi-

cations to what these estimators were subdued to favour their implementation in traffic

monitoring and analysis systems, and the study of the evolution of the self-similarity de-

8

gree of an empirical data series in real-time. The definition of the windowed estimator

allows the analysis of a self-similar sequence of values (e.g. the bit count per time unit of

the network traffic in aggregation points) in a continuous manner and inside a window of

observation, through iterative processing means. This type of analysis (non-retrospective

plus windowed plus point-by-point) is novel, since most of the methods are used for offline

studies only (where the necessity to process the data in a real-time manner does not exist),

and the windowed analysis is mostly performed by means of parallel or repetitive process-

ing of data blocks. The above mentioned methods derive from estimators known from

the literature, and all the modifications that they have suffered are described in detail in

chapter 3 of this thesis. They were also on the basis of most of the results included in the

papers entitled “Analysis of the Impact of Intensive Attacks on the Self-Similarity Degree

of the Network Traffic” [29] and “A Evolução do Parâmetro de Hurst e a Destruição da

Auto-Semelhança Durante um Ataque de Rede Intenso” [30]. The former was presented

in The Second International Conference on Emerging Security Information, Systems and

Technologies (SECUREWARE 2008), which accepted 78 of a total number of 267 pa-

pers (an acceptance ratio of 29%), and the latter has won the best paper award of the

Portuguese conference entitled Segurança Informática nas Organizações 2008 (SINO’08).

The second contribution of this thesis is the proposal of two generators for the syn-

thesis of series of values with approximate self-similar structure. The first generator was

the result of the necessity to test the modified Hurst parameter estimators for extremely

long processes, whereas the second one came as a natural development of the acquired

knowledge, partially inspired by the necessity of simulating network traffic traces (ex-

hibiting the self-similar property) in high-speed connections, in an efficient way. The

two new algorithms present an excellent trade-off between efficiency and quality, and are

described as being amongst the most proficient procedures of their class of precision. Be-

sides being modest, in terms of memory and processing prerequisites, these algorithms

are able to produce series of values sequentially (i.e. in a point-by-point manner) and

on an on-demand basis, at no cost to their performance. The theory on which the two

generators draw on is detailed in chapter 4 of this thesis and in the papers entitled “Fast

Synthesis of Persistent fractional Brownian motion” [31] and “The Design and Evaluation

of the Simple Self-Similar Sequences Generator” [32]. The first paper has been accepted

for publication with minor changes in the ACM Transactions on Modelling and Computer

9

Simulation, while the second has been accepted for publication with minor changes in the

Elsevier Information Sciences International Journal, which has an impact factor of 2.147

according to the Journal Citation Reports 2008, published by Thomson Reuters.

The third contribution of this thesis is the proposal of a new PRNG. The algorithm

resulted from the necessity of assuring the quality and celerity of the source of random-

ness of the two previously mentioned generators. It performs as fast as a series of three

linear congruential generators, and presents a trade-off between the quality of the out-

putted values and the quantity of worn-out memory. The version described in chapter 4

of this thesis is one of the optimized implementations of the family of generators thor-

oughly analysed in the paper entitled Remainders Revolution Pseudo Random Number

Generator [33], submitted to an international journal.

The fourth and last contribution of this thesis stems from its main goal, and gets

concrete in the means and in the conclusions of the study of the impact of intensive attacks

in the self-similarity degree of network traffic. The research work includes the modelling

and simulation of traffic in aggregation points, as well as the emulation of intensive attacks

at the network level. All the concepts described before the aforementioned analysis are

used to build the arguments for the results obtained during the experiments conducted

to real and synthetic traffic. The simulator elaborates on theory easy to understand

that, allied to the aforementioned self-similar sequences generators, allows the creation of

arbitrary long traces of traffic with an embedded fractal structure. The referred alliance

allows the creation of traffic traces in a packet-by-packet manner and the simulation of

high-speed connections with minor computational resources. Moreover, the applicability

of the self-similarity theory in the detection of network intrusions is clearly delimited by

the main conclusion of this thesis. The simulation of traffic in aggregation points through

the usage of a sequential self-similar sequences generator was discussed in detail in the

paper entitled “Fast Synthesis of Persistent fractional Brownian motion” [31], and the

study to several traffic traces containing attacks, as well as the main conclusions that

were drawn from there, were reported in [29, 30]. In this thesis, both papers are part of

chapter 5.

10

Chapter 2

Self-Similarity and Hurst Parameter

Estimation

2.1. Introduction

The initial stage of the research work was directed towards the investigation of the

concept of self-similarity and of its relation with the network traffic. After understanding

the concept, and after noticing that the intensity of the fractal character of the network

traffic was given by the so-called Hurst parameter, the efforts were redirected towards the

means to estimate its value.

The main objective of this chapter is to introduce some of the most important con-

cepts of the self-similarity theory. It starts from the formalisation of the properties that

define a self-similar stochastic process, and ends with the non-exhaustive list of methods

used to measure the Hurst parameter, interleaved by a small section that establishes the

connection between the presented concepts and the networking area. Notice that the

formalisation is not intended to be too extensive, and that only the concepts considered

useful for the complete comprehension of this manuscript are to be presented. The ref-

erences included refer the reader to more detailed descriptions of each topic. As one

may notice, the definitions contained in this chapter are used in other sections of the

thesis. Nonetheless, this fact does not precludes the introduction of other notations and

definitions within the context in which they are useful.

11

2.2. Self-Similarity, Hurst Parameter, Walks, Motions

and Noise

The first concepts that are going to be defined are the ones of self-similarity and

Hurst parameter. After that, the formalisation of random walks is used to introduce one

of the most popular families of self-similar stochastic processes, the so called fractional

Brownian motion, and its respective incremental process, known as fractional Gaussian

noise. The author would like to clarify that the aforementioned stochastic processes

do not represent the sole class that falls into the denomination of self-similar processes.

He decided to focus on the referred processes after noticing that their notion was being

easily assimilated, and because they are supported by a well developed theory. This

choice, however, should not be understood as a statement of ineptitude or dislike towards

other commonly adopted models as e.g. Fractional Autoregressive Integrated Moving

Average (FARIMA) [34, 35].

2.2.1. Self-similarity and Hurst parameter

Let {X(t)}t∈R≥0
be a continuous-time stochastic process defined for t ∈ R≥0, and

H in (2.1) be the Hurst parameter. The process is said to be self-similar with Hurst

parameter H [36] if the (finite-dimensional) distribution of {X(at)}t∈R≥0
is equal to the

(finite-dimensional) distribution of {aHX(t)}t∈R≥0
(equation (2.1)), for any real number

a > 0. In other terms, {X(t)}t∈R≥0
is said to be self-similar if its statistical description

does not change when scaling simultaneously its amplitude by a−H and the time axis by

a. Notice that the symbol
d
=, in the following expression, denotes equality in all finite-

dimensional distributions :

X(t)
d
= a−HX(at). (2.1)

Self-similar processes follow a scaling law that influences statistically the future

state of the process based on its past and actual status. This dependency is given by the

Hurst parameter, sometimes referred to as the Hurst exponent (see e.g. [37]). Values of

the Hurst parameter between 0 and 1, and different from 0.5, characterize processes with

12

memory. When the value of the Hurst parameter is bigger than 0.5 (exclusively) and

smaller than 1 (exclusively), it is said that the process exhibits persistent behaviour or

that it is long-range dependent [37, 38, 39]. The process is said to exhibit anti-persistent

behaviour, or that it is negatively correlated, if the Hurst parameter takes values between

0 and 0.5 (exclusively). The process is said memoryless, if the Hurst parameter is equal

to 0.5 [40, 41].

As one can notice, the dependence from the past exists whenever H 6= 0.5. This

means that for values smaller than 0.5, each point of the self-similar process is also depen-

dent from its past realisations, but the range of that dependence decreases as the Hurst

parameter tends to 0.

2.2.2. First Order Differences Process

The previous definition applies to the most general case (continuous-time stochastic

processes) but, most of the times, it is sufficient and actually more useful to define self-

similarity for the class of discrete-time stochastic processes with stationary increments

(analysis and generation of self-similar series is done for finite sets of values). In such

cases, self-similarity can also be described in terms of the so-called first order differences,

as follows.

Consider that {X(t)}t∈N is a discrete-time stochastic process with stationary incre-

ments and that {Y (t)}t∈N, given by (2.2), is its first order differences process. Consider

also the formulation of the respective aggregated series of {Y (t)}t∈N given by (2.3):

Y (t) = X(t+ 1)−X(t); (2.2)

Y (m)(i) =
Y (mi) + Y (mi+ 1) + ...+ Y ((m+ 1)i− 1)

m
, m ∈ N. (2.3)

{X(t)}t∈N is said to be self-similar, with Hurst parameter H, if the finite-dimensional

distributions of {Y (t)}t∈N and {m1−HY (m)(i)}i∈N are equal for all m ∈ N. This definition

is formalised by the following expression, where
d
= denotes equality in all finite-dimensional

13

distributions :

Y (t)
d
= m1−HY (m)(i), m ∈ N. (2.4)

Dedicate special attention to the positive integer number m, that defines a partic-

ular aggregation scale each time it is instantiated, and that will come in handy in the

subsequent exposition. Notice also that, sometimes, the expressions aggregation block or

block size are used indistinctively to refer to the same notion. The first order differences

process is the sequence of individual steps of the stochastic process {X(t)}t∈N. Thus, a

given aggregation scale mk defines the series of the length of the steps between the two

points of {X(t)}t∈N, separated by mk − 1 values in the time domain. Each occurrence

Y (mk)(i) is the average step size between incidences of {X(t)}t∈N, taken from a sample

pool of mk values.

The autocorrelation function of the first order differences process, denoted by γ(k)

and defined as usual (expression (2.5)), is typically used to specify a stationary process as

being exactly second order self-similar or asymptotically second order self-similar, depend-

ing on whether the autocorrelation of the aggregated series {m1−HY (m)(i)}i∈N coincides

with the one of {Y (t)}t∈N for all m ∈ N, or only as m→∞:

γ(k) =
E (Y (t)× Y (t+ k))− (E(Y))2

E(Y (t)− E(Y))2
. (2.5)

The same notions are commonly used to define long-range dependence [37, 39] as

the property of the processes for which the autocorrelation function decays hyperbolically,

rather than exponentially. This property suggests a (positive) dependence from the past

occurrences of the process, and implicitly justifies the relation in (2.6), where β = 2− 2H

and cγ is a positive constant number. Notice that E(Y), in (2.5), denotes the expected

value of the process {Y (t)}t∈N (sometimes also referred to as expectation):

lim
k→∞

γ(k) = cγ × k−β. (2.6)

14

2.2.3. Random Walk

One of the concepts that most come in handy when studying the subject of self-

similarity is the one of Random Walk. A Random Walk is a discrete-time stochastic

process {R(t)}t∈N, for which the first order differences process S(t) = R(t + 1) − R(t)

takes only fixed values exhibiting no correlation at all [42]:

{S(t)}t∈N is a random and discrete variable defined for t ∈ N, (2.7)

R(t) = 0, for t = 0, and (2.8)

R(t) = R(t− 1) + S(t), for t > 0. (2.9)

These processes are specially useful because they may be utilised in the construc-

tion of a simple mental structure for the more complicated notions that are going to be

introduced next. The simplest Random Walk one can imagine can be created by tossing

a coin in the air, and by writing down 1 or -1 as a function of the side it shows after being

stopped. If the resulting sequence is iteratively summed and plotted against the order of

the occurrences, the result will be something similar to what is shown in Figure 2.1.

Figure 2.1: Graphical representation of a random walk with increments equal to 1 or -1.

As S(t) is a random variable, the Random Walk is a self-similar process with Hurst

parameter equal to 0.5 (meaning that it possesses no memory at all). Nevertheless, it

15

is possible to create walks with persistent or anti-persistent characteristics, as further

discussed in chapter 4.

2.2.4. Brownian Motion

The Brownian motion is a widely known model for the movement of particles, named

after the person that proposed it first, the botanist Robert Brown. It is sometimes referred

to as the Wiener process, named in honour of Norbert Wiener for its many significant

contributions to the subject. A Brownian motion {B(t)}t∈R≥0
is the Gaussian process that

respects conditions (2.10), (2.11) and (2.12) , where t, s ∈ R≥0, s < t and G (0, (t− s)2)

denotes a Gaussian variable with mean 0 and variance equal to (t− s)2 [43]:

B(t) = 0 if t = 0, (2.10)

B(t) is almost surely continuous, (2.11)

B(t) has independent increments with distribution B(t)−B(s) ∼ G (0, (t− s)2).

(2.12)

As the increments of the Brownian motion are independent, the said process shows

no signs of persistence nor of anti-persistence (the Hurst parameter of such processes

is, once again, 0.5). The visual (discrete-time) representation of this stochastic process

may be obtained by orderly summing a series of realisations of a Gaussian variable, and

by plotting the several sums against the iteration number. Figure 2.2 depicts the first

1000 points of 3 discrete-time Brownian motions, emphasising the fact that a motion will

almost surely cover a different path each time it is instantiated. The Brownian motion

can also be understood as the natural limit of the sum and normalisation of a series of

the previously defined Random Walks {Ri(t)}i∈N, which can be formalised by

B(t) = lim
n→∞

n∑
i=0

Ri(t)

n
. (2.13)

16

Figure 2.2: Graphical representation of several Brownian motions.

2.2.5. Fractional Brownian Motion

The fractional Brownian motion (fBm) generalises the notion of Brownian motion

by formalising persistence and anti-persistence for that type of processes. Its definition,

according to Mandelbrot and Van Ness [43], is based on the stochastic representation

given by expression (2.14), which presents an fBm as an integral with respect to a random

variable which, in this case, is the Brownian motion:

BH(t) =
1

Γ(H + 1/2)

 0∫
−∞

[(t− s)H−1/2 − (−s)H−1/2]dB(s) +

t∫
0

[(t− s)H−1/2]dB(s)

 .

(2.14)

Notice that Γ(.), in expression (2.14), denotes the Gamma function Γ(α) =
∞∫
0

xα−1e−xdx,

and that 0 < H < 1 is the Hurst parameter. (A brief discussion about the stochastic

representation on which this definition is based on can be found in [38].) One may notice

that the previous definitions of Brownian motion and fBm are valid for the continuous-

time case. However, for the sake of this explanation and in the remaining part of this

thesis, consider the restriction by which both stochastic processes are defined for the

discrete-time case only, i.e. their domain is a countable set.

17

2.2.6. Fractional Gaussian Noise

The first order differences process of a time-discrete fBm, denominated by fractional

Gaussian noise (fGn), symbolised by GH(t) (where 0 < H < 1 is the Hurst parameter)

and defined by (2.15), is of critical importance to the work presented, as it is commonly

used to model the number of bits arriving to a network aggregation point per time unit

(refer to section 2.3.1. for a discussion on network aggregation point and to section 2.3.3.

for a more detailed discussion on this topic):

GH(t) = BH(t+ 1)−BH(t), t ∈ N. (2.15)

The fGn was also adopted as the model for the simulation of network traffic in this thesis.

For further details, consider referring to section 5.4..

Because of its definition and designation, the process resulting from the integration

of an fGn is said to be self-similar if GH(t) respects condition (2.4). Sometimes, it is also

said that the fGn is self-similar in the sense given by (2.4) [44]. A visual example of an

fGn can be found in Figure 2.3, where 1000 points of a normally distributed variable are

plotted against their index of occurrence.

Figure 2.3: Example of fractional Gaussian noise for H = 0.5. Because of its flat power spectral

density, this process is often denominated by white noise.

18

2.2.7. Normalised Fractional Brownian Motion

An fBm can be defined by a set of conditions that are simpler to understand, if some

assumptions are made. The formal definition of the so-called normalised fBm describes

it as a function BH(t), with domain t ∈ R≥0, which verifies the following five conditions:

BH(t) is a Gaussian variable for t ≥ 0; (2.16)

BH(t) has stationary increments; (2.17)

BH(0) = 0; (2.18)

E(BH) = 0, for t ≥ 0; (2.19)

V(BH) = t2H , for t ≥ 0. (2.20)

E(BH) and V(BH), in the previous expressions, denote respectively the expected value

and the variance of the normalised fBm {BH(t)}t∈R≥0
. Any fGn associated with a par-

ticularisation of a normalised fBm to the discrete-time domain case is, by construction,

a Gaussian variable with mean equal to 0 and variance equal to 1, but there is generally

no independence between the increments GH(t), when H 6= 0.5.

In the next section, it will be shown that a snapshot of the amount of information

that passes in a network aggregation point per time unit resembles a shifted and scaled

version of a normalised fGn. Therefore, this simplified definition serves well the purposes

of this thesis, offering some room for abstraction of the more complex concepts. Any

required transformations will be conveniently introduced if such is considered to be per-

tinent. Also because of the importance of fGns in the scope of this work, the means to

accurately generate incidences this particular family of Gaussian variables are going to

be explored in chapter 4, under the curious look that may enable the extraction of the

interesting features of these stochastic processes. For now, the focus is to be placed in

19

other aspects of the self-similarity subject.

2.3. Self-Similarity in Network Traffic

Until this section, the relation between the subjects of self-similarity and networking

has been hinted by brief statements that say that, when analysed in a network aggregation

point, traffic exhibits long-range dependence. In the next paragraphs, the origin, the

meaning and the consequences of this statement are going to be discussed with more

detail.

2.3.1. Network Aggregation Point

Regarding the subject of self-similarity in network traffic, one of the most important

expressions is the one of network aggregation point. While passing through a network,

a protocol data unit visits several intermediate systems (nodes) that redirect it towards

a next hop or final destiny, according to the implemented forwarding policies (e.g. best

effort, Quality of Service (QoS) with differentiated services assured or expedited forward-

ing, etc.). Some of that nodes are visited by more than one flow of information at a

time, being obliged to manage them under constraints of resources availability and QoS

requirements. As the flows arrive concurrently to different interfaces of the equipment (or

already mixed up in a single one), the later is forced to organise some in buffers, while

processing the others. These nodes are network aggregation points. Figure 2.4 may help to

understand what the referred expression means. In there, several data flows, represented

by arrows and originated by different computational devices (the sources of information),

make their way through Local Area Networks (LANs), and possibly through the Access,

Metro and Core networks before reaching their final destination. Herein, the absolute

source or destination of those data flows are sometimes referred to as terminal nodes of

the network. In the middle of the network, many of that flows pass through the same

routers, switches or other forwarding devices (represented by black circles) where they are

lined in waiting queues (multiplexed), processed and forwarded to another intermediate

destination. Though self-similarity is a consequence of aggregation, the explanation for

its origin lies at the sources of information.

20

Figure 2.4: Conceptual representation of the Internet and of its constituent computer networks.

Also depicted by black circles and (bi)directional arrows are network aggregation points and

communication flows, respectively. A graphical explanation of how the several renewal processes

contribute to the self-similarity of the network traffic is included at the bottom.

2.3.2. The Origin of Self-Similarity

In the early nineties, Will Leland, Murad Taqqu, Walter Willinger, and Daniel

Wilson wrote one of the most influential papers of the history of the Internet. On the

Self-Similar Nature of Ethernet Traffic [17] brought the beauty of fractals into the world

of the information networks, unveiling an unexpected, and until then unknown, facet of

the way traffic is multiplexed during its path to a destination. It has to be emphasised

that it took as much imagination as rigour and perseverance for these men to get to such

conclusion. In [17], and later in [39], the process describing the amount of information

per time unit was proven to be long-range dependent for Ethernet LANs, and the tools

used to prove that were rigorously reported, as well as the possible explanation for the

inability to define the said process as e.g. a purely random Poisson variable [45]. Actually,

21

it would seem more - lets say - logical to expect that the protocol data units arriving to

a given transitory (but popular) point of its path, would follow the exact same statistical

laws that rule the way the origin of the information sent them to the network. It would be

even simpler to accept that those laws could change within the network, but that that fact

would not result in a behaviour described by self-similarity. From a naive perspective, one

could even ask if all the theory developed for the several aspects of the communications

was wrong or if it has been lost somewhere in time, as a consequence of the evolution of

the networks. The answer to that question would be definitely no.

It is true that networks changed in a lot of aspects. The number of connected

users has grown exponentially [46, 47], the architectures have changed to a more dynamic

and complex organization, the technology and the physical infrastructure that transports,

switches, routes and processes the packets that travel from a node to another is completely

different from the one used to support the Plain Old Telephone Service (POTS). All these

changes have obviously something to do with the self-similar nature of the traffic, but they

are not the primary actors of that act.

Self-similarity finds its origins precisely in the way the several sources of the traffic

send the data to the network. When transmitting, each terminal node sends variable

length bursts (i.e. a variable number of packets within a small amount of time) into the

network, which are normally followed by relatively bigger inactivity periods. According

to [18, 19, 39], both processes can be modelled by random variables with an heavy-tailed

distribution, defined by the power law in (2.21), where P(x > X) denotes the probability

of x being bigger than X, for any real number X ∈ R, and c is the minimum value x can

take:

P(x > X) ∼ cX−α, as X →∞, 1< α < 2. (2.21)

The often called renewal process {W (l)}l∈N results from the combination of that two

processes into a single one. It describes the activity of the transmitter at time l as a 1,

if the transmitter is ON, or as a 0, if the transmitter is OFF. It can be proven [48] that

the superimposition (and aggregation) of a considerable amount of independent renewal

processes approximates an fGn exhibiting persistence behaviour. Furthermore, the Hurst

22

parameter of the resulting process depends of the value of α, being the relation between

them given by H = 3−α
2

, 1 < α < 2. A tentative to graphically explain this phenomenon

can be found at the bottom of Figure 2.4, and the mathematical formalisation is given by

(2.22), where B is the number of independent and identically distributed renewal processes

(sources), {Wb(l)}l∈N is the renewal process of source b, H is the Hurst parameter, m is

the size of the aggregation block and σ(α) is a constant depending on α. Notice that the

convergence expressed in (2.22) should be understood as a convergence in law, since the

concepts it refers to and its assumptions are also described in those terms:

lim
m→∞

lim
B→∞

m(j+1)∑
l=mj+1

B∑
b=1

Wb(l) =
1

2
mB +mHB1/2σ(α)GH(j). (2.22)

Basically, expression (2.22) provides an extremely sound justification for the obser-

vation of long-range dependence in aggregation points, without refuting the hypothesis

of the traffic generated at the source level being only weakly autocorrelated or possessing

no memory at all. The approximation to a self-similar process depends positively of the

two factors under the mathematical symbol of limit : the number of sources, and the size

of the aggregation scale. This dependency from high variability is emphasised in [19].

In a more informal way, these facts may be interpreted in the following manner.

At the source, the ON-periods are uncorrelated or short-range dependent, meaning that

the memory they possess is limited, or non-existent. However, when interacting with

different renewal processes, each renewal process assures that, for the time it is ON, the

memory of the aggregated process is assured by it and that, when it is OFF, another

process will almost surely take such responsibility. The memory of the resulting process

is therefore being fed by several small tributes, resulting in a long-range dependent series.

As it will be mentioned in chapter 4, for each fixed interval of time, a self-similar process

can be seen as the sum of two components: a constant and a variable one. In this case,

the extension of the tail of the OFF and ON sequences defines exactly the fraction of

the aggregated process that changes in the aforementioned time interval, and how much

remains constant. The bigger the tail is, the longer the constant parts are, and the more

self-similar the aggregated process is. Under the given assumptions, the processes of the

bit count or of the number of protocol data units per time unit are, as previously referred,

23

resemble a shifted and scaled fGn.

2.3.3. The Face of Self-Similarity

It is possible to get an idea on how self-similarity manifests itself visually, if a

series of values possessing such property is plotted for different aggregation factors of

itself. The procedure to obtain such graphical representation is simple. After plotting

the empirical sequence of the first order differences process {Y (t)}t∈N against the time

index t, aggregate it several times, and plot the resulting series against the respective

indexes as well. Using this procedure, one obtains k different charts. The degree of self-

similarity of the associated process determines its resistance to change its initial aspect, as

the aggregation scales increase. To get a practical idea of what these and the proceeding

words mean, observe Figure 2.5, where the results of the application of the previously

described procedure to a persistent and to a completely random process are depicted and

sorted out vertically. For a start, it is safe to conclude that a superficial observation

of the charts is sufficient to identify in which of the sides of the figure the self-similar

process is represented: the left side. The sequence displayed on the right side is thus

characteristic of memoryless processes, which suffer more rapidly from the effect of the

law of large numbers than the ones exhibiting positive and long-term autocorrelations.

Such effect manifests itself in a faster convergence to a multiple of the average value of

the series being aggregated. On the other hand, the self-similar process tends to maintain

its statistical properties (e.g. variance) more effectively for the several aggregation scales,

avoiding the mentioned smoothing effect during more time. Nowadays, the sequence of

charts on the left side of the figure is known as the classical pictorial proof of self-similarity

in network traffic [49], as a consecration of the designation used by Leland et al. [39].

Both sets of charts in Figure 2.5 were produced using computational means, for

exemplification purposes. While the left side of the figure was produced using one of

the self-similar sequences generators presented afterwards, the other concerns the values

returned by a Pareto source simulator. In the first, the Hurst parameter was set to 0.85,

while the second had the α set to 1.3 (resulting from the substitution of H by 0.85, in the

formula presented in the previous section: α = 3−2H). Both were scaled so as to produce

24

a representation that would look like with the bit count per time unit of a network device

performing at 1 Gbps, with an used bandwidth ratio of 0.5.

Regardless of the synthetic nature of the series on the left, a direct analogy between

the latter and the observations in [18, 39] can be done. It was probably a picture like the

one in Figure 2.5 that catch the curiosity of the researchers: no matter from how far the

traffic was being observed, it appeared to be always the same. On the other hand, the

amount of information per time unit was not stabilising to the average value, which would

somehow be expected if the process was following a Poisson or exponential law without

any additional assumption.

2.3.4. The Consequences of Self-Similarity

The most critical secondary effect of having the amount of information per time

unit exhibiting the property of self-similarity is that it results in the so-called burstiness

of the traffic, which basically means that the data comes in bursts rather than randomly

spaced in time. This artefact unbalances the amount of data arriving to the aggregation

point, resulting in bit rates above the average that may last longer than expected, followed

by (statistically) equally large periods of time where the bit count is below the expected

value. Such phenomenon is sometimes referred to as the Joseph Effect [19], as a metaphor

to the biblical story of the “seven fat years and seven lean years”. Such behaviour impacts

the way the traffic is handled at the aggregation points and one of the most immediate

conclusions that could be taken from these remarks, is that a wrong assumption about

the traffic model could lead to poorly planned networks, or to misconceived devices,

which would lack memory for storing an unusual amount of data, during congestion

periods [45, 50]. This problem was first brought up in [50] (and later backed up by

many other studies, as for example [16, 51, 52, 53, 54]), where it is stressed that a linear

increase of the size of the buffers of routers or switches does not necessarily result in the

linear decrease of the losses during congestion periods. The identification of this issue

preceded the discovery of the self-similar structure of the traffic, emphasising the fact

that, unlike POTS, the information networks could not be properly scaled (in terms of

congestion-avoidance mechanisms) based on past assumptions. The Joseph Effect applies

25

Figure 2.5: Self-similar vs. non self-similar trace. The classical pictorial representation of self-

similarity (persistence) in the bit count per time unit process of a network trace is depicted on

the left side of the figure; the typical behaviour of the effect of aggregation on a random variable

is shown on the right side.

26

to the losses also, since after the devices have entered the loss condition, the persistence

of unpredictably long busy periods may consequently result in persistent losses. Notice

that a loss condition occurs when the network device is obligated to discard protocol

data units, whether because it has no available resources to process them, or because the

validity of the said units of information has already expired (due to the delays they were

imposed to).

While short-range dependent or memoryless models, as for example the Poisson

or Exponential models, offer some predictability (short-range dependent models converge

faster to their expected value, as the aggregation scale increases - law of large numbers),

the same does not happen with series with long-range dependence. Many of the studies

conclude that the real solution to the congestion problem would be more on the increase

of the link capacity or on the congestion algorithms [16, 51], rather than in the increase

of the size of the buffers, as the latter would only induce bigger delays.

Problems like the one described above, allied to the technological advance the In-

ternet (and all of its inherent technologies) has met in the last few years, plus the mys-

ticism that, somehow, surrounds the subject of self-similarity, culminated in a vast list

of scientific contributions that interconnect the subjects of networking and long-range

dependence. It is only fair to classify this spurt without precedents as a consequence

of its importance. Most of the studies argue in favour of the self-similar nature of the

traffic [16, 17, 18, 19, 51, 52, 53, 54]; a few argue against it [55] (for this matter, consider

also the reference [27]); some elaborate on a consistent theory that justifies self-similarity

at the data link layer of the Open Systems Interconnect (OSI) model [19]; others look for

the same justification in higher layers of TCP/IP architecture, namely on the dynamics

of the Transmission Control Protocol (TCP) [56, 57]; some focus on the means to analyse

the self-similarity degree [58, 59, 60, 61]; others yet on the models for the bit count or

inter arrival processes [16, 19], or on the algorithms to generate long-range dependent

series [38, 44, 62]. More recent studies, as e.g. [37, 63], elaborated on a conjecture that

unites the two models (long-range dependence and Poisson) and state that, at the core,

depending on the aggregation scale from which the traffic is observed, the underlying pro-

cesses can be either random and Poisson (at small scales) or long-range dependent (when

observed from higher scales). However, this is still not a consummated fact. The author

27

would like to refer the reader to [64], where an impressive (but not up to date) list of

bibliographical references on the subjects of self-similarity and on performance modelling

for modern high-speed networks can be found. The list of references was elaborated in

1996, and may be considered as a colourful picture of this paragraph.

Because self-similarity seems to partially define the traffic arriving at a given ag-

gregation point, some works [20, 21, 25, 26] have also focused on how to use it to detect

anomalies (which, in this case, include network level intrusions), by assuming that the

presence of an attack in the network traffic incurs in an overall deviation to the long-range

dependence model. These works are not unfounded, as it is going to be proven by some of

the results of this thesis. However, these references should be considered with caution, as

some of them start from rather strong assumptions or develop their approach in a confus-

ing manner [21, 25] (for example, sometimes it is difficult to distinguish exactly to which

concepts they are referring to). Moreover, when considered individually, the references

within the papers are presented as if the results are consistent for all the studies, while

the overall picture reveals contradicting results (e.g. [25] states that the Hurst parameter

decreases in the presence of an attack, while in [26] the same parameter shows higher

values for the same situation). These references will be discussed with more detail in

chapter 5.

The findings of Leland et al. imply an elementary change of perspective, which

motivated a lot of research around the subject of long-range dependence. The major

advantage of all this interest is that the self-similarity theory evolved and is now largely

disseminated in the literature. The disadvantages are that, given the specificity of the

subject at hands, it becomes often difficult to distinguish good from bad contributions;

and that it is hard to handle the constant flow of publications in this area. In [27] one

can find an interesting talk given by Willinger, where he tries to make such distinction.

2.4. Hurst Parameter Estimation

As so well concluded by Norros in [16], “(...) finding the correct value for the self-

similarity parameter H is crucial (...)”. The parameter that Norros identified as one of

the values to which the queue size distribution was more sensitive to, is nowadays known

28

as the value that measures the degree of self-similarity of a long-range dependent process

in general, and the degree of burstiness of the traffic in particular. The enviable statute it

has acquired, justifies the research and dissemination of the several means to estimate it,

and places the latter in the same priority level of the other means to analyse the traffic or

to actually model it. The appearance of tools [65, 66], surveys and comparative analysis

between the several methods [38, 58, 59, 60, 61] is therefore justifiable, as it is normal the

continuous search for new and reliable means to assess the Hurst parameter [67, 68, 69, 70].

However, while the Hurst parameter is perfectly well defined mathematically, assessing

its value can be rather problematic [58].

The definition of Hurst parameter is made under probabilistic terms and for arbi-

trarily long (infinite) time series. The term estimation, however, implies that (i) the exact

value of the Hurst exponent is still unknown and that one only has information about

the time series and (ii), that the assessment is being made for a finite set of points that

one believes to possess the property of self-similarity. The Hurst parameter is normally

estimated by analysing the same series for several aggregations of itself, or by quantifying

the laws that describe the spectral domain of the associated stochastic process. Most

of the times, such procedure is computationally complex and time consuming. As the

data series under analysis (e.g. network traffic trace) are not a perfect instantiation of

a mathematical law, it possesses imperfections - read this as small deviations from the

model - that may impact differently the referred estimators. As outlined in [58], some es-

timators are vulnerable to trends, others to noise or to periodicity, etc. Dealing with these

problems requires often the same series to be visited several times, so as to be differently

processed, imposing again an additional computational effort. When a given procedure

for obtaining a single value requires the same sample pool to be analysed more than once,

it is termed retrospective. Thus, the computational complexity of an estimator requiring

the signal to be processed in a retrospective manner is never smaller than O(n × o(n)),

where o(n) is the computational complexity of the (at least) second analysis of the series

of values, being that o(n) is strictly dependent on the length of the series to be processed.

The next sections present a compilation of the most popular Hurst parameter esti-

mation methods. Note that some of them will be explained in more detail than others.

The reasons for such to happen is related with the fact that not all the methods were

29

useful for this research work, and with the fact that some were noticeably not suitable for

its purposes. The justification was nevertheless included in the respective subsections.

All the methods described below make use of the logarithmic function at some stage

of their rationale. The base for which the logarithms are defined for is a completely

irrelevant detail in most of the cases. Nonetheless, for the sake of this explanation and

if nothing is said on the contrary, just assume that log(x) denotes the base 10 logarithm

of x, i.e. that log(x) = log10(x). Notice also that, below, H is interchangeably used to

denote the Hurst parameter or a specific estimate of its value provided by a given method.

This notation is somehow abusive, but it was adopted for the sake of simplicity of the

explanation.

2.4.1. Rescaled Range Statistics

The first estimation method that is going to be described was proposed and used by

the British hydrologist Harold Edwin Hurst (1880-1978) [71] himself, during his experi-

ments to understand the vicissitudes of the flows of the Nile river [72, 73]. Its historical

component is actually the reason for which the author decided to introduce it first, in

spite of some of the accuracy problems it presents (see below).

Consider that the aggregated process in (2.2) is defined for k aggregation scales with

size mk ∈ N, with mk > 1, and let the series of the readjusted sums {Sik(j)}j∈N be defined

as in

Sik(j) =

imk+j∑
l=imk

(Y (l)− l × Y (mk)(i)),mk ∈ N. (2.23)

For each aggregation scale mk, take the maximum (2.24) and the minimum (2.25) of that

sums, and define the range of the adjusted process as the difference between them (2.26).

Notice that it is assured by construction that {Rangek(i)}i∈N takes only positive values:

Maxk(i) = max(0, Sik(1), Sik(2), ..., Sik(mk − 1)), (2.24)

30

Mink(i) = min(0, Sik(1), Sik(2), ..., Sik(mk − 1)), (2.25)

Rangek(i) = Maxk(i)−Mink(i). (2.26)

The rescaled range RSk(i) is then obtained from (2.26) by dividing the Rangek(i) by the

standard deviation (σ(i)) of themk values of {Y (t)}t∈N that contribute for the construction

of the particular incidence Y (m)(i), as formalised by

RSk(i) =
Rangek(i)

σ(i)
. (2.27)

Hurst [72] noticed that for self-similar processes, the average value of {RSk(i)}i∈N,

given by E(RSk), could be described in terms of the values of mk and of a scaling expo-

nent, later known as the Hurst parameter, as shown in equation (2.28). In the referred

expression, C denotes a positive constant number, proven by the following reasoning

uninteresting for the matter of estimating the Hurst parameter:

E(RSk) = C × (mk)
H . (2.28)

The Rescaled Range Statistics (RS) analysis is normally performed by defining a

definite set of values for mk and by calculating the respective E(RSk) for each k. If the

process is self-similar, the obtained values should almost surely be fit by the implicit curve

of (2.28) or, equivalently, by the line defined by (2.29), where the Hurst parameter appears

as its slope:

log (E(RSk)) = log(C) +H × log (mk). (2.29)

The graphical representation of the coordinates (log(mk), log (E (RSk))) along with

the line that best fits them (using regression) in a chart, is often called the pox-plot repre-

sentation. The estimation of the Hurst parameter is therefore reduced to the calculation

of the slope of that line. The chart in Figure 2.6 is an example of a pox-plot, constructed

during the RS analysis made to sequences realising two fBms (with H = 0.70 and with

31

H = 0.30) and a Brownian motion (H = 0.5). As can be seen in the figure, this method

is susceptible to short-range dependence relations (for the smallest scales, the values of

E(RSk) tend to be underestimated), reason by which some authors have already described

possible modifications to the procedure [74]. Nevertheless, the method is still capable of

producing reliable results, if handled carefully. In [75, 76], for example, it is proven that,

for H = 0.5, E(RSk) really converges to C × √mk, as mk → +∞. This fact is also

noticeable in the aforementioned chart.

Figure 2.6: Pox-plot for the RS analysis of two fBms (H = 0.3 and H = 0.7) and of Brownian

motion (H = 0.5). The aggregation scales were all powers of 2, starting at 1, and the esti-

mated Hurst parameter values were approximately 0.35 and 0.70 for the fBms, and 0.53 for the

Brownian motion.

The author has decided to implement and use (see chapter 4) the RS method,

mostly because of its historical value. However, this implementation has merely served the

purposes of testing the self-similar sequences generators proposed below and of providing

a baseline comparison for the remaining methods. This justification also explains why

this method was so thoroughly described herein.

Observing (2.23) critically and with an eye in the objectives of this work, it is

easy to conclude that the RS method is not suitable to be used in a point-by-point

or windowed manner, because the rescaling procedure requires that all the points of a

32

given aggregation scale to be available a priori, which is not desired for an iterative

estimator. The actualisation of the rescaled variable Sik(j) would require an average of

mk

2
operations, turning infeasible the application of the method as a real-time estimator.

This should become more obvious as the modifications for some of the following estimators

are presented, in chapter 3.

2.4.2. Variance Time

Equation (2.4) can have many different interpretations, being those a reflex of the

properties of self-similar processes. The multifaceted character of such mathematical

expression is due to the abstract notation
d
=, that defines that all the possible statistics of

the two processes it applies to are equal. The particularisation of (2.4) that best fits the

purpose of explaining the estimator known as the Variance Time (VT) method [77, 78] is

given by (2.30), where V(Y) and V(m1−HY (m)) denote the variance of {Y (t)}t∈N and of

{m1−HY (m)(i)}t∈N, respectively:

V(Y) = V
(
m1−HY (m)

)
. (2.30)

Thanks to the properties of the variance [79], (2.30) can be rewritten into form (2.31)

and, if the logarithm is applied to both sides of the equality, it is possible to write equation

(2.33), which is the most direct outcome of (2.32). Once again, the Hurst parameter H

defines the slope of the line with y-intercept equal to − log(V(Y)) and that passes through

the point with coordinates
(
log(m), log

(
V
(
Y (m)

)))
:

V(Y) = m2−2HV(Y (m)); (2.31)

log(V(Y)) = log(m2−2H × V(Y (m))) (2.32)

⇔ log(V(Y)) = (2− 2H)× log(m) + log(V(Y (m))). (2.33)

Equation (2.33) may be solved in order to H, as shown by the following expression,

33

but it is worth nothing if m is not determined somehow:

H =
log(V(Y (m)))− log(V(Y))

2 log(m)
+ 1. (2.34)

This small problem may be overcome by defining a finite set of aggregation scales mk

(exactly as in the previously described method). The several variances of the aggre-

gated processes can then be calculated and used indiscriminately in formula (2.34) to re-

trieve Hurst parameter estimates. However, due to the statistical nature of this method,

such estimates will most certainly not be unique for all the considered scales. A unique

value for the estimation is usually obtained by fitting a line to the coordinates given by(
log(mk), log

(
V
(
Y (mk)

)))
and by using expression (2.35) to get the Hurst parameter,

where β represents the slope of the referred line:

H = 1 +
β

2
. (2.35)

Figure 2.7 shows how the VT method should be tackled from the graphical anal-

ysis point-of-view. The chart in this figure plots the values of the transformation of

the variances against the respective logarithm of the aggregation scales. The latter are

commonly understood as time scales, which led to the denomination of the plots as the

Variance/Time plots. Needless to say that the method owes its name to this designation.

As can be seen in Figure 2.7, the slope of the line of the Variance/Time plot is nega-

tive, conversely to what happens with RS (and others), which basically means that the

variances of the aggregated processes decay exponentially, as the time scales increase.

Focus on the R2 values included next to the equations of the fitted lines, in the

chart of Figure 2.7 (and in other identical charts along this thesis). The R2 statistic,

often denominated by the coefficient of determination, measures how well the points are

fit by a line and, in the simplest case of linear regression, its value is the fraction between

the variances of the y-coordinates of the fitted and of the modelled points [80]. The

closer the referred value is to 1, the more tight (and in this case linear) the relation,

between the coordinates subdued to regression, seems to be. Although R2 should not

be directly understood as a goodness-of-fit metric, it surely provides one with an idea

34

Figure 2.7: The Variance/Time plot for two fBms (H = 0.3 and H = 0.7) and for Brownian

motion (H = 0.5). The aggregation scales were all powers of 2, starting at 1. The estimated

Hurst parameter values were approximately 0.30 and 0.70 for the fBms and 0.5 for the Brownian

motion.

on whether the conducted analysis makes sense or not. If required, a goodness-of-fit test

can be applied resorting to the fact that F , obtained from the formula (2.36), follows an

F-distribution with 1 and K − 2 degrees of freedom (K denotes the number of points

subdued to regression):

F =
R2

(1−R2)/(K − 2)
. (2.36)

If F is larger than the critical value for a pre-selected level of significance, the null hy-

pothesis stating that the linear model is not useful at all may be rejected [81], supporting

its alternative.

While the value of R2 alone may not be enough to prove the goodness of fit of

the regression, a significative change of its value for several estimations constitutes an

indicator that something has affected the correlation between the fitted points. In the

case of self-similarity analysis, a drop of the R2 value means that the property of self-

similarity is not so strongly embedded in the empirical data, or that the referred property

35

has actually been lost. Within the enunciated limitations, the metric is going to prove its

usefulness in chapter 5, where the effects of loss of stationarity are going to be studied in

more detail.

The most interesting remark that can be made about VT is that its operational

model depends only on statistics that can be updated in a point-by-point manner (the

average and the variance), but the correct opportunity to discuss that is going to find

its moment in the following chapter. Still to be mentioned is the fact that, in this case,

it is empirically visible on the chart of Figure 2.7 that the method is not biased for low

aggregation scales (short-range dependence).

2.4.3. Absolute Moments Time

The Hurst parameter estimation method entitled Absolute Moments Time (AMT)

is a not so commonly used generalisation of VT [82] and derives (as its predecessor did)

directly from (2.4). Consider the definition of second order self-similar process and of first

order differences process. The same way (2.4) determines the equality of the variances

of the processes in both sides of the
d
= symbol, it also states the equality of their order

n absolute moments, denoted herein by Mn(Y), and generically defined by an expression

equivalent to

Mn(Y) = E|Y (t)− E(Y)|n, where n is a positive integer number. (2.37)

Therefore, the main equality on which this method is based on is given by a simplification

of (2.38), herein formalised in (2.39):

Mn(Y) = Mn(m1−HY (m)) (2.38)

⇔Mn(Y) = mn(1−H)Mn(Y (m)). (2.39)

36

The same reasoning and notation used in the description of VT can now be applied

to deduce expression (2.41) from the transformation in (2.40), where the Hurst parameter

is already isolated:

log(Mn(Y)) = n(1−H)× log(m) + log(Mn(Y (m))), where n ∈ N; (2.40)

H = 1 +
β

n
, where β =

log(Mn(Y))− log(Mn(Y (m)))

log(m)
. (2.41)

For each n, the estimation of β presumes the definition of e.g. K aggregation scales

(mk, k = 1, ..., K) and the statistical treatment of the potentially different values of β.

As (2.40) implies a linear relation between the logarithms of the absolute moments and

the considered size of the block, plotting these values in a chart results in a straight line

with y-intercept equal to log(Mn(Y)) and slope equal to β. Therefore, the least squares

method can be used to retrieve the value that best summarises all the K estimations of

β (linear regression is the de facto manner of obtaining the estimate).

As previously stressed out, VT is a particular instantiation of this method, whose

core formula can be recovered by substituting n with 2. The comments made to VT apply

naturally to this one, namely the remark concerning the applicability of the estimator

in real-time. However, this has to be carefully considered, as an higher complexity is

implicitly hidden behind the choice of the order of the absolute moment.

2.4.4. Embedded Branching Process

The following mathematical explanation concerns the method entitled Embedded

Branching Process (EBP), proposed by Jones and Shen in [69]. EBP presumes the station-

arity of the increments of the process {X(t)}t∈N to which the analysis is to be conducted

(the fBm falls into this category), to then construct a procedure around the so-called

crossing tree structure which, according to [69, 83], is inherently embedded in the referred

process. This method is the one that most directly elaborates on the first definition of

self-similarity, written in terms of incremental processes as the fBm.

37

Consider that {X(t)}t∈N fulfils the previous conditions and, without loss of general-

ity, suppose that its occurrences are happening in the space domain scaled by the constant

factor 2, as depicted by the equation in (2.42). Note that the relation illustrated there is

always possible when the process is self-similar in the sense given by (2.1), as it is always

possible to find a µ satisfying the equality:

∃µ ∈ R≥0 such that 2×X(t)
d
= X(µ× t). (2.42)

By knowing that X(t)
d
= µ−HX(µt), the previous equation leads one to the conclu-

sion that 2−1 = µ−H , for some µ ∈ R≥0. Getting an estimate of the Hurst parameter is

confined to getting an estimate for µ, as proven by the following reasoning:

2−1 = µ−H (2.43)

⇔ H = logµ 2 (2.44)

⇔ H =
log 2

log µ
. (2.45)

It is interesting to note that the value of µ is a measure of how much time the process

spends until it doubles its statistical properties, as it is the variable that multiplies the

time index t. In the case of discrete-time processes, this value should preferably be

an integer but, in this case, the analysis is being made as if both space and time were

continuous. At the end, µ represents an average value of the aforementioned time periods,

which continues to be consistent with the definition of both types of processes.

Under the assumption of self-similarity, it is possible to further generalise the pre-

vious formulas by considering different (but convenient) space scaling factors. Focus on

expression (2.46) for the mathematical formalisation of these words. Consider that K,

which is a fixed positive integer number, denotes the maximum number of crossing levels

taken into account in the analysis. For each k = 1, ..., K, it is possible to obtain an

estimate for the Hurst parameter by assessing the time the process takes to double, qua-

druplicate, octuplicate, etc., its statistical properties. As stressed out by equation (2.47),

38

the relation between log(µ) and log(2k) may then be described by a line:

For each k ∈ N, ∃µk ∈ R>0 such that 2k ×X(t)
d
= X(µkt) (2.46)

⇔ log(2k) = H × log(µk). (2.47)

Thus, the problem resides in the calculation of the several µk. For that, consider

the fixed positive number δ and the family of parallel lines defined by f(k) = δ2kZ, desig-

nated by crossing lines (consider complementing this explanation with the observation of

Figure 2.8). With those structures is possible to define the initial crossing times between

incidences of {X(t)}t∈N and the several crossing lines using, for example, an expression

similar to the following one:

Tk(i+ 1) = inf{t > Tk(i) : X(t) ∈ δ2kZ, X(t) 6= X(Tk(i))}. (2.48)

The right member of (2.48) identifies the first time index t for which {X(t)}t∈N crosses

a line of the family f(k), while assuring that this crossing did not happen immediately

after that same line has been crossed (hence X(t) 6= X(Tk(i))). In other words, for each

k, Tk(i + 1) gets the time of the crossing of {X(t)}t∈N after Tk(i), unless the line that is

being crossed is the same that was transposed at time Tk(i). The number of crossings Nk

is then given by the cardinality of the set comprising the crossing times Tk(i) of each level

k (expressions (2.49) and (2.50)), herein denoted by the symbol # in expression (2.50):

Tk = {Tk(i)}i=0,...,T ; (2.49)

Nk = #Tk. (2.50)

From here, one can choose two distinct ways to get the estimate of the Hurst pa-

rameter. In [69], each one of the µk are obtained by dividing the Nk by Nk+1 (i.e.

µk = Nk/Nk+1), which are then combined using formula (2.51) to retrieve - lets say - a

global estimate for µ, which is a weighted average of the several µk values. The Hurst

39

parameter is then obtained by means of formula (2.45):

µ =
N0 × µ1 + ...+NK−1 × µK

N1 + ...+NK

, where K is the maximum considered level. (2.51)

The second way of getting an estimate of the Hurst parameter comprises the usage

of linear regression, as suggested by equation (2.47). However, this approach requires the

several µ̇k (notice that a different notation is being used) to be acquired differently. Notice

that, generally speaking, the fraction Nk

Nk+1
returns the average number of occurrences

the process X(2kt) took to double its statistical properties. This means that each one

of the µk values retuned by that division respects condition (2.42), but not necessarily

condition (2.47). If, instead of Nk+1, Nk+2 is used in the same expression, then the

respective fraction would reflect the average number of steps that the process X(4kt)

took to quadruplicate the said probabilistic characteristics, and so on. Because the second

approach to obtain the Hurst parameter estimate requires the several µk to reflect the

amount of time {X(t)}t∈N takes to multiply its statistical properties by the increasing

factor given by 2k, for k = 1, ..., K, the different notation µ̇k was adopted. µ̇k is defined

as follows:

µ̇k =
Nk

NK

, where k < K, and K is the maximum considered level. (2.52)

After the application of the linear least squares method to the coordinates (log(µ̇k), log(2k)),

the designation of Hurst parameter estimate can be directly assigned to the slope of the

fitted line.

The embedded crossing tree of a simulated Brownian motion is partially depicted in

Figure 2.8. The mentioned structure can be constructed by representing the calculated

crossing times of each level as leafs, and by connecting them through lines, under the

constraint that each leaf can only connect to a single leaf with higher rank than its own.

From the figure, it is easy to see that, as k decreases, the cardinality of Tk increases (the

number of crossings increases because the lines f(k) become closer to each other).

According to [69], EBP behaves reasonably well for self-similar processes moved by

persistence. For anti-persistent series, the method takes longer to retrieve reliable estima-

40

Figure 2.8: Graphical representation of the rationale behind the EBP method.

tions, as the spatial span that the realisations of {X(t)}t∈N cover for H < 0.5 is severely

reduced as H → 0. For long-range dependent processes, {X(t)}t∈N diverges more than

in the previously mentioned case, which basically results in a bigger number of crossings

and, therefore, in better estimates. However, one has to be careful with the adjustment

of δ, since a bad choice of the value of this parameter may lead to overestimated number

of crossings for the lowest levels. Recall that δ specifies the spacing between the lines of

f(k): the smaller this value is, the more times these lines will be transposed. In [84], it

is said that a good choice for δ may be the standard deviation of the absolute values of

the first order differences process of {X(t)}t∈N. However, empirical observations [69] have

shown that a bigger value should be chosen, when possible, providing that such choice

does not reduces drastically the number of crossings. Additionally, as EBP analyses the

cumulative process itself, it is forced to presume that the first order differences series is

centred at the origin, at the cost of returning only H = 1.

EBP has been used to assess the self-similarity degree of network traffic but, in [83],

that was done in a retrospective manner, as the traces were analysed offline and the

calculations concerning the number of crossings were made on a per level basis. For now,

just consider this method as a potential candidate for a real-time estimator, postponing

a more detailed discussion on how to use it in a point-by-point manner to chapter 3.

41

2.4.5. Detrended Fluctuation Analysis

The method presented in this section may be understood as an improved version of

RS. RS makes use of the rescaled sums, defined in (2.23), which are the differences between

the partial sums {Sik(j)}j∈N and the line originating at 0 and ending at Y (mk)(i) (for each

i and each aggregation scale mk considered). The Detrended Fluctuation Analysis (DFA)

method, proposed by Peng et al. [67, 85, 86] with the intuit of analysing biological data,

basis its operation in a similar rationale, but the differences are taken with respect to the

line obtained by linear regression. This basically means that, for each block mk and for

each i ∈ N, the partial sums P i
k(d), given by (2.53), are first approximated using the linear

least squares method and then measured against the newly fitted line y = αik + βik × x,

following the suggestion in (2.54). This procedure quantifies the dispersion of the values

inside each aggregation scale:

P i
k(d) =

im+d∑
j=im

Y (j); (2.53)

Fk(i) =

√
1

N
(P i

k(d)− αik − βik × d)2. (2.54)

According to [85], the expected value of Fk(i) is directly proportional to C ×mH
k ,

where C is a positive real number (irrelevant in the scope of this explanation) and H is,

as before, the Hurst parameter:

E(Fk) = C ×mH
k . (2.55)

An estimate of H is normally obtained by plotting the values of the logarithm of mk and

of E(Fk) and by getting the slope of the line that best fits those values, as exemplified for

several fBms in Figure 2.9. The slope of the line is an estimate of the Hurst parameter.

Even though this method is not overly popular, it has some good properties that

should be emphasised here, as they justify why this estimator has been chosen to be part

of some of the experiments reported in chapter 3, along with RS. The fact is that DFA

is not susceptible to short-range dependency nor to small trends that may appear in the

42

data under analysis.

Figure 2.9: The DFA log-log plot for two fBms (H = 0.3 and H = 0.7) and for Brownian

motion (H = 0.5). The aggregation scales were all powers of 2, starting at 1. The estimated

Hurst parameter values were approximately 0.32 and 0.69 for the fBms and 0.5 for the Brownian

motion.

The major drawback of DFA is its retrospective character, which cannot be disas-

sociated from its nature. The calculation of Fk(i) relies on the prior knowledge of all the

points of a given aggregation block with size mk, rendering its computational complexity

as being of O(n2). As so, this method was merely chosen to be an impartial evaluator of

the algorithms described afterwards, and it will not be the subject of further investigation.

In many references (see, for instance, [38, 61, 82]), this method is denominated

as the Variance of Residuals (VR) method, inspired by the fact the initial definition

of Fk(i) (in [67]) has been made in terms of the variances of the residuals given by

P i
k(d)− αik − βik × d, and not in terms of their standard deviation. Because of that, when

used as initially defined, the slope of the fitted line has to be divided by 2 before being

considered an estimate of the Hurst parameter value.

43

2.4.6. Periodogram

The Periodogram method is based on the analysis of the spectral domain of the

self-similar process, and more particularly on the fact that, for stochastic processes, the

spectrum f(λ) can be taken out of the autocorrelation function γ(k) [38], as indicated by

(2.56) where eix expands according to the formula of Euler for complex numbers:

f(λ) =
+∞∑
j=−∞

γ(j)× eijλ. (2.56)

Thanks to the definition of γ(k) (see section 2.2.2.), f(λ) may be approximated by cf ×

|λ|1−2H when λ → 0 (expression (2.57)), where H is the Hurst parameter and λ is the

frequency:

f(λ) ∼ cf × |λ|1−2H , when λ→ 0. (2.57)

The Periodogram proposes to approximate f(λ) by I(λ), defined in (2.58), where

N represents a predefined number of samples that ultimately delimits the calculations to

a finite and computationally supportable number, and γ̂(j) is a statistic similar to the

autocorrelation function of N samples, defined as in (2.59):

I(λ) =
1

N

N−1∑
j=−(N−1)

γ̂(j)× eijλ, where (2.58)

γ̂(j) =
i

N

N−|j|−1∑
k=0

(Y (k)− E(Y))(Y (k + |j|)− E(Y)). (2.59)

It can be shown [38, 87] that the Periodogram I(λ) can be further simplified into form

(2.60), which embodies the most comfortable way of obtaining its values:

I(λ) =
1

N

∣∣∣∣∣
N−1∑
j=0

(Y (j)− E(Y))× eijλ
∣∣∣∣∣
2

. (2.60)

44

The Hurst parameter estimation is obtained by calculating the Periodogram for

several frequencies λk bigger than 0, and by fitting the logarithms of I(λk) against the

ones of λk. For the fitting procedure, it is common to consider only the values of λk

that are closer to the origin (e.g. in [61], the authors used only 10% of the 10000 points

for which I(λk) was calculated). As hinted by (2.57), the Hurst parameter can then be

retrieved from the formula H = (1− β)/2, where β is the slope of the fitted line.

If it was not for the fact that I(λ) constitutes a bad estimator of the spectral

function [58], and for the fact that the values of the said density function oscillate a

lot when calculated for realisations of the stochastic process (see Figure 2.10 and pay

special attention to the indicated R2 value), this estimator would be suitable for point-

by-point estimation, as (2.59) could be easily adapted to retrieve a value of I(λ) for each

realisation of {Y (t)}t∈N, without requiring the recalculation for all the previous values of

the series. Nonetheless, the estimations returned by the point-by-point implementation

of this method would suffer from the bias introduced by the incremental calculation of

the average E(Y).

Figure 2.10 contains the graphical representation of the Periodogram method. As

can be seen, contrarily to the previously described methods, it is difficult to identify the

linear relation in the log-log plot, even for small values of log(λ). The estimator was fed

with a series simulating an fGn containing 131072 points, which had an expected Hurst

parameter of 0.85. The estimated scaling exponent, however, was far from the expected

value, as the application of the previously described procedure to 10% of the 1000 points

of the chart (the ones most to the left), returned an Hurst parameter value of 0.79.

The previous statements do not render the method worthless for the assessment

of the self-similarity degree of a given empirical series. If handled with caution and if

implemented in the right way, the Periodogram can be used to retrieve good estimations

of the Hurst parameter. For instance, the λk can be constructed in such a way (e.g.

λk = λk−1×Factor) their respective logarithms are equally distributed in the x-axis of the

log-log plot [61], resulting in a more balanced analysis of the fitted points. Nevertheless,

the graphical analysis should never be disregarded, as the estimation depends critically on

the number and set of points chosen to be fitted. For example, when repeating the previous

experience (Figure 2.10) using exponentially spaced frequencies, and after observing the

45

Figure 2.10: The Periodogram log-log plot for an fGn with expected Hurst parameter equal to

0.85. The estimated Hurst parameter value (obtained using 10% of the points most to the left

in the chart) was 0.79.

plot carefully, 950 coordinates (out of 1000) were chosen to be fitted, giving rise to an

estimate of the Hurst parameter of 0.86 (recall that the expected value is of 0.85). Because

of these specific requirements, this method does not pose a particularly attractive solution

for online applications, and it was decided not to consider it further.

2.4.7. Whittle Estimator

The Whittle Method (see e.g. [38, 58, 59, 61]) is based on the Maximum Likelihood

Estimation of some of the parameters of long-range dependence, namely of the Hurst

parameter. Analogously to the Periodogram, this method draws also on the spectral

density of the self-similar stochastic process, and aims for the discovery of the parameters

that minimise a goodness of fit function Q(H), after assuming a predefined model for the

spectral density. The function that one needs to minimise is usually written as in (2.61),

where f(λ) is as previously defined, and fH(λ) is the function describing the spectral

46

density of the presumed model, which in this case, depends on the Hurst parameter H:

Q(H) =

π∫
−π

f(λ)

fH(λ)
dλ (2.61)

If the functional form of the spectral density is only assumed for the frequencies near 0,

the method is called local Whittle estimator (more on that subject can be found on [88]).

As the calculation of the spectral density is computationally intensive (the definition

of f(λ) may be found in section 2.4.6.), the approximation given by the Periodogram I(λ)

is commonly used as a substitute for the true spectral density function (equation (2.62)):

Q̂(H) =

π∫
−π

I(λ)

fH(λ)
dλ. (2.62)

To make the calculations feasible, the integral in (2.62) has to be approximated by a

Riemann sum (2.63), defined for 2K different λk values:

Q̂(H) =
2K∑
k=0

I(λk)

fH(λk)
, where λk = πk/K − π. (2.63)

If the fact that the spectrum is symmetric at the origin is taken into consideration, the

minimisation of (2.63) resumes itself to the minimisation of (2.64), which is the most

computationally efficient form of Q(H):

Q̂(H) =
K∑
k=1

I(λk)

fH(λk)
, where λk = πk/K. (2.64)

The confidence interval of the output value is logically dependent of the number of points

K considered in the Riemann sum, and can be formalised by (2.65), where Ĥ is the

estimate of the Hurst parameter:

√
K(Ĥ −H)−→N→∞G(0, 1)

√√√√2

(
1

2π

∫ π

−π

(
d

dH
log fH(λ)

)2

dλ

)−1
. (2.65)

47

The Whittle Estimator is principally known by three major facts: (i) it is asymptot-

ically correct [38], (ii) it explicitly provides the estimation with the confidence intervals

(see expression (2.65)), and (iii) it does not produce any kind of graphical outputs. The

last mentioned fact is presented as a curiosity of this method, as it is common for this

type of methods to provide some kind of a graphical perspective of self-similarity.

Despite of the first two presented advantages, the method has two major drawbacks.

First of all, it needs at least twice the computations of the Periodogram method, and

second of all, its operation lies on a strong assumption about the model of the sequence

under analysis (the method presumes the functional form of the autocorrelation), which

may not be known at the beginning of the procedure or may not exactly hold for empirical

traces, which may lead to erroneous estimations of the Hurst exponent [38, 59, 58]. It is

also true that this method can be fooled by periodicity [37], which may lead the estimator

to categorise a periodic signal as being self-similar, and by trends (for which it produces

erroneous results for the Hurst parameter). These disadvantages should not be perceived

as prohibited for the usage of this method, but they are certainly not desirable for an

online estimator, being this the main reason why this method is not going to receive any

further consideration.

2.4.8. Wavelets-Based Estimator

In 1998, inspired by the apparent urge to efficiently estimate the parameters of

long-range dependence, Darryl Veitch and Patrice Abry proposed Wavelets [68] as a new

means to analyse self-similar processes, and to obtain estimates of the said parameters.

The method that is nowadays known as the Abry Veitch (AV) estimator [89], is based on

the recursive decomposition of the signal under investigation into a set of detail {dj(k)}k∈Z
and approximation coefficients, and on the suitable analysis of that coefficients. For an

exhaustive description of these concepts and of how to calculate the detail coefficients,

the reader is referred to section III. A. of [90].

In [91] it is stated that, if the family of wavelets is defined by {ψj,k(t) = 2−j/2ψ0(2
−jt−

k)}j=1,...,J , where J,K ∈ Z, the estimation of the Hurst parameter is achieved by fitting

a line to the points defined by (j, log2(µj)), where j is as previously defined (also referred

48

to as the octave) and µj is the variance of the detail coefficients, defined by

µj =
1

nj

nj∑
k=1

d2j(k), where nj is the number of detail coefficients for octave j. (2.66)

The last presented metric (µj) may be understood as a measure of the amount of energy

of the transformed signal at octave j and, under the long-range dependence assumption,

its logarithm should depend linearly of the latter, being the slope β of the line written in

terms of the Hurst parameter: β = 2H − 1.

The AV estimator is characterized by its many advantages. The method is fast,

robust to trends and small deviations from stationarity, and may be implemented as a

real-time estimator (all these advantages are duly explored and justified in [68, 89, 91]).

Being its proposers perfectly aware of all these properties, specially of the last one, the

procedure that handles the process as an incoming stream of points, in a computation-

ally efficient manner, is now protected by the international patent application number

PCT/AU1999/000077, entitled Real-Time Estimation of Long Range Dependent Parame-

ters [92]. The authors of this patent are thus, pioneers in the identification (and modifica-

tion) of the methods that can be used to estimate the Hurst parameter in a point-by-point

manner, though it has been mostly applied to data series with an increasing number of

points, rather than to sliding windows of values. In chapter 3, it is argued that the pro-

cedures with the operational model referred in last are actually more useful within the

scope of this thesis.

Because the AV method is protected by a patent application, and taking into consid-

eration the competitive industrial environment in which this work was conducted in, the

wavelet method was not implemented in its point-by-point form. A retrospective version

of this estimator, with a computational complexity of O(n log(n)), was used to arbitrate

the precision of one of the self-similar sequences generators presented in chapter 4.

49

2.4.9. Higuchi Method

The estimator entitled Higuchi Method, named after its creator [93], proposes the

analysis of the quantity L(m), designed in (2.67), as a means to estimate the scaling

exponent of a self-similar process:

L(m) =
N − 1

m3

m∑
i=1

⌊
m

N − i

⌋ bN−i
m c∑
l=1

∣∣∣∣∣∣
i+lm∑

j=i+(l−1)m+1

X(j)

∣∣∣∣∣∣ . (2.67)

In (2.67), b.c denotes the truncation function, sometimes referred to as the floor function,

which is the transformation that returns the biggest integer smaller than x, and N denotes

the total number of samples of the empirical sequence submitted to investigation. Once

again, the referred analysis involves fitting a line to the logarithms of the values of L(m)

and of m, particularised for the several aggregation scales mk. An estimate of the Hurst

parameter can then be obtained by using the formula H = β + 2, where β is the slope of

the fitted line.

As can be concluded from careful observation of (2.67), the computational complex-

ity of this method is extremely high, mostly because L(m) is calculated for overlapping

blocks, instead of doing so for non-intersecting windows of values. The philosophy in

which it draws on is similar to the one of the AMT for n = 1, but its exaggerated level of

complexity does not result into a proportional gain in terms of precision. Furthermore,

as stressed out by Dieker [38], the smallest aggregation scales should not be taken into

account during the fitting procedure, suggesting that the method may be biased for that

scales. As so, the Higuchi method will not be object of further exploitation in this thesis.

2.4.10. Hurst Exponent by Autocorrelation Function

As a clear demonstration that the interest around the subject of assessing the self-

similarity degree is actual, in 2006, Gubner and Kettani of [70] proposed a new method for

estimation of the Hurst parameter, and termed it of Hurst Exponent by Autocorrelation

Function (HEAF). The basis of their proposal lies on the autocorrelation function γ(k)

of the self-similar process (in the sense described by (2.4)), which can be simplified into

50

the form depicted by

γ(k) =
1

2

(
|k + 1|2H − 2|k|2H + |k − 1|2H

)
. (2.68)

If the autocorrelation is calculated for k = 1, the previous formula degenerates into

(2.69), which can then be solved for H, providing for an immediate estimate for the

Hurst parameter (expression (2.70)). The authors go even further when stating that this

tool can also provide confidence intervals, superiorly and inferiorly limited by the values

of H ± 5/
√
N , where N is the total number of occurrences of the exactly second order

self-similar process:

γ(1) = 22H−1 − 1 (2.69)

⇔ H =
1

2
log2(γ(1) + 1) +

1

2
. (2.70)

As defined, the method seems rather obvious and presents itself as a low computa-

tional complexity procedure. However, the author of this thesis is of the opinion that the

method does not fully capture the self-similar properties of a given sequence of values,

because it only explores the relations between the points that are distanced by a lag of

1 (recall that γ(1) is the autocorrelation between Y (t + 1) and Y (t), for t ∈ N). It is a

fact that exactly second order self-similar processes should respect (2.68) in general, and

(2.69) in particular, but they are not the only type of stochastic processes that fulfil the

condition mentioned in last.

After understanding the method proposed in [70] and after having developed two

self-similar sequences generators, the author of this thesis has thought about a construc-

tion that would drive the procedure in [70] into the conclusion that the process under

observation is long-range dependent when, actually, it is not. Such sequences can be ob-

tained using the procedure presented by expressions (2.71) and (2.72), where p2 = 22H−2

(refer to chapter 4 for an explanation about this particular construction):

Srd(0) = G(0, 1); (2.71)

51

Srd(t) = G ((2p2 − 1)× Srd(t− 1), 4p2(p2 − 1)) , for t > 0. (2.72)

The process {Srd(t)}t∈N, generated according to the previous expressions is short-

range dependent since, as can be concluded from careful observation of (2.72), each point

depends only on the previous one. Nevertheless, it fulfils condition (2.69), as can be

confirmed by the reasoning for the calculation of the autocorrelation for k = 1, represented

by expressions (2.73) and (2.74):

γSrd(t)(1) =
E ((Srd(t− 1)− 0)((2p2 − 1)Srd(t− 1)− 0))

E(Srd(t)− 0)2
= (2.73)

= (2p2 − 1)
E(Srd)

2

E(Srd)2
= 22H−1 − 1. (2.74)

This reasoning does not invalidate the method, but reinforces the idea that the

Hurst parameter estimation has to be made for several aggregation scales and not for one

only. The method works well when the properties of the series are known (except for the

value of the Hurst parameter), being otherwise only useful to obtain the scaling exponent

of points that are close to each other. Extending the rationale of the estimator to higher

aggregation blocks would not be difficult, as for each aggregation scale, the process defined

in (2.3) behaves precisely as the non aggregated one. However, this would increase the

computation complexity to a level comparable with any other Hurst parameter estimation

method. This is the main reason why the comparative analysis in [70] or elsewhere [60, 94]

do not seem to be fair.

If HEAF was available by the time the first overview to the state of the art was

conducted, the author would have consider it as a potential candidate to a real-time esti-

mator, because it draws on a statistic that may be calculated in an incremental manner.

As the method was published during the problem investigation phase, it was only discov-

ered in a final stage of the Ph.D. research programme, during one of the last revisions to

the state of the art. Nonetheless, the author thought it would be beneficial to include his

personal analysis of the procedure, while emphasising that it will not be used in the scope

of this research project. The pertinence of this analysis is justified during the discussion

of some of the recent works in the area, namely of [25, 26], included in chapter 5, because

some of those works are closely related with HEAF.

52

2.5. Conclusion

The chapter has introduced some of the most important concepts related with self-

similarity. It contains the definition of self-similarity, Hurst parameter, exactly second

order self-similar process and asymptotically second order self-similar process. It presents

the notions of persistence and anti-persistence, and it specifies how they relate to the ones

of long-range dependence and short-range dependence. The stochastic processes known by

the acronyms fBm and fGn were described with detail, for they play an important role in

the modelling of network aggregated traffic. Special attention was given to the definition

of Random Walk and of its first order differences process, mostly because they are going

to be key concepts on the subject of chapter 4.

The bridge between the theory and its application in the networking area is built

in the intermediary section of the chapter. The description was made resorting to several

prominent studies that can be found in the literature, aiming for the demystification of the

subject at hands. Self-similarity is known to be embedded in the amount of information

per time unit of the traffic, resulting from the aggregation of several flows coming from

different terminal nodes of the network (e.g. a LAN). A possible explanation for that

fact was provided by Taqqu et al. [48], who proved that the superimposition of several

independent ON/OFF processes with heavy-tailed distribution functions approximates a

long-range dependent series. A scaled and shifted fGn is often proposed as the model for

the associated process.

The presence of long-range dependence in the network traffic impacts the way the

protocol data units arrive to aggregation nodes, and explains why they may arrive in

bursts. The necessity to understand how burstiness is reflected in queueing and congestion

avoidance has been fuelling the interest of researchers and explains the numerous scientific

contributions in this area of knowledge.

After describing and analysing several methods for the assessment of the self-similarity

degree of an empirical sequence of values, it became clear that the bound between some

of the estimators and the retrospective manner in which they are usually utilised, cannot

be broken without irremediably loosing the accuracy of the calculations. Some of the

estimators were said suitable for offline analysis, but not robust enough to handle an

53

incoming stream of data, either because they require the estimator parameters to be care-

fully adjusted or because they make assumptions that may lead to erroneous estimation

of the Hurst parameter. Others yet presume human intervention before the production

of meaningful estimates. From all the methods, three were pointed out as potential can-

didates for online analysis, because their retrospective character may be momentarily or

definitely circumvented without prejudicing their precision.

It was said that, to complement the analysis made to the self-similar sequences

generators described in chapter 4, two additional retrospective estimators were selected

for implementation: the RS method, for historical reasons; and the DFA estimator, for

its robustness. The method based on the wavelets has already been implemented as a

real-time estimator, being that particular instantiation protected by a patent applica-

tion [92]. Because of that, its implementation as a point-by-point estimator will not be

tempted during the remaining part of this work. The O(n log(n)) complexity procedure

is, nonetheless, going to be used as an impartial evaluator of the quality of one of the two

above mentioned algorithms for the simulation of approximate fGn.

54

Chapter 3

Fast and Windowed Estimation of

the Hurst Parameter

3.1. Introduction

In the previous chapter, some of the most important concepts of the self-similarity

theory were used to introduce the methods to estimate the Hurst parameter, being the

latter designated as the de facto measure of the self-similarity degree of a given time

series. Most of the methods are said retrospective, because they require the series under

analysis to be entirely processed more than once for an unique assessment of the referred

exponent. Their operational model is thus highly expensive in terms of computational

resources.

Up until now, the analysis of network traffic traces has been mostly conducted offline,

in which case the computational complexity of the estimators does not pose a direct

problem. Only more recently, the curiosity about possible real-time applications of this

type of assessment was considered, fomented by the proliferation of new Internet services,

that increased the dynamics and complexity of the Internet and of all its subservient

networks. The estimator based on wavelets [89] was the first being proposed as a real-

time point-by-point estimator.

This chapter describes how three (previously identified) Hurst parameter estimators

can be formally adapted to produce results in a continuous and fast manner. After

presenting the philosophy of a windowed estimator and the reasons that led to their

55

development in the scope of this thesis, the same procedures are further modified, so as

to comply with the newly described requirements. A brief discussion about the trade-off

between precision and real-time compliance is included, prior to the section that compares

the point-by-point and the windowed-modified estimators. The last section wraps up the

most important remarks of the chapter.

The set of modifications that enable the VT method to operate as a windowed esti-

mator were briefly enumerated in paper [29]. Herein, the formalisation of such alteration

is postponed to the second section of the chapter. The windowed estimators were on the

origin of most of the results discussed in [29, 30].

3.2. Point-by-Point Estimators

Before discussing the above mentioned modifications, it is pertinent to elaborate on

the notions of real-time and point-by-point estimation. Real-time is the designation given

to a system or to a procedure that provides results in a relatively short (depending on the

context) and predictable time frame, as a response to an external event. In this work, the

real-time Hurst parameter estimator is the (computational) procedure that is capable of

completing the analysis of a data series and returning an accurate estimate of the referred

parameter, in a period of time upon which the processing device can act in. Because

the estimation of the self-similarity degree is done for an arbitrarily long series of points,

real-time compatibility forces the procedure to be independent of the number of points to

be analysed. In other words, the only way of forcing an Hurst parameter estimator to be

real-time compliant, is to make it analyse the series in a point-by-point manner. Herein,

the point-by-point estimator is the algorithm capable of returning a value of the Hurst

parameter for each point of the series under analysis. Additionally, such procedure has to

perform those computations in an efficient manner, avoiding recalculation over the entire

series each time it is fed with a new point of the self-similar series.

Conceptually, such objective can be accomplished by assessing the possibility to

construct a recursive algorithm that operates over a (finite) set of convenient auxiliary

variables (AV1, AV2, ..., AVl, where l is a fixed positive integer number) that summarise

the calculations made so far. These variables are used to simply update (instead of

56

completely recalculate) the next estimate of the parameter, each time a new point of

the process becomes available. The operational model of a point-by-point estimator is

depicted in Figure 3.1.

Figure 3.1: Point-by-point Hurst parameter estimation using a modified method: every time a

new point of the series is available, it is fed to the estimator as its only input, originating a new

estimate for the Hurst parameter in return.

The main purposes of a point-by-point estimator is to (i) provide an historical and

continuous perspective of the self-similarity degree of the time series under analysis, while

(ii) opening the possibility to act upon the outcomes of that view in a real-time manner.

These two features seemed to perfectly fit the objective of studying the impact of a

network level intrusion in the self-similarity degree of the traffic. The term seemed is

emphasised because, as it will be explained in section 3.3., the point-by-point estimator

does not embody the most adequate tool for such investigation.

3.2.1. Modified Embedded Branching Process

The modification of an estimator constitutes an effort to describe it as an O(n)

complexity algorithm, while bearing in mind such endeavour may encompass small devia-

tions to its original definition. This requires the identification of the previously mentioned

57

set of auxiliary variables that, within the context of a specific method, can summarise

the analysis conducted for t − 1 points, in such a way that they can be used to rapidly

update the Hurst parameter when the point with time index t becomes available. The

first method modified during this research work was EBP and, during the remaining part

of this document, the designation Modified Embedded Branching Process (MEBP) will

be used to refer its adapted point-by-point implementation. Notice that the following

explanation makes use of the same notation and definitions introduced in section 2.4.4..

Recall that EBP makes use of the so-called crossing tree structure that, according to

[69], is embedded in any self-similar process. The number of crossings Nk that define the

tree, for each level k = 1, ..., K, is normally calculated following an horizontal perspective,

meaning that for each level k, the process Tk(i) is entirely constructed before moving to

the next level. Therefore, using that estimator to get an historical assessment of the Hurst

parameter requires that perspective to be changed from horizontal to vertical. This new

calculation philosophy requires that, for a given moment in time t, the previous number

of crossings for each level is known.

Consider that {X(t)}t∈N has met t−1 occurrences and that, until that moment, the

number of times the process crossed the family of horizontal lines defined by f(k) = δ2kZ

is given by Nk(t− 1). Consider also that the line that was last crossed at level k is given

by y = CLk(t − 1). When a new point of the process {X(t)}t∈N arrives, these auxiliary

variables (Nk(t − 1) and CLk(t − 1)) can be actualised using formulas (3.1) and (3.2),

where b.c denotes the floor function, Ck(t − 1) is the number of crossings for level k

between occurrences X(t− 1) and X(t), and sign(x) is defined as sign(x) = x/bxc:

Nk(t) = Nk(t− 1) + Ck(t− 1), where Ck(t− 1) =
⌊
|X(t)−CLk(t−1)|

δ2k

⌋
; (3.1)

CLk(t) = CLk(t− 1) + sign (X(t)− CLk(t− 1))× Ck(t− 1)× δ2k. (3.2)

The updated values of Nk(t) can then be used to get the values of µk (equation (2.52)),

and by means of a linear regression, the Hurst exponent can be retrieved.

The two first formulas of this section show that the actualisation of the critical

58

variables for estimation of the Hurst parameter, using the EBP method, can be made

by means of a small number of operations. They also show that the complexity of the

computations does not depend on the index of the point to be processed by any means,

only from the number of crossing levels taken into consideration. Every time a point

of the process arrives, the number of crossings is calculated using the distance from the

current point and the previous crossing line. This number, divided by the scale factor

δ2k expresses the total number of lines it crossed. Finally, the crossing line (given by

CLk(t)) is updated so as to reflect the last line of the family f(k) to be crossed, for future

assessments.

The last thing one must take into consideration are the characteristics of the em-

pirical sequences fed to this modified estimator. During an online analysis, one may

not know many of the characteristics of the data series as, for example, its average or

variance. However, in section 2.4.4., it was emphasised that one of the requirements of

EBP is that the input series first order differences has to be centred at the origin. It

was also mentioned that the δ value has to be set accordingly to the standard deviation

of that process. Thus, the application of MEBP, as defined, still requires the empirical

realisations of {X(t)}t∈N (or of its first order differences process, to be more precise) to

be normalised on-the-fly, before being processed.

Normalisation requires the average and the variance to be calculated in a point-by-

point manner, which may be done via the utilisation of the well-known formulas (3.3) and

(3.4), where Et(Y) and Vt(Y) denote respectively the average and the variance of exactly

t samples of {Y (t)}t∈N:

Et(Y) =
(t− 1)× Et−1(Y) + Y (t)

t
; (3.3)

Vt(Y) = Et
(
Y 2
)
− (Et(Y))2 . (3.4)

The value X(t) that should be used for counting the number of crossings to the several

families of lines f(k) is retrieved from X(t) = X(t− 1) +Y (t), where Y (t) is the result of

normalising the most recent empirical value of the first order differences series (the latter

is herein denoted by Y ′(t)). Equation (3.5) describes the transformation suffered by the

59

non-normalised input series {Y ′(t)}t∈N, which is applied before each point of the series

enters MEBP:

Y (t) =
Y ′(t)− Et(Y ′)√

Vt(Y ′)
. (3.5)

However, this procedure is not totally transparent and it is unavoidably associated with

the problem of performing normalisation in an incremental manner. During an initial

period (which may be more or less long, depending on how shifted and variable the

empirical series is), the incoming points are differently affected (scaled) by the momentary

values of the average and of the variance, which may not be equal to the exact values

to which that statistics will eventually converge. This fact introduces some bias into

the calculations, as the number of crossings depends drastically on the normalisation

prerequisite. Eliminating the bias would only be possible using retrospection, which

would ultimately render the method useless for real-time estimation. Thus, when using

MEBP, one must take into account that the method may be overestimating the Hurst

parameter if the standard deviation is smaller than expected and the sequence of values

is shifted (i.e. not centred at 0).

3.2.2. Modified Variance Time

The second method selected to be modified is the VT estimator. In accordance with

the nomenclature used in the previous section, the version of VT capable of estimating

the Hurst parameter in a point-by-point manner for an increasing set of values is termed

herein Modified Variance Time (MVT).

As explained in section 2.4.2., VT assesses the degree of self-similarity of a given

stochastic process by aggregating the first order differences process several times, by

calculating the variances of each one of the aggregated series, and by exploring the equality

given by V(Y)) = m2−2H
k V

(
Y (mk)

)
. Thus, the auxiliary variables of this estimator are the

variances of the aggregated process for each mk considered, that is to say V
(
Y (mk)

)
, and

the variance of the process itself, V(Y). But while the variance can be easily calculated for

a normal series of values in a point-by-point manner, the same cannot be affirmed about

the variances of the aggregated series. In fact, the value of V(Y) can be directly obtained

60

using formulas (3.3) and (3.4), while the precise values of V
(
Y (mk)

)
can only be obtained

when the last occurrence of {Y (mk)(i)}i∈N, say Y (mk)(Tk), is correctly constructed (Tk is

the index of the k aggregated block to which Y (t) belongs).

Consider that {Y (t)}t∈N has met t−1 occurrences and that, until that moment, the

previously identified k auxiliary variables where already calculated in a point-by-point

or retrospective manner. When point Y (t) becomes available, V(Y) can be immediately

updated using (3.3) and (3.4).

In order to actualise V
(
Y (mk)

)
, one has to first construct the most recent point of

the aggregated series {Y (mk)(i)}i∈N which, unfortunately, requires mk points. In other

words, the newly available realisation Y (t) can only be seen as a small contribution of

Y (mk)(Tk) because, by definition, the latter is given by (3.6):

Y (mk)(Tk) =
Y (Tkmk) + ...+ Y (t) + ...+ Y ((Tk + 1)mk − 1)

mk

. (3.6)

Notice that, in the previous equation, the point that is entering the estimator is strategi-

cally placed within the dividend of the fraction, precisely to emphasise that its statistical

weight in the construction of Y (mk)(Tk) is given by the factor 1/mk.

To overcome this minor setback, consider the approximation of Y (mk)(Tk) given by

Y (rk)
aux (Tk) =

Tkmk+rk∑
j=Tkmk

Y (j)

rk
, where rk = 1, ...,mk. (3.7)

Allow the incoming point Y (t) to be the rthk point of the most recent block of {Y (mk)(i)}i∈N,

previously denoted by Y (mk)(Tk). Notice that the new auxiliary variable Y
(rk)
axu (Tk), defined

in (3.7), is the average of the rk most recent (and available) values of {Y (t)}t∈N belonging

to the aggregation block under consideration (i.e. it is the only available until that

moment). Note also that the value of the referred variable tends to the one of Y (mk)(Tk),

as the number of points available to construct the aggregation block increases, as shown

by expression (3.8):

Y (rk)
aux (Tk) −→ Y (mk)(Tk), as rk → mk. (3.8)

61

It is obvious that, when the incoming point is the first contribute to Y (mk)(Tk), the

auxiliary variable takes its sole value (expression (3.9)), and that once mk values become

available, the said variable is equal to Y (mk)(Tk) (expression (3.10)):

Y (rk)
aux (Tk) = Y (t+ 1), if rk = 1; (3.9)

Y (rk)
aux (Tk) = Y (mk)(Tk), if rk = mk. (3.10)

While a given aggregation block is not fulfilled yet, the value of Y
(rk)
aux (Tk) can be recursively

updated each time a new point enters MVT, by means of the algorithm formalised by

(3.11) and (3.12):

Y (rk+1)
aux (Tk) =

Y (rk)(Tk)× rk + Y (t)

rk + 1
; (3.11)

rk ←− rk + 1, if rk < mk. (3.12)

The values of V
(
Y (mk)

)
can then be approximated using the ephemeral values of Y

(rk)
aux (Tk),

as described by (3.13) and (3.14):

EauxTk

(
Y (mk)

)
=

(Tk − 1)× ETk−1
(
Y (mk)

)
+ Y

(rk+1)
aux (Tk)

Tk
; (3.13)

V(Y (mk)) = EauxTk

(
Y (mk)

)2 − (EauxTk

(
Y (mk)

))2
. (3.14)

The iterative actualisation of EauxTk

(
Y (mk)

)2
, required for the calculation of the variance in

(3.14), is not included, because it is also a direct application of (3.13), only for different

variables. Once the aggregation block is complete, the average of the aggregated series

(and of its square values) can be definitely substituted by the correct value, as formalised

in the next expression:

ETk
(
Y (mk)

)
= EauxTk

(
Y (mk)

)
, if rk = mk. (3.15)

62

The reasoning is actually simpler than it looks. The algorithm proposes updating all the

variances in a point-by-point manner, as previously discussed. As for each aggregated

series, the last block may not be completed, MVT suggests using the aggregation of the

rk < mk values available, until the required amount of points is sufficient to fill up that

aggregation block. This procedure implies disrespecting the definition of the original

method for some moments but, as that definition is restored once enough points are

available, the foundations and the precision of the method are maintained. Since for a

fixed and finite number of block sizes k, the number of variables needed for estimation

of the Hurst parameter is also fixed and finite (it does not increase with the number

of samples to be observed), and since all the variables can be upgraded using recursive

formulas, MVT can be used to estimate the Hurst parameter in a point-by-point manner.

Unlike MEBP, MVT does not presume that the input process is normalised. MVT inherits

the robustness of the variance metric which, by construction, is independent of the average

of the stochastic process under analysis.

3.2.3. Modified Absolute Moments Time

The point-by-point adaptation of VT was made by first describing the auxiliary

variables (the variances) in term of expected values. As the expected value of an arbitrary

process can be updated in an iterative manner, the reasoning was reduced on how to

account for the incomplete aggregation blocks. The adaptation of AMT to a point-by-

point estimator (termed herein Modified Absolute Moments Time (MAMT)) can be made

by following the same line of thought applied to MVT and, given that the means to handle

the incomplete aggregation blocks and the formulas to update the averages were already

disclosed, such task is confined to the demonstration that, under certain restrictions, the

absolute moment of a stochastic process can be defined in terms of expected values.

For clarity reasons, the definition of absolute moment of order n of a stochastic

process {Y (t)}t∈N was transposed here (expression (3.16)):

Mn(Y) = E|Y (t)− E(Y)|n, where n ∈ N. (3.16)

For odd values of n, expression (3.16) cannot be simplified in a trivial way. However, if

63

n is even, the symbol for the absolute value can be replaced by parenthesis (depicted in

expression (3.17)) and the Newton formula can be applied to the term on the right side

of the equality (3.17):

Mn(Y) = E(Y (t)− E(Y))n, if n ∈ 2N. (3.17)

The expansion of (3.17) according to Newton is given by (3.18), where (ni) denotes the

combinations of n elements in subsets of size i, E(Y)i is the expected value of {Y i(t)}t∈N,

and (E(Y))n−i is the power of n− i of the expected value of {Y (t)}t∈N:

Mn(Y) =
n∑
i=0

(−1)i(ni)E(Y)i(E(Y))n−i, if n ∈ 2N. (3.18)

E(Y)i can be efficiently calculated, for any i = 1, ..., n, using formula (3.3). As for

the expected values of the aggregated series, the same auxiliary variables Y
(rk)
aux (Tk) that

were used for MVT (see section 3.2.2.), can be used to momentarily update the referred

averages, and to retrieve an Hurst parameter estimate in a point-by-point manner, after

feeding the logarithms of the aggregation scales mk and of the k absolute moments to a

least squares method (see section 2.4.3.). The only condition AMT must comply with,

is that the order n of the absolute moment has to be an even number. If the number of

aggregation scales is finite, the number of necessary variables and operations for upgrading

them is also finite.

The actual implementation of AMT for the sake of this investigation is not critical,

because its use does not bring any gain to the investigation, when compared to MVT.

MVT is simpler and appropriate for the task. The previous description was included here

for the sake of completeness, since AMT was identified as being a suitable candidate for

the point-by-point adaptation, after VT. For these reasons, this estimator will not receive

further consideration, apart from the brief discussion about its potential implementation

as a windowed estimator, in section 3.3.3..

64

3.3. Windowed Estimators

It soon came to the attention of the author that the values returned by the point-

by-point methods suffer from the same effect any other statistical measure suffers: the

law of large numbers, i.e., when calculated for an increasing set of points, the Hurst

parameter converges to a stable value (the average) and, once a sufficiently large number

of samples has been processed, the estimated values are no longer sensitive to variations

of the incoming values. Consider visiting section 3.4.3. for a graphical perspective of

these words.

The aforementioned drawback redirected the investigation towards the means to get

local scope (instead of global) Hurst parameter estimates. The main goal was still to do

so in an efficient and point-by-point manner. The most logical way of proceeding was to

define a sliding observation window of values, for which the Hurst parameter was to be

estimated.

The sliding window philosophy that was considered in this thesis is schematised in

Figure 3.2, where it is emphasised the fact that the fixed set of points under observation

is being updated in a point-by-point manner: when a new realisation of the process under

analysis becomes available, the observation window is shifted in one position, meaning

that the oldest point of the set is discarded, and the new one is included. From now on,

to avoid ambiguities, the expression step-by-step will be used to refer the point-by-point

movement of the windowed estimators, while the previous designation will remain valid

for the incremental methods. It may be noticed that, sometimes, the designations local

scope Hurst parameter estimates or estimation are respectively used to refer to the values

returned by the windowed estimators, or to the procedure itself. The designation global

scope Hurst parameter value is used to refer to the estimate that reflects the self-similarity

degree of the entire series. Incremental estimator may also be used interchangeably with

point-by-point estimator, in contexts where the historical perspective of these procedures

is to be emphasised.

The application of a retrospective method to the observation window does not em-

body an attractive choice for an efficient method, specially after having described point-

by-point estimators. Again, the interest falls upon the possibility to, somehow, restrict

65

Figure 3.2: The sliding window philosophy: each time a new realisation of the process becomes

available, the oldest point within the observation window is discarded and the window is shifted

to the right by one position, so as to include the new value.

the number of operations to the processing of the incoming (as in point-by-point estima-

tors) and of the outgoing points only. Figure 3.3 schematises the way of functioning of

the procedure where the window shift implies the actualisation of the auxiliary variables,

so they reflect the newly arrived point (say X(L+w+ 1), where w is the size of the win-

dow) and, simultaneously, discard the information concerning the value that exits from

the observation window (X(L)). This new type of estimator requires the values inside the

observation window to be stored against their index, not to be repeatedly processed, but

for the estimator to be capable of eliminating their effect in the auxiliary variables when

they are about to leave. This novel memory structure was not depicted in the conceptual

presentation of the point-by-point estimators.

It should be mentioned that the concept of sliding observation window, or the way

that that concept is to be used herein differs from the ones in e.g. [95, 96]. For example,

while Stoev, Park, Taqqu, Michailidis and Marron [95] have the same notion of obser-

vation window, the concept is not applied in the same way. This last mentioned paper

describes an animation tool, that shows the evolution of the Hurst parameter during a

windowed analysis of a given trace. The authors of the tool presented the curse of the

non-stationarity of a traffic trace as main driver for their work, emphasising the fact that

66

Figure 3.3: Step-by-step Hurst parameter estimation using a windowed-modified method. Every

time a new point of the series becomes available, it is fed to the estimator as its only input. The

modified algorithm erases the impact of the exiting point from the auxiliary variables, and adds

the information concerning the new one.

with this type of analysis, such problem may be solved. As the Hurst parameter values

are calculated in a retrospective manner, and to keep the computational complexity low,

the movement of the observation window is defined by jumps and not on a point-by-point

manner. The jumps are of the same size of the observation window. The work in [95]

favours the approach taken herein, providing an additional motivation for the develop-

ment of a tool to efficiently assess the local long-range dependence structure of a time

series.

When compared with the tool in [95], the main advantage of the windowed esti-

mator proposed here (see Figure 3.3) is that it enables the construction of a continuous

historical perspective of the local scope Hurst parameter values, instead of providing only

the values obtained for several non-intersecting parts of the series under analysis. The

term continuous is, in this context, utilised to refer to the perspective provided by the

histograms that may be built using the consecutive estimates of the Hurst parameter,

which may appear to be continuous lines for the human eye. The notion of window in

67

[96] (which dates from 2007) is also equal to the one used herein, and the analysis con-

ducted over a stock market related time series was used to produce a (almost) continuous

illustration of the evolution of the local Hurst parameter values. Nonetheless, each one of

those values was calculated in a retrospective manner, by means of DFA.

In the following sections, the methods that were previously modified are going to

be revisited once more, so as to discuss their application as windowed estimators. The

descriptions apply mostly to the cases where the number of points available are already

sufficient to fill up the observation window (i.e. t ≥ w), since for the other occasions, the

windowed estimator behaves like the point-by-point estimators.

3.3.1. Windowed Modified Embedded Branching Process

In section 3.2.1., it was explained how the method designated by MEBP could

be used to assess the self-similarity degree in a point-by-point manner. In order for the

estimator to work, the variables that need to be kept from its retrospective version are the

number of crossings (Nk(t)) and the constant that defines the last crossed line (CLk(t)),

for each level k = 1, ..., K. Each time the stochastic process meets a concretisation, and

once the newly available point is normalised, these two sets of variables are updated using

the recursive formulas (3.1) and (3.2). Using very simple terms, one could say that (3.1)

and (3.2) are only adding the effect of the newly arrived point to the auxiliary variables.

In a windowed estimator, besides having one point entering the observation window,

there is also one leaving. Allow for the leaving point to be denoted by X(L), and the

entering point by X(L+w+ 1), where w is the size of the observation window. Consider

that all the points inside the sliding window are stored in the memory, as suggested in

Figure 3.3, and notice that, as w is a fixed and finite number, the amount of memory is

also fixed and limited for any instantiation of such estimator.

Adding the number of crossings of X(L + w + 1) to Nk(L + w) can be made as

previously described, but subtracting the effect of X(L) requires further consideration.

The ideal situation would be to subtract the exact number of crossings that X(L) inflicted

to Nk(L − 1) when it entered the observation window, w steps in the past. This can be

68

achieved in two different ways: (i) the first comprises storing all the number of crossings

(for each level) made by each one of the points inside the window (Ck(i)i=L,...,L+w); and

(ii) the second implies keeping a third auxiliary variable, denoted herein by ELk(L− 1),

that represents the last line that X(L− 1) has crossed for level k.

The first procedure requires the storage of k × w values, but its application is

straightforward. Each time a point X(L) is leaving the set under observation, the proce-

dure fetches the corresponding number of crossings Ck(L− 1) from the memory, updates

Nk(L+ w + 1), according to equation (3.19), and discards the said value, because it will

not be needed any more. The value of Ck(L+w) can then take the place of the disposed

one. The value of Ck(L + w), in (3.19), is calculated the same way Ck(t − 1) is assessed

in (3.1). Notice that Ck(t − 1) and Ck(L + w) are essentially the same, but are written

using different notations:

Nk(t) = Nk(t− 1)− Ck(L− 1) + Ck(L+ w). (3.19)

The second procedure presumes the calculation of Ck(L − 1) on an online basis, which

means that, when a point is leaving, the number of crossings is calculated as if it was

entering a (global context) point-by-point estimator. The value of Ck(L − 1) is then

subtracted (instead of added) to the value of Nk(t− 1), as depicted by (3.20) and (3.21):

Nk(t) = Nk(t− 1)− Ck(L− 1) + Ck(L+ w), where (3.20)

Ck(L− 1) =

⌊
|X(L)− ELk(L− 1)|

δ2k

⌋
. (3.21)

The auxiliary variable ELk(L) is updated (meaning its previous value may be discarded)

by means of (3.22):

ELk(L) = ELk(L− 1) + sign (X(L)− ELk(L− 1))× Ck(L− 1)× δ2k. (3.22)

As can be seen, none of the recursive formulas depends on the size of the window.

This means that, under certain restrictions, EBP can be used as a windowed estima-

69

tor, being that particular version herein designated by Windowed Modified Embedded

Branching Process (WMEBP).

The next concern is unavoidably related with the restrictions that the input data

series must meet, in order to be compliant with the EBP method. Once more, the data

series has to be normalised before entering the estimator and, this time, such normalisation

should be of local scope as well. This means that the average and the variance of the

empirical input series have to be calculated on-the-fly, for a moving window of values. This

requirement is fully addressed by the notion of moving average, commonly formalised as

in

Et,w(Y) = Et−1,w(Y) +
Y (L+ w + 1)− Y (L)

w
. (3.23)

The variance and the readjusted version of the series can once again be obtained using

(2.45) and (3.5).

The implementation of WMEBP used in the scope of this work is in accordance

with the second approach described in this section. Additionally, the codifications of

the modified versions of this method draw on the least squares method to obtain the

Hurst parameter, according to what was suggested in section 2.4.4., and perform the

normalisation of the series in an online basis, if such is requested in the initialization

procedure.

3.3.2. Windowed Modified Variance Time

The last comments of the previous section suggest that VT can also be modified

to behave like a step-by-step windowed estimator. Such procedure is herein termed of

Windowed Modified Variance Time (WMVT) method.

The means to calculate the variance in a point-by-point manner were enumerated in

section 3.2.2., where it was also described how the last aggregation block of each one of the

{Y (mk)(i)}i∈N series could be taken into account, even for the situations where the required

number of points to fulfil that block was not sufficient. The sliding window estimator can

be constructed in an analogous manner, by defining a novel auxiliary variable for the

70

point or blocks that are leaving the observation window. Once the blocks are fulfilled,

their effect on the auxiliary variables is definitively removed from the latter.

Consider ETk,w(Y (mk)) and ETk,w
(
Y (mk)

)2
as being the main auxiliary variables of

WMVT. Note that, according to the previously introduced notation (see (3.23)), they

denote the moving averages of {Y (mk)(i)}i∈N and {
(
Y (mk)(i)

)2}i∈N, but this time for ob-

servation windows with w/mk values. The definition of moving average for aggregated

series requires one to take into account that the total number of samples w is divided by

mk because, after the aggregation, the number of available samples is reduced by that

factor (hence the value of the divisor in (3.27) and in (3.28)). For the sake of this expla-

nation, assume that w is chosen in such a way that w/mk are positive integer numbers for

each one of the considered aggregation scales. Consider also that Y
(rk)
aux (Tk) and Y

(ek)
aux (Ek)

provide for the approximations of the blocks whose points are entering and leaving the

observation window, respectively. At certain moments of time, these blocks may be si-

multaneously inside and outside of the observation window. The formal definition of the

first of these two variables (Y
(rk)
aux (Tk)) was presented in (3.7), and the second is defined

in a similar manner in (3.24), where Ek denotes the index of the aggregated block of size

mk to which the exiting point Y (L) belongs:

Y (ek)
aux (Ek) =

Ekmk+ek∑
j=Ekmk

Y (j)

ek
, where ek = 1, ...,mk. (3.24)

When the window shifts, variable Y
(ek)
aux (Ek) is updated the same way Y

(rk)
aux (Tk) is, but

using different values. The first is updated by means of (3.25) and (3.26), using the value

of the oldest point of the set under observation (Y (L)), while the second is actualised for

the incoming value, as defined for the point-by-point estimator:

Y (ek+1)
aux (Ek) =

Y (ek)(Ek)× ek + Y (L)

ek + 1
; (3.25)

ek ←− ek + 1, if ek < mk. (3.26)

The values of ETk,w(Y (mk)) and ETk,w
(
Y (mk)

)2
can then be momentarily actualised

71

(or substituted) by drawing on the notion of moving average, as described by equations

(3.27) and (3.28):

EauxTk,w

(
Y (mk)

)
= ETk−1,w

(
Y (mk)

)
+
Y

(rk)
aux (Tk)− Y (ek)

aux (Ek)

w/mk

; (3.27)

EauxTk,w

(
Y (mk)

)2
= ETk−1,w

(
Y (mk)

)2
+

(
Y

(rk)
aux (Tk)

)2
−
(
Y

(ek)
aux (Ek)

)2
w/mk

. (3.28)

EauxTk,w
(Y (mk)) and EauxTk,w

(
Y (mk)

)2
are approximations of ETk,w(Y (mk)) and ETk,w

(
Y (mk)

)2
,

defined for the purpose of preserving the exact values of the latter during the phase where

the aggregation blocks are not completely filled in yet. ETk,w(Y (mk)) and ETk,w
(
Y (mk)

)2
can be definitely updated once enough points have entered or left the observation window.

The following expressions represent the case referred in last, i.e. ek = mk:

ETk,w(Y (mk)) = EauxTk,w
(Y (mk)), if ek = mk; (3.29)

ETk,w
(
Y (mk)

)2
= EauxTk,w

(
Y (mk)

)2
, if ek = mk. (3.30)

The only problem that may rise from this solution, is that the use of formula (3.28) may

inadvertently lead to erroneous (negative) estimations of EauxTk

(
Y (mk)

)2
. This problem is

mostly due to the values that are being used to update this estimate, as the auxiliary

variable
(
Y

(ek)
aux (Ek)

)2
may be overestimating the real value of

(
Y (mk)(Ek)

)2
when ek < mk

(notice that
(
Y (ek)(Ek)

)2
is subtracted to ETk

(
Y (mk)

)2
). An overestimated value results

in subtracting more from ETk
(
Y (mk)

)2
than it was actually added to it, w steps in the

past. Fortunately, this issue may be circumvented.

The solution comprises updating EauxTk
(Y (mk)) and EauxTk

(
Y (mk)

)2
using only the in-

coming block (expressions (3.13)), while the outgoing one is not ready to be removed

(i.e. while the block that is leaving is not completely filled in). Once Y
(ek)
aux (Ek) becomes

equal to Y (mk)(Ek), the last four presented expressions guarantee that the estimator gets

right on track again. This fact introduces temporary instabilities in the calculations, and

72

deviates for brief moments from the original definition of VT and from the windowed

philosophy, since only half of the impact can be measured in a point-by-point manner.

Nevertheless, as this is a temporary situation, it is tolerable and does not depend on the

number of points available nor on the observation window size.

Since for a fixed and finite number of blocks, the number of variables needed for

estimation of the Hurst parameter is also fixed and finite (it does not increase with the

number of samples to be observed nor with the observation window size) and all the

variables can be updated using recursive formulas (that depend only on their previous

values and on the current entering/exiting values), the VT method can be used as a

windowed Hurst parameter estimator. The reasoning demonstrates that the foundations

of the estimator are not altered by the remarks in this section. Some possible errors can

occur during transitory stages, but their reach is limited. The sanity of the method is

maintained via the usage of an artifice that avoids trivial erroneous states, while keeping

the overall precision of the estimator intact.

Interestingly, Hagiwara, Doi, Tode and Ikeda [97] have probably designed one of the

first drafts of a true windowed estimator, based precisely on VT. In [97], they describe

how limiting the amount of inputs of VT, and how calculating the several variances in

concurrent processors, would result in a high-speed estimator. However, such implementa-

tion is still retrospective, as the estimator has still to process all the values of the specified

time frame. They focused on the gain obtained by processing less data, and not on how

the variances could be updated using recursive formulas (as it is done herein). As it is

going to be further elaborated below, the efficiency of such estimator depends on the

size of the considered time frame. The estimator may be practical for small observation

windows, but may present degraded performance when analysing larger sets of data.

3.3.3. Windowed Modified Absolute Moments Time

After the discussion on how to build WMVT, the adaptation of AMT to a win-

dowed estimator is straightforward, and does not require too many considerations. In

section 3.2.3., it was demonstrated that, for even values of n, the order n absolute mo-

ment of {Y (t)}t∈N (or of its aggregated processes) can be written in terms of expected

73

values of the powers of the said process. That, and the description made for WMVT,

are enough to construct the windowed version of this estimator, termed herein Windowed

Modified Absolute Moments Time (WMAMT).

In summary, WMAMT makes use of the previously defined variables (Y
(rk)
aux (Tk) and

Y
(ek)
aux (Ek)), and of the recursive formulas in sections 3.2.2. and 3.3.2., to estimate the

expected values of {Y (t)}t∈N, ..., {(Y (t))n}t∈N and {Y (mk)(i)}i∈N, ..., {
(
Y (mk)(i)

)n}i∈N in a

point-by-point manner. Once the blocks leaving the observation window Y
(mk)
aux (Ek) are

duly constructed, their effect in the history of the calculations is definitively erased.

Analogously to what happens with WMVT, the algorithm described in the previous

paragraph does not follow the windowed philosophy precisely, because the effect of the

leaving point is not erased from the calculations while the longest aggregation block is not

completely filled in. In the case of AMT, that problem could only be circumvented recur-

ring to a retrospective technique, which would make its real-time application impractical.

Despite that, this small deviation from the initial philosophy is not that critical, and an

estimator defined like so can still fulfil the two main requirements it was proposed to: (i)

returning step-by-step estimations of the Hurst parameter, and (ii) eliminate the impact

of the points outside the observation window.

As said at the end of section 3.2.3., MAMT and WMAMT were not implemented for

orders higher than 2 (MVT and WMVT are the order 2 implementation of MAMT and

of WMAMT, respectively). The implementation of MVT, WMVT, MEBP and WMEBP

presume the codification of a procedure for linear regression. Its point-by-point or step-

by-step application does not impose a prohibitive burden to the overall efficiency of the

methods, for its order of complexity is of O(K) per point processed, where K is the

maximum number of aggregation scales (in the case of MVT, WMVT) or crossing levels

(in the case of MEBP and WMEBP) taken into consideration (K is typically a finite value

defined by the practitioner).

74

3.4. Critical Analysis and Comparison

In the previous sections, the set of modifications that enable EBP and VT to operate

in a point-by-point and windowed manner were presented and briefly discussed. In this

section, the referred estimation procedures are going to be analysed from a more practical

perspective, with focus on the differences between the several methods and calculation

philosophies, and on their computational requirements.

3.4.1. Computational Complexity and Memory Requirements

When used in a retrospective manner, most of the estimators present a computa-

tional complexity of (at least) order O(n2 × K), where n is the number of points to be

analysed and K is the number of aggregation scales (or equivalent concept) considered.

At the expense of a momentary loss of precision, the modified estimators presented herein

reduce that computational complexity to O(n×K), for both windowed and point-by-point

estimators.

Figure 3.4 depicts the results of an experiment to quantify the performance of the

WMVT method. To provide the analysis with a baseline comparison, VT was imple-

mented in its retrospective form and submitted to the same tests WMVT was submitted

to. The values in the chart were obtained by measuring the time that the two different

implementations took to assess the Hurst parameter of a data series with 105 points. The

values were stabilised by repeating this procedure 100 times and by taking the average of

all of the occurrences. The variable for which the impact was to be studied was the length

of the observation window. As such, this variable was initialised with the value of 1024

and incremented 98 times, with steps of 512 units. The simulations were performed in a

non dedicated machine with the following specifications: Pentium IV 2.8 GHz processor,

Windows XP Operating System (OS) with Service Pack 2 and 504 MB of Random Access

Memory (RAM). During the simulations, no other applications were running though.

As can be concluded from the observation of the chart in Figure 3.4, the performance

of the modified method is superior to the retrospective one, and it does not depend on

the size of the observation window. While the retrospective method has to deal with the

75

increasing amount of values in the context window, the windowed estimator only has to

process the incoming and the outgoing values.

Figure 3.4: Performance of two different implementations of a windowed Hurst parameter esti-

mator. The values in the chart concern the number of points that WMVT and VT (windowed

but retrospective) can process per second. The y-axis is in logarithmic scale.

The modified estimators are also very efficient in terms of memory requirements.

They do not presume that the entire series of values to be analysed has to be stored in

the memory, or even known, prior to the analysis, conversely to their retrospective alike.

As the data series do not need to be processed several times for a single estimate, there is

no need to keep the entire series in a permanent or volatile block of memory. To function

properly, the modified estimators require only the auxiliary variables (different for each

method) to be stored in the memory. Just to give an idea of the values involved and

taking as granted the values in [98], the actual Java implementation of MVT would not

take more than 900 B of memory to process an arbitrarily long series of points, if 20

levels of aggregation are taken into account. These savings in terms of storage resources

result from the compromise made with the fact that the length of the series is not known

a priori, and may not necessary pose an advantage of the method. For example, as the

entire sequence is not available prior to its analysis, it may not be preprocessed to reduce

the effects of trends, periodicity or lacks of stationarity.

Windowed estimators are not as modest as the point-by-point ones, because their

normal functioning presumes that the values inside the observation window are kept in the

76

memory. Nevertheless, the space occupied by a windowed estimator is not comparable to

the total amount of memory required by a (global context Hurst parameter) retrospective

estimator. Their objective is not comparable either, meaning that a local context Hurst

parameter estimator will always require the storage of the occurrences inside the sliding

window, independently of being a modified (step-by-step) or a retrospective estimator.

Nonetheless, this critical analysis must be understood within the context in which it

was performed, specially the part that concerns the memory requirements. It is true that

the point-by-point or windowed estimators do not require the entire series to be stored in

the memory but, in practice, such only happens when the data series is being generated

on-the-fly by some external event. The network environment is a perfect example of

where such situation may occur. Based on the current specifications of network devices,

the author would say that all the modified methods described in this section could more

easily be integrated in the referred devices than the ones described in the literature. If

such need arises, the rationale applied to these estimators is the one that leads to higher

gains with respect to resources optimization.

3.4.2. Data (In)sufficiency

Setting an estimator requires one to know the basics of the theory on which they

draw on. As the several techniques are often based on the aggregated processes, and as

all of them try to quantify the relation between several occurrences of the same series,

which may be separated by large periods of time, the Hurst parameter estimate results

necessarily from the analysis of a significant amount of samples. It does not make sense

to search for the scaling properties in manifestly small amounts of data.

When dealing with estimators based on aggregation, one has also to take into account

that the number of samples decreases each time the series are aggregated. For example,

if the sequence of values is being aggregated for scales of type mk = 2k, the number of

samples decreases to half each type they are multiplexed according to the definition of

{Y (mk)(i)}i∈N. This may lead to situations where the data is insufficient to construct a

single block, or to accurately assess its statistical properties.

77

Dealing with the data (in)sufficiency problem requires one to meditate about the

data set that is about to be analysed. If the length of the data series is known, the biggest

aggregation block size should be chosen in such a way that the number of blocks (for that

scale) is considered to be sufficient to estimate the statistics the method is based on. For

example, if it is known that the data series has 216 samples, the biggest block size can

be set to 210, as it still gives origin to 26 data samples, which in most of the cases, are

sufficient to get reasonably good estimates of their statistics. If the length is unknown, a

maximum aggregation block (or crossing level, in the case of MEBP or WMEBP) should

be set, but the statistics taken into account during the final phase of the Hurst parameter

estimation should exhibit statistical significance, meaning that they should only be taken

into account after a given number of samples has been reached (e.g. after the aggregated

process has met 32 incidences).

The subject of data insufficiency is of particular relevance for windowed estimators.

The very selection of the size of the observation window defines immediately the maximum

amount of data samples the estimator is going to handle. Because of that, the referred

value should also influence the maximum block size, but no straight recommendation can

be done, though. If an unusual level of precision is required, one may ask the estimator

to take into account several aggregation scales, and only then choose the ones that fulfil a

given fitness criterion (e.g. the standard deviation of the target statistics to be less than

a predefined value). Herein, the estimators were always set to have, at least, 32 samples

in the highest aggregation scale, since during the empirical tests, the estimated values

seemed to converge just fine.

3.4.3. Comparison Between Modified and Retrospective Hurst

Parameter Estimators

The implementation of an Hurst parameter estimator in a point-by-point compliant

manner constitutes a change in the way self-similarity assessment is performed. Instead

of calculating a single Hurst parameter value for an entire data series, a point-by-point

estimator returns a value for each sample, opening the possibility to follow the evolution

of the self-similar properties of a given data series throughout an evolution curve.

78

Figure 3.5 and Figure 3.6 depict two evolution curves obtained through the usage of

the point-by-point estimators developed along this research work. The first concerns the

analysis conducted over a self-similar sequence with a known Hurst parameter of 0.8 using

MEBP, and the second concerns the same type of analysis, but using MVT. The charts

are obtained by plotting the Hurst parameter estimates against the index for which they

were estimated. Even though the expected value for the estimations was the same for

the two charts, these analysis were conducted for different instantiations of the generator

described in section 4.3.. As it will be better explained in chapter 4, the referred generator

was explicitly constructed to test these estimators. The total amount of points in both

charts is 2048, since that length serves the purpose of this explanation well.

Figure 3.5: The evolution curve of the Hurst parameter estimated using the point-by-point

version of EBP. This curve was obtained for a 2048 points long sequence with an expected

self-similarity degree of 0.80, generated using the algorithm described in section 4.3.. The last

value returned by MEBP was approximately 0.80.

As can be seen, the curves representing the Hurst parameter evolution converge

quickly to the predefined value, after an initial period of instability. This initial instability

is simply due to data insufficiency. The convergence to the expected value of the Hurst

parameter provides for a visual demonstration that the modifications did not prejudice

the precision of the estimators.

While this comparison favours the approach taken herein, clearly demonstrating that

an histogram of the self-similarity degree can be made, it also proves that such perspective

is still not suitable for the purposes of this thesis. Unfortunately, the estimators abandon

79

Figure 3.6: The evolution curve of the Hurst parameter estimated using MVT. This curve

reflects the analysis of a sequence with 2048 values and an expected self-similarity degree of

0.80, generated using the algorithm described in section 4.3.. The last value returned by MVT

was approximately 0.78.

their sensitivity after a considerable number of samples has been analysed. The weight of

the history of the empirical series makes the variables of MEBP and MVT tend to constant

values, and prevents them from reacting to ephemeral changes in the input series. This is

also visible in the figures, since the confidence interval of the estimated values decreases

when the time index increases. In the middle, however, it is possible to observe some

interesting fluctuations of the values, unfolding the transitory states through which the

self-similar process passes by. The analysis of the same data series using a retrospective

method could only have one of two possible results: (i) the histogram would be constituted

by a straight line with equation y = 0.8 (normally, the retrospective techniques are used

to obtain a single value for the whole process), or (ii) the incremental perspective would

be produced in a computationally costly manner, which would rapidly render the method

useless, as the procedure would be recurrently and entirely processing an increasing set

of values.

To test the implementations of MEBP and MVT (these procedures were imple-

mented in the object oriented programming language Java), a self-similar sequences gen-

erator (which is known to be exact for the aggregation scales of type mk = 2k) was

developed and put into action. MVT was set to explore the self-similar properties of the

input series by taking into account the scales of type mk = 2k, starting at 1. MEBP was

80

Table 3.1: Statistical compilation of the precision tests made to MEBP and to MVT.

Hurst MEBP MVT

parameter average(std. dev.) average(std. dev.)

0.50 0.52(9.49E-03) 0.50(3.98E-03)

0.55 0.56(1.14E-02) 0.55(3.74E-03)

0.60 0.61(1.10E-02) 0.60(4.27E-03)

0.65 0.65(1.35E-02) 0.65(4.22E-03)

0.70 0.70(1.83E-02) 0.70(5.22E-03)

0.75 0.75(2.18E-02) 0.75(5.83E-03)

0.80 0.80(2.86E-02) 0.80(6.40E-03)

0.85 0.85(3.24E-02) 0.85(7.88E-03)

0.90 0.90(4.10E-02) 0.89(9.20E-03)

0.95 0.94(4.18E-02) 0.94(8.41E-03)

initialised with the parameter δ equal to 2 and no normalisation was applied to the series,

as they were already produced as a Gaussian variate with mean equal to 0 and variance

equal to 1. The simulation was performed for a total amount of 1000 self-similar data

series, which were the input of the two referred estimators. Table 3.1 summarises the

results obtained by presenting the average and standard deviation (std. dev.) of the last

incremental estimate of the Hurst parameter returned by the two methods. (Notice that

all the values were rounded off to the hundredth, and that each data series was 131072

points long.)

With basis on the results, it is safe to conclude that the estimators were up to the

expectation for the type of sequences submitted to analysis. Apart from a slight bias

for the values of the Hurst parameter 0.5 and 0.60, demonstrated by MEBP, and for the

value of 0.90, demonstrated by MVT (which are typical of these estimators), the values

coincide perfectly. The difference between these values and the ones shown in Table 4.1

and in Table 4.2, namely for the ones concerning EBP, are a reflex of doing normalisation

in an incremental manner (on chapter 4, the estimators are used in their retrospective

form, and do not perform normalisation).

81

3.4.4. Comparison Between Locally and Globally Estimated Hurst

Parameter Values

In the previous sections, it was emphasised that the perspective of the evolution of a

global estimate of the Hurst parameter was not sufficient to detect small fluctuations in the

self-similarity degree. This happens because the effect of small variations gets statistically

diluted in the presence of large sample pools. The major difference between local and

global scope statistical measures lies in the different amount of samples they represent. A

windowed analysis is normally conducted over constant sized windows, reflecting only the

characteristics of a subset of the population, while the global scope measure represents

the entire data series. Because of that, the latter contain less information about each

individual.

As the observation window is typically smaller than the sample size, the local scope

values are often calculated for different windows until the entire population is covered

by the analysis. The details of that analysis (length of window, step size) are normally

dependent of the purposes of the investigation. In [95] for example, Stoev et al. have

brought the focus into the importance of observing the local long-range dependence struc-

ture of a given data trace, for different moments in time, through the calculation of the

Hurst parameter for N/w non intersecting blocks, where N denotes the sample size and

w is the size of the observation window. Because they were using retrospective means

to assess the said statistic, the graphical representation was formed by N/w estimations,

which were not sufficient to construct a dense evolution curve, but were enough to prove

that the trace passes through differently states of self-similarity.

In order to obtain an idea of what the tools described in this chapter are able to do,

the generator in section 4.3. was instantiated for several values of the Hurst parameter,

and the resulting data series were directly fed to the estimators in a point-by-point manner.

The estimated values were plotted, as before, against their index, in Hurst parameter vs.

time plots. From the set of charts produced (approximately 50), two were randomly

selected and included in this section as figures.

Figure 3.7 and Figure 3.8 depict the difference between the locally and the globally

estimated Hurst parameter. As expected, the limited context values oscillate around

82

the global (incremental) value (blue line), indicating clearly the transitory states of self-

similarity that were not visible by mere point-by-point analysis, and that, hopefully, will

allow for better examination of changes on the self-similarity degree.

Figure 3.7: Local and global context Hurst parameter evolution curves. The local scope Hurst

parameter values where calculated using WMEBP for two different observation windows: 1024

(gray line) and 4096 (black line). The global scope (blue line) Hurst parameter value was

calculated by MEBP.

The relation between window size and sensitivity is also emphasised in the charts,

since the estimations concerning smaller observation windows (1024 samples - grey lines),

fluctuate more than the ones with a larger scope (4094 samples - black lines). It should be

noticed that the size of the smallest observation window is manifestly small and that, for

that amount of samples, one can only rely on the relatively short relations between the

points. Their values were nevertheless included, to show that the estimators are capable

to accurately capture self-similarity using a small number of aggregation scales. However,

this type of analysis should be considered with caution before being applied. In this

particular case, the input process was known to possess self-similar properties, but that

may not be always true in other situations.

For a window of 1024 samples, WMVT was using only 6 aggregation scales (mk = 2k,

with k = 0, ..., 5), while for 4096 points, two additional scales were considered (k = 6, 7).

WMEBP was initialised with δ = 1 (the standard deviation of the absolute values of

83

Figure 3.8: Local and global context Hurst parameter evolution curves. In this chart, the Hurst

parameter values calculated using MVT (blue line) were plotted along with the values calculated

by WMVT. The windowed estimator was instantiated twice for different observation window

sizes: 1024 (grey line) and 4096 (black line).

the first differences process was
√

2/π) and the number of levels it was using depends

strictly of the space span the process was occupying inside the observation window. For

this particular case (H = 0.7, and w = 1024 or w = 4096), 4 or 5 levels were being used,

depending on the position of the window.

To assess the precision of this version of the estimators, the experiment described in

section 3.4.3. was repeated under almost the same conditions as before, but the statistics

were differently calculated. WMVT was set to aggregate until the scale of m6 = 26,

starting at 1, WMEBP was initialised with δ equal to 2, and the size of the observation

window was adjusted to 213 = 8192 for both of them. As the author was also interested

in evaluating the fluctuations of the estimates along the evolution curve, the average

and standard deviation were taken from all the Hurst parameter values returned by the

methods. This means that the values in the second and third column of Table 3.2 are the

average and the standard deviation (in brackets) of a total amount of 13107200 values.

This time, the results do not seem as good as for the previous experiment. However,

84

Table 3.2: Statistical compilation of the (precision) tests made to WMEBP and to WMVT.

Hurst WMEBP WMVT

parameter average(std. dev.) average(std. dev.)

0.50 0.54(7.99E-02) 0.50(1.58E-02)

0.55 0.57(7.57E-02) 0.55(1.56E-02)

0.60 0.61(7.41E-02) 0.59(1.62E-02)

0.65 0.66(7.30E-02) 0.64(1.72E-02)

0.70 0.70(7.06E-02) 0.69(1.79E-02)

0.75 0.75(7.20E-02) 0.74(1.94E-02)

0.80 0.79(7.46E-02) 0.78(2.12E-02)

0.85 0.84(7.49E-02) 0.83(2.37E-02)

0.90 0.88(7.80E-02) 0.87(2.66E-02)

0.95 0.92(7.89E-02) 0.91(3.34E-02)

this particular behaviour was expected and can be better understood if some remarks are

made on how the long-range dependent sequences generator works. As it will be explained

in more detail in chapter 4, the referred generator is not particularly good at assuring the

self-similarity degree for all aggregation scales, namely for the ones that are not powers

of 2. As the windowed estimators slide through the sequence of values, they capture

moments were the sequence is less self-similar than in others. As the Hurst parameter

increases, that tendency is aggravated by a constant willingness of the process to get

back to an uncorrelated state, to the state of less energy. This impacts both the average

and the fluctuation of the estimates, as can be seen in the table. Under these terms,

the author would say that the estimators were actually performing really good, as they

captured the described phenomenon. (Please notice that, because of what was said in this

last paragraph, the word precision was left between brackets in the caption of the table.)

A small remark can be made at this point. As can be concluded from careful

observation of Table 3.1 and Table 3.2, EBP seems to suffer from a small bias when

the Hurst parameter is close to 0.5. This fact is related with the spatial expansion of

the fBm process, which decreases (statistically) with the value of the Hurst parameter.

Unfortunately, this has a direct impact in the number of crossings in which EBP relies

85

on. The accuracy of the estimator can be improved by increasing the value of δ, and the

length of the self-similar series (because the estimator is asymptotic). Unfortunately, the

parameter that was last mentioned is not that often controllable.

3.4.5. Comparison Between Windowed-Modified and Windowed-

Retrospective Estimation

The last comparison that has yet to be made concerns the potential differences

between estimates from modified estimators and the ones from retrospective estimators.

The reasons for these potential deviations to occur are related with the adaptations the

methods have suffered, and with some of the assumptions that had to be made to make

them compliant with the step-by-step calculation philosophy. To quantify this particular

issue, a retrospective version of the windowed estimators was constructed, and applied

alongside with the latter ones.

The four estimators (VT applied to the observation window, WMVT, EBP applied

to the observation window and WMEBP) were fed with the data series generated by the

self-similar sequences generator, and the output values were plotted against the input

index, as in Figure 3.9 and Figure 3.10. To get the exact values of the Hurst param-

eter inside the observation window, the retrospective estimators (EBP and VT) were

re-initialised and ran for the specific sample pool, for every shift of the window, result-

ing in a rather slow simulation procedure. Finally, for each t ≥ 0, the absolute value

of the difference between the two estimates (absolute error between the outputs of the

windowed-modified and the retrospective method applied to the observation window) was

taken and statistically compiled.

The charts in Figure 3.9 and Figure 3.10 were chosen to represent the analysis

described in this section. The values in Figure 3.9 refer to the estimation of the local scope

self-similar properties of a series with expected Hurst parameter equal to 0.7, obtained

during one of the experiments with the estimators based on the EBP method; the values

in Figure 3.10 were retrieved by the estimators based on the VT method, for a self-similar

process with an expected Hurst exponent of 0.6. The size of the observation window was

set to 2048 for the two simulated scenarios. For convenience, the values of the absolute

86

Figure 3.9: Comparison between different implementations of a windowed estimator based on

EBP. The chart plots three different time series: (i) the values returned by the windowed-

modified estimator (WMEBP), as a blue line; (ii) the values returned by the retrospective

estimator (EBP) applied to the observation window, as a black line; and (iii), the absolute

differences between the values outputted by the windowed-modified and the retrospective esti-

mator, in grey.

Figure 3.10: Comparison between different implementations of a windowed estimator based on

VT. The chart plots three different time series: (i) the values returned by the windowed-modified

estimator (WMVT), as a blue line; (ii) the values returned by the retrospective estimator (VT)

applied to the observation window, as a black line; and (iii), the absolute differences between

the values outputted by the windowed-modified and the retrospective estimator, in grey.

87

error for each time index, and each pair of estimators, were also represented in the bottom

of the charts (grey lines).

The low relevance that the lines representing the absolute errors achieve in both

charts constitutes a sign of how small the error introduced by the assumptions taken

herein is. That, and the harmony between the two evolution curves of each chart (along

the entire time span for which they are plotted), corroborates empirically that the error

is limited and does not increase with the number of data samples.

The validity of these conclusions was confirmed using computer-based simulation,

for which the results were statistically compiled in Table 3.3. The table contains the

average and standard deviation (in brackets) of the absolute error between estimates,

calculated for each pair of estimators (EBP and WMEBP, VT and WMVT), as previously

described. Both statistics were taken from a total amount of 13107200 values, for each

Hurst parameter value in the first column of the table, and each pair of estimators. The

results are clear, and prove that the windowed-modified estimators are as reliable as the

retrospective ones.

Table 3.3: The average and the standard deviation (in brackets) of the absolute error between

the windowed-modified and the retrospective estimators.

Hurst EBP vs. WMEBP VT vs. WMVT

parameter average(std. dev.) average(std. dev.)

0.50 1.78E-02(8.76E-02) 2.17E-04(1.16E-03)

0.55 1.79E-02(8.43E-02) 2.23E-04(1.18E-03)

0.60 1.74E-02(7.91E-02) 2.38E-04(1.23E-03)

0.65 1.57E-02(7.06E-02) 2.53E-04(1.30E-03)

0.70 1.42E-02(6.25E-02) 2.79E-04(1.41E-03)

0.75 1.28E-02(5.51E-02) 2.84E-04(1.43E-03)

0.80 1.08E-02(4.63E-02) 3.30E-04(1.65E-03)

0.85 8.54E-03(3.75E-02) 3.12E-04(1.69E-03)

0.90 6.13E-03(2.86E-02) 4.36E-04(2.30E-03)

0.95 3.76E-03(2.03E-02) 5.77E-04(3.54E-03)

88

3.5. Conclusion

In chapter 2, it is suggested that some of the estimators of the Hurst parameter may

potentially be implemented in a real-time compliant manner. Up until now, most studies

use these mathematical tools to assess the Hurst parameter of the entire data series,

not leaving much room for the investigation of the local characteristics of the self-similar

sequence. In this chapter, the three previously identified candidates (EBP, VT and AMT)

were formally introduced to the set of modifications that enable them to produce results

in a point-by-point manner (instead of returning a single value for the whole data series),

with low computational requirements.

After having explained why the point-by-point estimators are not suitable enough

to fulfil the objectives of this thesis, they were further modified so as to follow a sliding

window philosophy, that enables them to dispose of the heavy weight of the history of the

analysed series, improving their overall sensitivity to local changes. What is important to

retain is that the windowed estimators provide one with the tools to construct a graphical

perspective of the evolution of the self-similarity degree of a given data series and that, by

adjusting the size of the window, one can control how much attention the estimator gives

to small details (the smaller the observation window is, the more sensitive and unreliable

the estimations are).

Two of the three modified estimators were chosen to be implemented and used for

the sake of the objectives of this thesis. It was decided not to implement MAMT and

WMAMT for orders higher than 2, because they aim to capture self-similarity the same

way MVT and WMVT do, while presenting an higher degree of complexity than the

latter (for n > 2). From this moment on, only MVT, WMVT, MEBP and WMEBP will

be considered. The proposed point-by-point and windowed estimators may be seen as

turnaround solutions to the real-time implementation of the Wavelets estimator [92], for

they fulfil the same purposes through different means.

It was stressed out that, in spite of the possibility of using EBP as a point-by-point

or windowed estimator, their applicability is constrained by the two following factors: (i)

the series of values fed to the estimator has to be normalised prior to the analysis per

se, and (ii) its accuracy depends noticeably of the number of points analysed and of the

89

Hurst parameter itself. These are the two drawbacks associated with the online utilisation

of this procedure. If the input series are known to be normalized a priori, the modified

versions would produce the exact same results of the original one, since the change in the

calculation philosophy does not redefine the variables in which this method is based on.

Because the variance does not depend of the average of the empirical series, WMVT

or MVT are presented as being a more robust choice than WMEBP or MEBP, as they are

not susceptible to the normalisation procedure. Actually, VT does not require the data

series to be processed prior to the analysis, in cases where it is not normalised. Because

windowed estimators react better to non-stationarity in the input sequence, WMVT com-

prises a particularly interesting choice for real-time analysis. When sliding through the

sequence (and depending on the size of the observation window) the operational model

of the windowed estimator enables the latter to adapt the values on which it is based on

to the ones of the local scope statistics during runtime.

The experiments conducted for implementations of MVT, MEBP, WMVT and

WMEBP corroborate the statements concerning the precision of the algorithms made

along the chapter. Though some of the modifications inflicted to the original methods

imply smaller deviations to their true way of functioning, these deviations are not reflected

in the estimates in the long-term, or they are limited. It was also said that, when dealing

with windowed estimators, it is necessary to choose the size of the observation window,

and the number and type of precision levels or aggregation scales, in such a way that a

suitable number of samples is available for the calculation of the statistics on which they

rely on. Herein, a minimum 32 samples are considered to be enough for the calculation

of the variance and number of crossing levels.

90

Chapter 4

Efficient Generation of Self-Similar

Sequences

4.1. Introduction

The previous chapter was focused on the means to assess the self-similarity degree of

a given time series, which provenance was irrelevant or, at least, not asked. This chapter

focuses on the reverse of the medal, and tries to answer the question of how to forge

realisations of self-similar processes with predefined Hurst parameter values. The moti-

vation to switch the perspective lies on two main reasons: first, the modified estimators

presented in chapter 3 had to be tested for different degrees of self-similarity; and sec-

ond, the construction of a self-similar traffic simulator presumes the availability of pseudo

random sequences with the referred characteristic, or of the means to generate them.

The interest in methods for simulation of self-similar processes has increased over

the last few years, specifically in the ones capable of generating long-range dependent

sequences. This interest was enhanced not only by the discovery of the self-similar na-

ture of the network traffic [17], but also by the importance that self-similarity analysis

gained in many other areas of research, as biomedical sciences [99] or economics [43].

Actually, it seems that the self-similarity phenomenon is embedded in many natural

[72, 73, 100, 101, 102, 103] or artificial processes [16, 17] but, surprisingly, their repli-

cation is rather complex, mainly due to the nature of their definition: an hyperbolically

decaying autocorrelation function implies the existence of dependencies between all oc-

currences of a self-similar process. The generator of sequences with the self-similarity

91

structure requires the produced points to be orderly stored in the memory, and processed

before further points are created. The procedure faces the dilemma of seeing its perfor-

mance being degraded each time a point is created, or improved at the cost of losing

accuracy.

Experiments involving self-similarity require often long sequences of values, being

thus useful to handle them with computers. Because the referred property deals with

dependencies, it is of utmost importance to assure that the bias of the data series is

intended, and not caused by any other artefact. Apart from the application to the area

of network traffic analysis and simulation, the reproduction of this type of stochastic

processes in a controlled environment is proven to be useful for the simulation of weather

conditions (for prediction purposes) [103], for the generation of landscapes (self-similarity

has been noticed in country coast limits, in the line of the horizon or terrain stratification

lines [102]), or for studying the evolution of stock market prices [43].

In this chapter, some of the currently available methods for simulation of self-similar

processes, namely of fBms and fGns, are going to be briefly discussed, along with their

main advantages and disadvantages. This analysis constitutes the baseline for the ex-

planation of two new methods, designed to gather the preferred features of the already

existing ones. The specific reasons that led to the proposal and development of each one of

the algorithms is included near their explanation. The chapter does not end without the

detailed description of a new procedure to create pseudo random sequences of numbers,

which guarantees the quality of the output of the two self-similar sequences generators.

The following three sections of this chapter are mostly based on the papers [31, 32].

The fourth section elaborates on a realisation of the family of pseudo random number

generators proposed in [33].

4.2. Overview to the State of the Art in Terms of

fractional Brownian motion Generators

The main idea of this section is to briefly discuss some of the most important or

popular methods for simulation of self-similar processes (some of the generators are only

92

capable of generating series exhibiting persistent behaviour), namely of fBms or fGns.

The presentation is structured according to the classification of the methods, which can

be exact or approximate. The description is not intended to be extensive, and it is mainly

focused on the important features of each one of the methods.

4.2.1. Exact methods

The three following methods are used for the simulation of fGn. They are said to

be exact, since it is theoretically assured that the generated series has the autocorrelation

structure of a self-similar process, with a predefined Hurst parameter value. All the

procedures reported in this section elaborate on the same mathematical structure: the

covariance matrix of the process. The subsequent exposition is mostly based on [38, 44, 77]

but, if pertinent, other references will be opportunely indicated.

The Hosking Method

In [104, 105], Hosking described the means to produce exact incidences of a general

stationary Gaussian process, which is asymptotically second order self-similar. In [38],

Dieker adapts the procedure in order to reproduce fGn, elaborating on the covariance

matrix of this process. Besides being exact, this method allows on-demand generation of

data series, since the number of points to be generated is not a variable of the algorithm.

Each point is obtained recursively, as a function of all the past points of the process, and

even though part of the calculations can be reduced by re-usage of some already computed

values, the computation complexity of the method is still of O(n2), turning it a bad choice

when it comes to real-time or long simulations. In order to turn the method applicable

to non-stationary processes, a so-called innovations algorithm has been proposed as an

extension to it.

The Hosking method is going to be used in one of the subsections below as a quality

benchmark for some of the estimators used herein. For a more practical description on how

this retrospective technique works, refer to [106]. The implementation of the procedure

used in the scope of this research is the same Dieker made available in [107].

93

The Cholesky Method

The Cholesky method is as precise as the Hosking method and can be applied

to generate non-stationary Gaussian processes. However, this method is slower than

the aforementioned one, because the decomposition applied to the covariance matrix

is different (normally referred to as Cholesky decomposition), and comparatively to the

decomposition used in the Hosking method, it requires a larger number of intermediate

operations to generate a single point of the process.

The Davies and Hart Method

The difference between the Davies and Hart method and the previous ones resides,

again, in the means by which the covariance matrix is processed. This method states

that, under certain restrictions, a circulant matrix, containing the covariance matrix, can

be defined and factorised. As the factorization procedure can be carried out efficiently by

means of the Fast Fourier Transform (FFT), the computational complexity of the method

can be reduced to O(n log(n)), rendering it as the fastest among the three exact methods.

The efficiency of the method can be further improved (doubled) if approximated

values of the coefficients of the circulant matrix are used, instead of the exact ones.

Because of this approximation, such method can no longer be classified as an exact method

(but it tends to the exact motion, as the number of samples generated tends to infinity)

and the expression approximate circulant method is normally used to refer it.

4.2.2. Approximate methods

The next presented methods can be used to produce sequences of values with prop-

erties that resemble the ones of fBm or fGn, though their outputs are not sampled realisa-

tions of these stochastic processes. The precision of the approximate methods is normally

dependent on a criterion of convergence, and often counterbalances the computational

complexity of the underlying algorithm.

94

The Method of Aggregation of Processes

The method of Aggregation of Processes is the one inspired in the operational model

of LANs and on the result proven by Taqqu et al. [48], discussed in section 2.3.2. of this

thesis. Recall that, according to that result, the aggregation and normalisation of renewal

processes with power law distributions approximates an fGn. Each one of the computers

connected to the LAN is seen as one of those ON/OFF sources. The aggregated process

tends to the precise solution when the number of sources and the aggregation scale from

which the processes are observed tend to infinity.

Because each one of the renewal processes has to be simulated separately, the com-

putational complexity of this method is of O(B×m×n), where B represents the number

of sources and m is the aggregation scale. In this case, the precision of the generator

is inversely proportional to its performance. Nevertheless, the method is used in many

network traffic simulators (for example, it is used for the simulation of traffic in studies

concerning Ethernet Passive Optical Networks [108]), mainly due to its conceptual nature,

which is perfect to be implemented in an object oriented language. In the performance

evaluation reported in [109], it has been shown that a generator based on the multiplexing

of several heavy-tailed sources performs better than the ones based on chaotic maps, when

more than 100 sources are considered. Chaotic maps have been proposed as alternative

models for source traffic [110], since their aggregation may also approximate a self-similar

sequence.

Random Midpoint Displacement Method

The Random Midpoint Displacement (RMD) method is used to produce approxi-

mate realisations of fBm in a recursive manner, by iteratively synthesising the points of

higher aggregation scales before generating the points of the lower ones. Once all the

points of an aggregation scale (sometimes referred to as resolution) are generated, the

finer resolution ones can be created, while taking into account that the sum, mean and

variance of their values must fulfil certain criterion (conditioning), dependent of the Hurst

parameter and of the already generated higher resolution points.

95

The RMD method requires the time horizon to be known in advance and, therefore,

it is not suitable for generation of arbitrarily long self-similar processes. Additionally,

in [44], Paxson concluded that the method is biased, producing approximations with an

estimated Hurst that is bigger than the expected one for 0.5 ≤ H < 0.75 and smaller

than the latter for 0.75 < H < 1. In [111], Norros et al. described the means that enable

the method to partially overcome such limitation and produce higher quality outputs (in

terms of long-range dependence). The new algorithm was named Conditionalized RMD.

The idea behind this algorithm is to create the fBm in the same order the RMD does,

but using more points in the conditioning (l points to the left and k points to the right).

In the same reference, the authors also prove that the generation of the samples can be

performed in a point-by-point manner, since with the new method it ceases to be critical

to generate each resolution completely, before moving to a finer one. Nonetheless, there

is a trade-off between memory requirements and the incremental usage of the algorithm,

which they estimate to be approximately of l log2(2n/δ) + k log2(n/δ) (where δ is the

resolution). Its computational complexity is of O(n), which classifies it as a good choice

when it comes to simulations where the number of samples and required resolution are

known parameters.

Stochastic Representation Method

Thanks to Mandelbrot and Van Ness [43], fBms can be analytically defined as a

stochastic integral with respect to ordinary Brownian motion (see section 2.2.5.). The

Stochastic Representation method is based on an approximation of that function through

Riemann sums, since the stochastic integrals do not allow for deduction of an explicit

generalised formula. The approximation is preceded by a truncation of one of the (infi-

nite) integration limits, in order to turn it computationally acquiescent. Obviously, these

two steps decrease the precision of the method, which can be improved by increasing the

density of the grid of the Riemann sums, or by choosing other values for the truncation

parameter. An increase of the precision of the method leads to an increase of its com-

putational complexity, estimated as being of O(n2). As so, the stochastic representation

method is not currently accepted as a good real-time generator of self-similar processes

and, as emphasised in [77], it is only interesting from an historical point of view.

96

The Paxson Method

The idea behind spectral simulation is to generate a process in the frequency domain

and to transpose it into the time domain. In the particular case, these processes are either

fBm or fGn processes. The Paxson method [44] is a special case of spectral simulation

were a set of coefficients describing the frequency information of a stationary discrete-time

Gaussian process, are approximated and inversely transformed to the time domain. The

importance of the FFT (or of the inverse FFT) is, therefore, easy to explain in spectral si-

mulation methods. The spectral density of the stationary discrete-time Gaussian process,

written in terms of sine and cosines, is supported by the so-called spectral theorem.

This method is similar to the Davies and Hart method, except that the first is

approximate, instead of exact, and faster than the latter. Regardless of that, its compu-

tational complexity is still of O(n log(n)), inherited from the inverse FFT procedure.

Wavelets-Based Method

The Wavelets-based generation procedure is again related with the generation of a

process in a domain different than the time domain, whose transformation approximates

an fGn. Only that this time, the conversion is performed by means of wavelets structures,

which have the desirable property of retaining more time information for high frequencies

than for low frequencies. The Wavelets method computational complexity is estimated

as being of O(n log(n)). Nevertheless, if the transformation is made accordingly to [112],

which suggest using the inverse Discrete Wavelet Transform (DWT), the complexity can

be reduced to O(ψ × n), where ψ is the length of the Wavelet filter.

Notice that a Wavelets-based generator was implemented in the Java programming

language and used as a comparison baseline for one of the new methods presented in

this chapter. This particular implementation makes use of the FFT to convert from the

Wavelets domain to the time domain and, as such, its computational complexity is of

O(n log(n)).

97

An Accurate Fractional Brownian Motion Generator

Rambaldi and Pinazza [113] draw on one of the definitions of fBm to present a new

approximate method. In the referred solution, the problem of having highly retrospective

relations between the points of the process is overcome by defining a composite contribution

of the most distant points of the past of the signal. This contribution is (iteratively)

constructed in runtime, and used along with a restricted set of past values, to generate the

next point of the motion. This procedure is thus based on a truncation / approximation

mechanism, and presents a computational complexity of O(n). However, according to

[44], the assessment of the accuracy of the algorithm was made in a terse manner and can

be a motive for discussion. By construction, the algorithm is not capable of accurately

assuring the correlation structure between distant points.

Simple Construction of the Fractional Brownian Motion

The approach where the fBm is obtained from the application of the Central Limit

theorem to a series of independent random walks may be found in [114]. In the referred

work, Enriquez has focused on creating correlated random walks, elaborating on the con-

cept of persistence probability. For self-similar processes with 0.5 ≤ H < 1, the persistence

probability is directly applied to create positively correlated random walks. For self-similar

processes with 0 < H < 0.5, an alternative approach, designated by alternated random

walk with persistence p, is introduced.

The computational complexity of the proposed algorithm is said to be of O(no)

(see section 5 of [114]), where o is a real number between 1 and 2. The convergence

of the correlated walks to an fBm is only assured in the presence of an infinite number

of walks, but that particular prerequisite does not pose a computational burden at the

end of the proposal, since the author generalized the main idea behind the generation

procedure to Gaussian variables also. Nonetheless, the quality of the self-similar structure

created by these means depends of the aggregation factor applied to the (initially) short

range dependent sequences, which counter-balances the proficiency of the solution. This

happens because the persistence probability reflects the relation between adjacent points

of the generated series only, and not longer dependencies.

98

As it will be emphasised afterwards, the work in [114] has some resemblances (and

also some differences) with the generator presented in section 4.3.. As an example, it

can be said that the main basic structures behind both algorithms are similar (correlated

random walks), but while the proposal of Enriquez [114] is focused on the definition

of short-range dependencies only, the one described afterwards is concerned with the

deduction of a (specific) structure that takes some long-range dependencies into account

also. Other resemblances and differences of the two methods are going to be opportunely

indicated.

Simulation of Fractional Brownian Motion with Micropulses

The method for simulation of fBm using Micropulses was described by Caglar,

in [115]. According to its proponent, this generator is somewhat similar to the one of

Wavelets (only more general, since it enables the selection of different and smaller waves

- hence Micropulses), and to the one of the aggregation of processes. The complexity of

the method is said to be more precisely given by O((n + 2)ε−2), where ε is an accuracy

parameter in the interval]0, 1[, which defines the quality of the approximation to a Gaus-

sian variable (the smaller the value of ε is, the better the approximation is). The method

reduces the weight of the computations by truncating the past of the signal to some extent,

and by only assuring the relations inside a limited scope. The mathematical description

in [115] seems accurate (as far as the author of this thesis could assess), but the empir-

ical quality evaluation only uses the AV estimator to compute the Hurst parameter. As

the Micropulses based generator has some resemblances with the one based on Wavelets,

the said experiments could have been conducted using other estimators, for the sake of

impartiality.

The author would like to cease the opportunity to mention that, even though the

said work dates from the year 2000, and in spite of the several searches made on the topic

during three years, this particular method to generate fBms was not known to him until

the time the final draft of this thesis was being elaborated. This fact came in favour of

the work described below, as it will be theoretically proven that the algorithms proposed

herein are faster than this one, though with the same order of complexity.

99

Synthesis of Accurate Fractional Gaussian Noise by Filtering

In 2006, Ostry [116] proposed a method for the synthesis of fGn resorting to filter-

ing. The algorithm is suitable for the generation of both persistent and anti-persistent se-

quences, and presents an order of complexity superior to O(n), but inferior to O(n log(n))

(the analysis conducted by the proponent of the method show that the computational

complexity of the algorithm may be reduced to O(n1.04), for a Hurst parameter value of

0.55, or to O(n1.10), for a Hurst parameter value of 0.95, if a number of optimizations

techniques is applied). The method is said to be exact for lags smaller than the selected

filter length, and once the filter is duly constructed, it may be used for forging arbitrarily

long sequences of values. Hence, the construction of the filter is of critical importance in

the referred solution, because it defines the self-similar properties of the generated series.

The dexterity of the underlying algorithm is somehow dependent of the one of the Fourier

transform, since the filter is constructed in the spectral domain prior to be excited by

Gaussian noise to produce fGn. The work shows that the research and development of

new procedures for simulation of self-similar series is pertinent and actual, and that the

motivation for that research lies on the necessity to create arbitrarily long sequences in

an efficient manner.

Other Methods

Examples of methods that did not accomplish their purpose successfully can also

be found in the literature. Strecker [62], for instance, introduced the so-called fracture

stretch algorithm that, according to him, was capable of generating processes with fractal

properties, but it was incapable of assuring that the synthesised series had a predefined

Hurst parameter.

4.2.3. Desirable Features of Self-Similar Sequences Generators

From the previous description, it is possible to identify some of the features that

the scientists were aiming to obtain with the proposal of the algorithms. First of all, the

necessity to reduce the computational costs of these types of algorithms is flagrant. Most

100

of the researchers are willing to lose some of the precision of the procedure in favour of an

algorithm that produces results faster. Some solutions are only designed for long-range

dependent processes, but most of them tackle both persistent and anti-persistent series.

Most of the generators are capable of returning points in an on-demand basis, being that

left as an implementation detail, but others require the number of points to be generated

to be known in advance. Unfortunately, the definition of self-similarity turns infeasible

any tentative to construct an algorithm that fully respects all those prerequisites.

Even though it was not mentioned in the previous sections, the memory requirements

of the generators is also of great importance, at least when the time to forge long data

series comes. It is worth to be mentioned that it is usual to have a strict relation between

computational complexity and storage capability. Algorithms of O(n2) usually require

the entire past of a given series to be available in order to be able to generate the next

point of the process. O(n log(n)) algorithms normally take an amount of memory that

is a multiple of log(n), where n is the size of the process to be generated, and O(n)

mechanisms often embody the most cheapest solution, demanding space to store only a

fixed number of variables. In terms of memory, procedures requiring a small multiple of

log(n) can be considered a moderately good choice. One of the objectives of this part of

the research was to develop algorithms capable of producing long series of data without

requiring the storage of large amounts of data nor of the generated values, so as to mimic

the functioning of the estimators described in chapter 3.

4.3. Fast and Sequential Generation of Persistent Frac-

tional Brownian Motion

After the overview of the state of the art, the author concluded that none of the

currently available algorithms was fulfilling the prerequisites he was looking for. Some

are too slow, others do not offer warranty of the self-similar properties, others yet are

not capable of generating points on-demand, or in a real-time manner. Most of them are

severely affected by the number of points to be generated, and have their performance

diminished each time a point is requested. As one of the applications of such algorithms

was the simulation of traffic traces at high data rates, which would potentially require

101

generation of data series with an unknown number of samples, he decided on the tentative

to develop a new algorithm. From that endeavour resulted two new generators.

The author would like to admit that the inspiration behind the first algorithm he is

about to present came originally from the need to test MVT because, at the beginning of

this research work, the means to get several series of points with different Hurst parameter

values were not that obvious. The doubt on how to make the variances of the aggregated

processes to decrease according to the self-similarity rules was on the foundations of the

procedure described and tested in this section, being the latter, one of the most concrete

outcomes of the sedimentation of the mathematical concepts described in chapters 2 and 3.

4.3.1. Fractional Brownian Motion Sequential Generation Algo-

rithm

The main purpose of this section is to introduce a new algorithm to approximate

Gaussian processes with self-similar properties, namely fGns and, consequently, fBms.

For that, a progressive explanation approach is going to be adopted: the section starts

with the mathematical description of the herein called secondary algorithm to simulate

random walks exhibiting persistent behaviour (i.e. with a predefined Hurst parameter

between 0.5 and 1) and evolves to the description of the means that make use of those

walks to approximate persistent fBms in an efficient manner (subsection 4.3.1.).

An Algorithm to Generate Persistent Random Walks

The processes for which the reasoning contained in this subsection applies to are not

fGns yet, but correlated random walks with constant size steps (the definition of random

walk can be found in section 2.2.3.). These processes will prove themselves fundamental

for the reasoning in the following subsection because, as it is going to be pointed out

afterwards, the sum and normalisation of several independent instances of such processes

will result in an approximation of an fBm, as previously defined. This sentence is justified

by the central limit theorem and by some of the properties of self-similar processes.

The values that the secondary algorithm directly outputs are realisations of the first

102

order differences process {S(t)}t∈N of a random walk {R(t)}t∈N, being herein presumed

that the former can only take the integer values 1 or −1 (see condition (4.2)). The most

general definition of {S(t)}t∈N may be expressed in terms of conditions (4.1) and (4.2),

where (4.1) defines the starting point of the process:

S(0) = −1 or S(0) = 1 with probability 0.5; (4.1)

∀t∈N, S(t) = −1 or S(t) = 1. (4.2)

At any time moment t, the position of the walk denoted by R(t) can be recovered by

taking the sum of all the values of the first order differences process until that moment,

as formalised by

R(t) =
t∑
i=0

S(i). (4.3)

The correlations between points of the process will be given in the form of what has

been called of persistence probabilities, in resemblance to what was done in [114]. Assume

that a persistence probability exists for each aggregation scale of type mk = 2k, with

k = 1, 2, ..., and that those probabilities influence the progression of the walk in the sense

given by (4.4). Herein, the persistence probabilities are denoted by pmk
. Condition (4.5)

assures that a given point of the future can only be directly and positively affected by a

single point of the past, while avoiding the trivial situation where the signal is constant

(i.e. pmk
= 1, ∀k = 1, 2, ...). If pmk

= 0.5, ∀k = 1, 2, ..., the process is uncorrelated, and

{R(t)}t∈N assumes the denomination of Random Walk:

pmk
= P

(
S
(
t+

mk

2

)
= S(t), t ∈ mkN

)
, where mk = 2k, k ∈ N and (4.4)

0.5 ≤ pmk
< 1. (4.5)

The algorithm will only be responsible for maintaining exact self-similarity proper-

ties for aggregation scales m which are powers of 2. For other scales, self-similarity cannot

103

be assured theoretically, but simulation results will demonstrate that the properties are

preserved, at least approximately. Additionally, consider that the maximum number of

aggregation scales the procedure is concerned with is represented by Np, sometimes re-

ferred to as the number of precision scales. The expression scales of type x× yNp stands

for all of the aggregation scales starting at x and ending at x× yNp−1.

For the reasoning below, consider the second definition of self-similarity (equation

(2.4)). From that definition, equation (4.6) can be derived:

V(Y) = m2−2HV
(
Y (m)

)
. (4.6)

This equation is the same defining the VT estimator, and it was transposed here for clarity

reasons. Let the process {S(t)}t∈N fulfil equation (4.6) for the aggregation scales mk, as

depicted by (4.7). Notice that {S(mk)(i)}i∈N denotes the aggregated process of {S(t)}t∈N,

for scale mk:

V(S) = m2−2H
k V

(
S(mk)

)
. (4.7)

Since (4.2), (4.4) and (4.5) hold, it is easy to conclude that V(S) = 1 and that,

therefore, mk
2H−2 = V

(
S(mk)

)
. Under these circumstances, the first condition {S(t)}t∈N

must met is 22H−2 = V
(
S(2)

)
. Due to the same reasons, it can also be said that the

expected value of {S(t)}t∈N tends to 0, as the number of points to be generated tends

to infinity (i.e., in the long-term, the number of incidences of S(t) = 1 equals the one of

S(t) = −1, though this might not necessarily hold true in the short-term). The following

equalities are thus valid:

22H−2 = V
(
S(2)

)
= E

(
S(2)

)2 − (E(S))2 = E
(
S(2)

)2
. (4.8)

According to the definition of the persistence probabilities (4.4), p2 is the probability

of S(t + 1) being equal to its predecessor (S(t)), for realisations of {S(t)}t∈N where the

104

time index t is a multiple of 2:

p2 = P (S(t) = S(t+ 1), t ∈ 2N). (4.9)

Given the definition of {S(2)(i)}i∈N, the condition in (4.2) and equation (4.8), the reasoning

for the deduction of p2, depicted by the subsequent expressions, is easy to follow:

22H−2 = E
(
S(2)

)2
= p2 × 1 + (1− p2)× 0⇔ (4.10)

⇔ p2 = 22H−2. (4.11)

Probability p2 assures that the variance of the (non-intersecting) aggregated series

for mk = 2 converges to 22H−2, as the number of points generated with property (4.9)

tends to infinity (law of large numbers). In other words, the convergence of the Hurst

parameter to the predefined value is guaranteed by this construction, at least for the

aggregation scale of 2.

If the scale of 4 is now taken into consideration, one will notice that, at each 4

points, there is only one point for which no relation was presented until here (e.g. S(1)

depends of S(0) and S(3) depends of S(2), but the dependence of S(2) is still not defined).

Consider that this point depends of the first of the two preceding ones, as depicted in

Figure 4.3 and formalised by (4.12):

p4 = P (S(t) = S(t+ 2), t ∈ 4N), (4.12)

To get the persistence probability p4, one can follow the reasoning depicted by (4.13)

and (4.14) (notice that a change of scale is performed in (4.13) and that, for that reason,

the granularity of the indexes is doubled, i.e. i = 2i′):

42H−2 = V
(
S(4)(i′)

) i=2i′
= V

(
2

4
S(2)(i) +

2

4
S(2)(i+ 1)

)
= (4.13)

=
1

4
V
(
S(2)(i) + S(2)(i+ 1)

)
=

1

2
V
(
S(2)

)
+

1

2
C
(
S(2)(i), S(2)(i+ 1)

)
⇔

105

⇔ 42H−2 =
1

2
22H−2 +

1

2
C
(
S(2)(i), S(2)(i+ 1)

)
. (4.14)

Notice that C
(
S(2)(i), S(2)(i+ 1)

)
, in the previous expressions, denotes the covari-

ance between S(2)(i) and S(2)(i + 1) which, in this case, can be expressed in terms

of p4 as indicated by (4.15), where {S(mk)
+ (i)}i=1,2,... denotes the series obtained from

{S(mk)(i)}i=1,2,... via the multiplication of the value of each aggregated block by the sign

of its first constituent addend, i.e. S
(mk)
+ (i) = sign(S(i))× S(mk)(i):

C
(
S(2)(i), S(2)(i+ 1)

)
= E

(
S(2)(i)× S(2)(i+ 1)

)
=

= p4 × E
(
S
(2)
+ (i)

)
× E

(
S
(2)
+ (i)

)
− (1− p4)× E

(
S
(2)
+ (i)

)
× E

(
S
(2)
+ (i)

)
⇔ (4.15)

⇔ C
(
S(2)(i), S(2)(i+ 1)

)
= (2p4 − 1)× E

(
S
(2)
+

)
× E

(
S
(2)
+

)
.

Equation (4.14) can now be written into form (4.16) or, equivalently, into form (4.17):

42H−2 =
1

2
22H−2 +

1

2
(2p4 − 1)× E

(
S
(2)
+

)
× E

(
S
(2)
+

)
⇔ (4.16)

⇔ p4 =
2× 42H−2 − 22H−2

2× (22H−2)2
+

1

2
. (4.17)

If an analogous reasoning is applied to all the other scales of type 2× 2Np , a closed

form expression (formula (4.18)) can be derived to all persistence probabilities defined

in (4.4). Consider observing Figure 4.3 for a conceptual representation of the relations

between points of the walk:

pmk
=

2×m2H−2
k − (mk/2)2H−2

2× E
(
S
(mk/2)
+

)
× E

(
S
(mk/2)
+

) +
1

2
. (4.18)

The unique parameter in equation (4.18) for which lacks information is E
(
S
(mk/2)
+

)
.

By definition, E
(
S
(1)
+

)
= 1, and the value of E

(
S
(2)
+

)
, used to assess p4, can still be drawn

from a reasoning similar to the one in (4.19). For larger values of mk, the successive values

106

of E
(
S
(mk/2)
+

)
can be obtained using the recursive formula (4.20):

E
(
S
(mk/2)
+

)
= p2 ×

(
1

2
× (1 + 1)

2
− 1

2
× (−1− 1)

2

)
= 22H−2 for mk = 4. (4.19)

E
(
S
(mk/2)
+

)
= pmk/2 × E

(
S
(mk/4)
+

)
,∀mk > 4. (4.20)

The result presented in last is actually valid for mk ≥ 4, and it may be justified

using expressions (4.21) and (4.22):

E
(
S
(mk/2)
+ (i′)

)
i=2i′
=

mk

4
E
(
S
(mk/4)
+ (i)

)
+ mk

4
E
(
S
(mk/4)
+ (i+ 1)

)
mk

2

= (4.21)

=
1

2

(
E
(
S
(mk/4)
+ (i)

)
+ (2pmk/2 − 1)× E

(
S
(mk/4)
+ (i)

))
= pmk/2 × E

(
S
(mk/4)
+

)
. (4.22)

One of the main differences between the approach described in this thesis and the

work of Enriquez, in [114], is the length of the dependence between points. From a naive

perspective, one can simply say that pmk
is the probability of an aggregated block (for a

given aggregation scale mk) to maintain the sign of its predecessor. The way these persis-

tence probabilities are defined herein (expression (4.18)) makes clear that the dependence

from distant points increases with the aggregation scale considered (also noticeable in Fig-

ure 4.1), while in [114], each step depends exclusively on the previous one. Just to give an

idea of the values these persistence probabilities may take for different Hurst parameter

values and aggregation scales, the chart in Figure 4.1 was included.

One of the biggest drawbacks of this proposal is that it is not possible to generate

correlated random walks exhibiting anti-persistence behaviour because, depending on the

aggregation scale and on the Hurst parameter, it is not possible to express the persistence

probabilities as numbers in the interval [0, 1]. This happens because the dependencies

scheme favours long-range dependencies, and these tend to fade to short-range as the

Hurst parameter tends to 0.

107

Figure 4.1: The values of the persistence probabilities for different Hurst parameter values. This

values were obtained using the formulas described herein.

Approximating Fractional Brownian Motion

Now that the persistent random walks and the persistence probabilities have been

defined, the procedure to approximate fBm processes can be more easily described. Con-

sider that for each i ∈ N, {Si(t)}t∈N is a correlated random walk as defined in the previous

subsection with a fixed Hurst parameter H. Based on the Central Limit theorem and given

the construction of the process {YN(t)}t∈N in (4.23), one can write(4.24), where G(µ, σ2)

denotes a normally distributed variable with mean µ and variance σ2. N denotes the

number of independent and identically distributed walks {Si(t)}t∈N, previously defined:

YN(t) =

N∑
i=0

(Si(t)− 0)

√
N

; (4.23)

Y (t) = lim
N→∞

YN(t) = G(0, 1). (4.24)

It is a simple exercise to prove that the normalised process inherits the self-similar

properties of the individual correlated walks (under the condition that the Hurst param-

eter is the same for all processes {Si(t)}t∈N). Since the central limit theorem assures the

convergence of {YN(t)}t∈N to a Gaussian process for a large N , one can say that YN(t)

approximates an fGn and, therefore, that B∗H(t) (see (4.25)) approximates an fBm process

108

with predefined Hurst parameter H:

B∗H(t) =
t∑
i=0

YN(i). (4.25)

Condition (4.23) immediately provides one with a way to produce approximate reali-

sations of fBm processes using the correlated walks. However, the approximation depends

on the number of different and independent instances of random walks: the larger the

number N is, the more accurate the approximation is. This fact raises an obvious problem

in terms of the computation complexity of the procedure: makes it dependent from N the

same way precision depends of this variable. At a first glance, this problem seems hard

to bypass but, as it is going to be shown afterwards, it will not be impossible.

From a rough perspective, YN(t) is merely the normalised sum of N+(t) 1s and

N−(t) −1s, where N+(t) +N−(t) = N . Having this in mind, focus in the transition from

t = 0 to t = 1 and notice that, again because of the central limit theorem, it can be said

that

N+(1) ≈ G(p2 ×N+(0), p2(1− p2)N+(0)) +N −N−(1), (4.26)

N−(1) ≈ G(p2 ×N−(0), p2(1− p2)N−(0)) +N −N+(1). (4.27)

The two previous expressions state under formal terms that the number of 1s or

−1s at the time moment t = 1 depend of the number of 1s and −1s at time t = 0,

being that dependence defined by a binomial distribution (that converges to a Gaussian

distribution as N tends to infinity). After some simple calculations, (4.26) and (4.27)

support conclusion (4.28), which can then be generalized to (4.29):

YN(1) =
N+(1)−N−(1)

N
≈ G ((2p2 − 1)× YN(0), 4p2(1− p2)) ; (4.28)

Y (t) ≈ G ((2pmk
− 1)× Y (t−mk/2), 4pmk

(1− pmk
)) . (4.29)

Figure 4.2 represents an effort to describe the previous sentences and equations

109

Figure 4.2: Using the sum and normalisation of independent correlated random walks to ap-

proximate an fGn. Example of the multiple transitions of 20 processes.

graphically, substantiating the statements with a numerical example. It illustrates the

procedure to obtain a point of the series with approximate structure of an fGn, and the

theoretical result that can be used to bypass the complexity problem of using a large

number of correlated random walks to generate a single point of the aforementioned pro-

cess. In the figure, the transition of 20 correlated random walks is presented, considering

the persistence probability of 0.8 (on average, according to this probability, 4 of the 20

random walks change their sign during a transition). The transition from 0.89 to 0, as

time changes from t1 to t2 is also exemplified. The blue bars on the bottom represent

the distribution of the number of processes {Si(t)}t∈N that remain equal to 1 when time

changes to t2, providing that S(t1) = 1. As previously discussed, this distribution is a

binomial distribution with success probability equal to 0.8 (in this case).

Since there are algorithms with a computational complexity of O(n) capable of gen-

erating Gaussian variables (see section 4.5.3.), it is possible to emulate the sum of a large

number of independent processes {Si(t)}t∈N, i ∈ N without proportionally increasing the

computational complexity of the method. In other words, it is possible to virtually achieve

an infinite degree of precision for the scales of type 2 × 2k, without adding complexity

to the calculations. This statement is corroborated by the simulation results discussed

below.

The only thing left to be discussed is how to get the dependency (and the respective

persistence probability) of the point Y (t) the algorithm is about to generate. Notice that

while the formalisation is being made as if the series were defined for (any) t ∈ N, any

practical implementation of the method will only be capable of generating a finite number

110

of samples Y (0), ..., Y (τ), where τ is a fixed and positive integer number. To find that

relation, one just needs to find the first positive integer number k that satisfies (4.31),

where t is the index of the point that is about to be produced. The persistence probability

is then given by p2K and the extent of the dependence is given by 2K

2
(i.e. the actual step

Y (t) depends of step Y (t− 2K

2
)):

Start with K = 1, increment K ∈ N, until (4.30)

t mod 2K =
2K

2
. (4.31)

The algorithm the author has called fractional Brownian motion Sequential Gener-

ation Algorithm (fBm-SGA) is, at this point, completely defined by the following set of

conditions:

For t = 0, Y (t) = G(0, 1).

For t > 0,

Y (t) = G ((2pmk
− 1)× Y (t−mk/2), 4pmk

(1− pmk
)) .

Where,

mk = 2k,

pmk
=

2×m2H−2
k − (mk/2)2H−2

2× E
(
S
(mk/2)
+

)
× E

(
S
(mk/2)
+

) +
1

2
,

E
(
S
(mk/2)
+

)
= 1, if mk = 2.

E
(
S
(mk/2)
+

)
= pmk/2 × E

(
S
(mk/4)
+

)
, if mk > 2,

To get K, start with K = 1, increment K ∈ N, until

t mod 2K =
2K

2
, for each t ∈ N, t > 0.

Figure 4.3 and Figure 4.4 illustrate graphically the relations between the points

generated using the fBm-SGA. In Figure 4.3, each point of the process is represented

by a geometric figure and the relations are represented by arrows. As can be seen, the

points that explicitly depend on their preceding one are symbolised with grey triangles;

111

the circles represent points that explicitly depend of the past point whose relative distance

is of 2 unities, etc.

In Figure 4.4 some of the relations illustrated in Figure 4.3 are intentionally omitted,

to emphasise that the difference between the two scenarios is the number of precision scales

supported, which is larger (potentially infinite) in the first depicted case. In the second

case, the biggest aggregation scale supported is 16, and the process behaves like a normal

random walk for scales bigger than that. In other words, X(16) holds no relation with

any of the points preceding it.

Figure 4.3: Direct and indirect relations (dependencies) between realisations of a correlated

random walk or of an approximate fBm generated using the fBm-SGA. Long-range dependence

is assured for all scales of type 2× 2Np .

One interesting remark that can be made at this point is that the application of the

current scheme guarantees that each point of the generated sequence depends, one way

or another, from the value that was first produced. Ideally, if an infinite number of points

was to be generated and an infinite number of precision scales was to be supported, the

initial point of the process would have to be stored indefinitely since it would be eventually

used to generate distant points. It is not very difficult to conclude that, at some point of

the generation procedure, the generated values have to be memorised and labelled as past

points. In the worst case scenario, the procedure will have to store one of these points for

each supported aggregation scale of type 2× 2Np .

112

Figure 4.4: Direct and indirect relations (dependencies) between realisations of a correlated

random walk or of an approximate fBm generated using the fBm-SGA. The process is long-

range dependent for the scales of 2, 4, 8 and 16. When aggregated for scales larger than 16, the

process behaves like a (memoryless) Random Walk.

4.3.2. Quality Assessment via Hurst Parameter Estimation

The evaluation of an fGn simulation procedure has to take into account two main

conditions: (i) the generated series should follow a Gaussian distribution; and (ii), they

should exhibit the typical scaling phenomena of a self-similar process. While, in some

situations, it is possible to guarantee both conditions from the theoretical plane, in the

case of having an approximate algorithm (like the ones presented herein), some of the

prerequisites have to be demonstrated via empirical observation. The algorithms that

are said to be exact assure that both conditions are fulfilled theoretically. On the other

hand, the approximate procedures may only provide assurance for the convergence of the

generated series to the exact one, or guarantee them to a certain extent. In such cases,

gaussianity may be proven by some goodness-of-fit test (e.g. Jarque-Bera test [117]), and

self-similarity is often evaluated by estimating the Hurst parameter of the series created

by several instantiations of the generator [58, 61].

The foundations of the algorithms proposed herein assure that the generated series

are Gaussian. They are also said to be exact for the scales of type 2×2Np , and approximate

for the remaining ones. Because of this, the respective quality evaluation sections of the

two self-similar sequences generator include the results obtained via the generation of

series and consecutive estimation of the Hurst parameter.

113

With the purpose of estimating the Hurst parameter of the generated traces, the

fBm-SGA and 4 different retrospective estimation algorithms were implemented in Java

programming language: EBP, following the suggestions in [69], and according with what

was said in chapter 2; VT, as described in e.g. [38, 82]; RS, as described in [38]; and DFA,

as described e.g. in [85, 86].

In this section, some examples of long-range dependent sequences with predeter-

mined Hurst parameter, generated using the fBm-SGA, are presented and some consid-

erations about them are drawn. After that, a study about the accuracy of the method is

included.

The three charts included in Figure 4.5 depict three approximate fBms with differ-

ent Hurst parameters. The graphical representation is obtained by plotting 1000 points

of the sequences generated using the fBm-SGA against their indexes, which emulate the

time domain. From careful observation, it is possible to differentiate them by a roughness

factor, which is a direct consequence of their self-similarity degree. The weaker the depen-

dence from the past is, the more irregular the line in the graphical representation looks

like. One can also notice that the spatial span of the charts (the y-axis range) increases

with the value of the Hurst parameter, in accordance with (2.20).

The fBm-SGA simulates the fBms in Figure 4.5 by generating the individual steps

of the motions. In the charts of Figure 4.6, the steps of the previously depicted process

are plotted against the order by which they were generated. Self-similarity properties are

also reflected in these charts. For instance, the sign change frequency (from positive to

negative and vice versa) decreases for higher values of the Hurst parameter. This rate can

be understood as a measure of the random nature of the samples and it is easily explained,

if one takes into account that the persistence probabilities increase with the value of the

Hurst parameter. In other words, the probability of a step of the generated sequence

being equal to the previous ones increases with the Hurst parameter. Consequently, the

moving average value of the first order differences process is affected (biased) by the value

of the Hurst parameter for relatively small numbers of steps.

Two different kind of tests were conducted for each one of the implemented esti-

mators. Initially, the accuracy was analysed for the scales of type 2× 2Np , for which the

114

Figure 4.5: Examples of fBm processes generated using the fBm-SGA and exhibiting persistent

behaviour with pre-determined Hurst parameter: a) H = 0.6, b) H = 0.7 and c) H = 0.8.

algorithm is supposed to be asymptotically exact. After that, to prove that the synthe-

sized processes maintain the self-similarity properties, at least in an approximated sense

for the scales of type 3×2Np , the accuracy was also analysed for this type of scales. A total

of 100 simulations were performed for each kind of scales, and the results were statistically

compiled in the form of a duple (sample average and variance) and included below. All

the generated processes had 106 points and the number of precision scales parameter has

been set to 18 for all simulations.

115

Figure 4.6: Examples of fGn processes, generated using the fBm-SGA, with pre-determined

Hurst parameter: a) H = 0.6, b) H = 0.7 and c) H = 0.8.

Embedded Branching Process

EBP is suitable for estimating the values of the Hurst parameter of processes ex-

hibiting persistent behaviour. Contrarily to the other implemented methods, this one does

not use directly any type of aggregation of the self-similar process for estimation of the

Hurst parameter value. Therefore, it is not possible to adjust the type of the scales. By

looking into its definition, it can be said that this method deals with temporal scales that

vary from 2 to 4, as the Hurst parameter varies from 0.5 (inclusively) to 1 (exclusively).

Consider referring to [69] or to chapter 2 for further information on this topic.

Notice that the way EBP is used herein is different from the way it was used in

116

chapter 3 in three different aspects: first of all, it is being used retrospectively; secondly,

it was implemented according with [69], where µ is calculated using formula (2.51); and

thirdly, the series is not being normalised on-the-fly (conversely to what was done in

chapter 3). In chapter 3, the series was being normalised not because it was required to,

but because during normal operation, a point-by-point or windowed estimator should be

capable of handling shifted and scaled series.

Variance Time

The VT estimation method is based on condition (4.6), which is the same condition

that inspired the development of the proposed algorithm. Therefore, this was the method

for which the best performance was to be expected, and the results corroborate this belief.

The charts in Figure 4.7 contain a representation of the VT log-log plot (see section 2.4.2.

for more information on this subject). As it was explained with detail in chapter 2, the

Hurst parameter value can be obtained from these plots by finding the line that best fits

the plotted values and by calculating its slope (for instance, for the DFA method, the

slope of the line is the Hurst parameter itself). Finding the lines for the presented charts

is not difficult, and in this particular case such task could actually be reduced to the

simple exercise of connecting all of the individual points. Because these charts constitute

one of the best means to depict the scaling properties of the sequences synthesised with

the fBm-SGA, it was decided to include a similar graphical representation for each one of

the next two methods.

Rescaled Range Statistics

The chart in this subsection (Figure 4.8) concerns the RS analysis. As before, the

Hurst parameter value is obtained from the slope of the line that best fits the plotted

values resulting from the RS analysis. Because a small bias was noticed for relatively

small aggregation scales, the scales of 2 and 4 were not considered in the line fitting

procedure and, as for higher aggregation scales only a few samples of the aggregation

process are available, they were not taken into account either. The lines represented in

the charts are, therefore, the ones that best fit the 15 intermediate points of the log-log

117

Figure 4.7: VT log-log plots for a sequence with 106 points, generated with the fBm-SGA. In

this case, the expected Hurst parameter was equal to 0.6, the aggregation scales are of type

2 × 2Np for the log-log plot on the left, and of type 3 × 2Np for the chart on the right. The

estimated Hurst parameter was 0.60 for the first, and 0.61 for the second.

plot.

Figure 4.8: RS log-log plots for a sequence with 106 points, generated with the fBm-SGA. In

this case, the expected Hurst parameter was equal to 0.70, the aggregation scales were of type

2 × 2Np for the log-log plot on the left, and of type 3 × 2Np for the chart on the right. The

estimated Hurst parameter was 0.71 for the first, and 0.70 for the second.

118

Detrended Fluctuation Analysis

The results obtained via utilisation of the DFA method were surprisingly good (Fig-

ure 4.9). In fact, they were the best if compared with the ones returned by the others

estimators used. An interesting remark that can be made at this point is that the oscil-

lation of the points resulting from the DFA method around the fitted line is bigger when

the scales are of type 3× 2Np . This statement is valid for the VT and RS methods. Also

true and applicable to these last three methods is the fact that the Hurst parameter value

estimated for the scales of type 3 × 2Np differs from the one estimated for the scales of

type 2× 2Np in approximately 0.01 units.

Figure 4.9: DFA log-log plots for a sequence with 106 points, generated with the fBm-SGA. In

this case, the expected Hurst parameter was equal to 0.80, the aggregation scales were of type

2 × 2Np for the log-log plot on the left, and of type 3 × 2Np for the chart on the right. The

estimated Hurst parameter was 0.80 for the first, and 0.79 for the second.

Discussion of the Results

The accuracy of the fBm-SGA was analysed until the hundredth of the value of

the Hurst parameter, because it was soon noticed that no valuable conclusion could be

drawn beyond that degree of precision. One of the factors that can explain this fact is the

usage of a computer-based PRNG to emulate the probabilities co-domain. It is obvious

that even guaranteeing the quality of the generator, the algorithm will always be affected

by a small correlation between the values the PRNG returns. Another aspect that must

119

be taken into account is that the accuracy of the presented algorithm benefits from the

number of points generated, since its rationale is heavily dependent on the law of large

numbers.

Hurst parameter values ranging from 0.5 to 0.99 (with increments equal to 0.01)

were tested through computer-based simulation. The next two tables contain a subset

of the numerical results obtained for the scales of type 2 × 2Np (Table 4.1) and for the

scales of type 3 × 2Np (Table 4.2) for the four above mentioned estimators. All the

values returned by the estimators were averaged and rounded off to the hundredth. The

variances were rounded and written in scientific notation (with two decimal places). The

graphical representation in Figure 4.10 and Figure 4.11 compress a bigger set of results.

In the charts, the average of the estimates of the Hurst parameter is plotted against the

expected value, for each estimation method. The line with equation y = x was also

plotted in the charts as a comparison reference.

Table 4.1: Target and estimated Hurst parameter values for scales of type 2 × 2Np . Each cell

contains the average and the variance (in brackets) of the results of 100 simulations.

Hurst VT DFA RS EBP

0.50 0.50(1.77E-05) 0.50(1.86E-04) 0.50(1.02E-04) 0.50(7.41E-06)

0.55 0.55(1.96E-05) 0.55(2.18E-04) 0.55(9.44E-05) Table 4.2

0.60 0.60(1.89E-05) 0.60(3.16E-04) 0.60(1.25E-04) Table 4.2

0.65 0.65(1.58E-05) 0.65(3.12E-04) 0.64(9.44E-05) Table 4.2

0.70 0.70(1.18E-05) 0.69(3.21E-04) 0.68(1.16E-04) Table 4.2

0.75 0.75(1.55E-05) 0.75(3.43E-04) 0.73(1.37E-04) Table 4.2

0.80 0.80(3.12E-05) 0.80(5.96E-04) 0.77(1.68E-04) 0.79(1.07E-05)

0.85 0.85(3.83E-05) 0.85(6.31E-04) 0.82(3.82E-04) 0.84(7.35E-06)

0.90 0.90(1.56E-04) 0.90(1.18E-03) 0.87(5.54E-04) 0.89(7.40E-06)

0.95 0.94(3.99E-04) 0.95(2.32E-03) 0.93(1.12E-03) 0.95(4.29E-06)

Based on the presented results, one can safely conclude that the fBm-SGA is very

accurate, in terms of expected Hurst parameter. In average, the estimated values do not

differ from the expected values more than 0.02 for any of the estimation methods used.

The DFA estimator is the one that most favours the precision of the algorithm. It returns

120

Table 4.2: Target and estimated Hurst parameter values for scales of type 3 × 2Np . Each cell

contains the average and the variance (in brackets) of the results of 100 simulations.

Hurst VT DFA RS EBP

0.50 0.50(2.24E-05) 0.50(1.24E-04) 0.51(1.29E-04) see Table 4.1

0.55 0.55(2.79E-05) 0.54(1.81E-04) 0.55(1.31E-04) 0.54(7.08E-06)

0.60 0.60(3.78E-05) 0.60(2.29E-04) 0.60(1.75E-04) 0.58(7.40E-06)

0.65 0.64(2.03E-05) 0.64(1.71E-04) 0.64(1.64E-04) 0.63(9.16E-06)

0.70 0.69(2.05E-05) 0.69(2.02E-04) 0.69(2.17E-04) 0.68(1.21E-05)

0.75 0.74(1.86E-05) 0.74(3.23E-04) 0.73(2.42E-04) 0.73(1.05E-05)

0.80 0.79(3.81E-05) 0.79(4.96E-04) 0.78(3.67E-04) see Table 4.1

0.85 0.84(8.70E-05) 0.85(5.78E-04) 0.83(5.77E-04) see Table 4.1

0.90 0.88(2.17E-04) 0.90(9.02E-04) 0.86(9.43E-04) see Table 4.1

0.95 0.93(5.64E-04) 0.95(1.80E-03) 0.91(1.18E-03) see Table 4.1

Figure 4.10: Comparison between the expected and the estimated Hurst parameter values. The

VT, the DFA and the RS estimators were testing scales of type 2× 2Np .

values that are exact (on average) 94% of the times for the scales of type 2×2Np , and 82%

of the times for the scales of type 3× 2Np . Because of this, the lines concerning equation

y = x and the estimated values for the mentioned method are almost indistinguishable in

both charts. The same happens with the VT method for scales of type 2× 2Np . However,

121

Figure 4.11: Comparison between the expected and the estimated Hurst parameter values, this

time for scales of type 3× 2Np .

this last method results are not as good as the first ones for scales of type 3×2Np . On the

other hand, the RS method was the one with the worst results obtained for both types of

scales. Nevertheless, despite showing an error bigger than 0.03 for Hurst parameter values

bigger than 0.85, it can be seen that the estimated values follow the trend of the values

obtained by the others estimators, and that for smaller values of the Hurst parameter,

the same error is again not bigger than 0.001, on average.

Given what was said previously, the values obtained by the EBP estimator were,

somehow, expected and they are easy to explain. There is a decrease of the accuracy

as the estimated Hurst parameter values vary from 0.5 to 0.63 (which corresponds, lets

say, to a variation of the observation scale from 4 to 3) and again an increase, as the

estimated values tend to 1 (the temporal observed scale tends to 2). By these reasons,

the values obtained for the aforementioned estimator were respectively distributed by the

two tables and charts. The bias that was emphasised during the analysis to the point-

by-point implementation of the method is not noticeable when the series of values is not

being iteratively normalised.

The variance of the estimated values seems to increase with the Hurst parameter

value for all methods. The difference between the expected and the estimated Hurst pa-

122

rameter values increases in the same manner. For scales of type 3×2Np , all the estimators

underestimate the value of the Hurst parameter, for which it may be concluded that, for

types of scale different from 2 × 2Np , the estimated values of the Hurst parameter will

always be smaller than the expected ones (the series is thus attracted to randomness).

4.3.3. Computational Performance and Memory Requirements

of fBm-SGA

The following two sections are dedicated to the discussion of the computational

requirements of fBm-SGA. As the computational complexity of this algorithm is equal

to the one of the second approximate self-similar sequences generator presented in this

chapter, the theoretical demonstration of this aspect is not included for now, but the

reader may refer to section 4.4.3. for more details on this subject.

Computational Performance of fBm-SGA

The tests concerning the fBm-SGA computational speed were performed in a non-

dedicated, though controlled, system with the following specifications: a 2.8 GHz Pentium

IV processor with 504 Mb of effective RAM, running Microsoft Windows XP with Service

Pack 2. In order to reduce to the minimum all possible external influences, there were no

other processes running on the computer by the time this simulation was performed. As

before, the presented conclusions are the result of the statistical treatment of a total of

26000 simulations, conducted for 260 different configurations.

From all the possible data representations, the chart in Figure 4.12 was selected for

two main reasons: (i) besides emphasising the impact that the number of precision scales

has on the efficiency of the algorithm, (ii) it is also the one that best depicts the linear

relation between the number of points generated and the time spent to generate them.

The shape of the curves in the chart of Figure 4.12 are a reflex of the computational

complexity of the algorithm. Since they are straight lines, instead of logarithmic look-

alike curves, they sustain the conclusion about the computational complexity being of

O(n). The generation of an high quality correlated fractional motion with 106 samples

123

does not take more than 0.3 s. Therefore, the aforementioned Java implementation of the

fBm-SGA operates at an average rate of 3500 points per millisecond (in the simulation

machine).

Figure 4.12: Chart where the average time spent by fBm-SGA to generate an fBm process is

plotted against the total number of points generated, for different levels of quality (expressed in

terms of number of precision scales supported).

Memory Requirements of fBm-SGA

It comes as no surprise that, in terms of memory requirements, fBm-SGA is not

pretentious either. Its biggest demand concerns the storage of the Np (past) points, which

are necessary to generate the future values of the sequence. These values may be stored in

float type variables, whose number is never required to be bigger than log2(n), where n is

the length of the series to be generated. Thus, if the Size of the type Float representation

in the memory, in Bytes, is given by SFB, the codification and posterior instantiation of

this algorithm does never take more than SFB×log2(n) bytes to generate a sequence with

n points. In the case of a Java implementation of the method, 64 double type variables

(512 B) would be sufficient to generate a data series with, at least, 265 ≈ 36×1018 points.

124

4.3.4. Usefulness of fBm-SGA Within the Scope of the Thesis

As it was already mentioned, the previously described algorithm was particularly

useful to test the modified and the windowed modified estimators, presented in chapter 3.

During the explanation of those estimators, the usage of fBm-SGA was signalised, but the

underlying algorithm was not named. At this point, the author would like to emphasise

that the tests herein were conducted so as to demonstrate the quality of the generator and,

consequently, of the estimators. The outcomes of the generator were first submitted to

several retrospective implementations of the estimators, to conclude about its precision.

The precision of the windowed estimators was only tested afterwards.

Because of its origins, the fBm-SGA could have been actually used to test MVT

without too many quality concerns. Its construction guarantees that the fabricated series

should respect the laws that VT aims to check, when assessing the self-similarity degree,

at least for the aggregation scales of type 2 × 2Np . Nevertheless, to demonstrate that

the algorithm was duly implemented and that the reasoning behind it was correct, the

retrospective version of VT was implemented and used to evaluate the generator. As it

was stressed out, this algorithm may not be held responsible for not assuring the exact

scaling properties for other aggregation scales. For those, the Hurst parameter is expected

to be lightly smaller than the predefined one. This artefact is immediately noticed by the

usage of e.g. windowed estimators.

One of the best properties of fBm-SGA is that it returns the points the same way

the estimators process them. This simple fact enabled the simulations to be conducted

for longer series, without any memory problem (no need to store the sequences of values

in e.g. files), and to repeat them at will, without being affected by severe time limitations.

4.4. The Simple Self-Similar Sequences Generator

Incapable to abstract himself from the major drawbacks of fBm-SGA, and inspired

by the new probabilistic perspective provided by the persistence probabilities, the author

designed a different algorithm that inherits the qualities of fBm-SGA, and improves it in

two different aspects: the asymptotic precision, and the range of Hurst parameter values

125

it supports. The algorithm entitled herein of Simple Self-Similar Sequences Generator

(4SG) is a simulation method for fGns, capable of efficiently producing long sequences

of numbers, exhibiting persistent or anti-persistent behaviour (Hurst parameter values

ranging from 0 (exclusively) to 1 (exclusively)). Notice that fBm-SGA is only capable of

generating persistent fGn or fBm processes.

The next description follows the template provided by the previous section. 4SG

is formally presented in the first subsection, and then tested in the subsequent ones. As

the need to evaluate the estimators was satisfied by fBm-SGA, the major application for

this generator was the production of high quality self-similar traces of traffic. Therefore,

to test the performance of 4SG, the author has decided in a more detailed evaluation

that could prove that besides being accurate enough, the computational efficiency is also

outstanding. For that, the author opted for testing 4SG along with an O(n2) and exact

method (Hosking), and with an O(n log(n)) and approximate method (Wavelets-based

with FFT).

4.4.1. The 4SG Algorithm

The name of this algorithm has more to do with the belief that enabled its creation

than with its mathematical foundations and explanation. 4SG was inspired in the belief

that any self-similar stochastic process could be described resorting to the definition of

two main components: a constant and a variable one. The duration and contribution of

these components would be dependent on the Hurst parameter and on the aggregation

scales, and would actually dictate the amount that remains (self-)similar during several

(and consecutive) occurrences of the stochastic process. All that was left to be done was

to characterise mathematically those contributions.

Along the maturing process, it became obvious to the author that the variable part

depends on the actual step of the process and that, therefore, the whole series would

logically be constituted by several constant parts (and not only one), that change their

sign at different moments it time. This conclusion is trivial, when compared to what is

said in [19], where Willinger, Taqqu, Sherman and Wilson proved that several streams of

bits (constant components) following a heavy tail distribution (which defines the length of

126

the constant part) could all be contributing to the creation of a self-similar series. While

such property was on the basis of a proposal to a generation procedure that simulates

differently sized (On/Off) contributions during runtime, in here, the focus is placed upon

the weights that fixed sized contributions should have in order to produce approximate

realisations of an fGn. The size of the contributions is always a power of 2 and the design

of the algorithm is oriented towards the efficient generation of values in a sequential

manner.

Figure 4.13 provides the subject at hand with a graphical representation. In the

figure, the several components of the sequences appear as blocks with the words sum

and subtract. For the sake of this explanation, the biggest scale represented was the

one of 16. The weights of the several contributions are also there, in anticipation to the

subsequent mathematical explanation. The sum and subtract words mean that during

their life period, the values of the blocks are either summed or subtracted to the other

values, in order to obtain the point of the forged fGn. Consider complementing the

following explanation with frequent observations of the figure, while making analogies

between what is said in the text and what is represented in the figure.

Figure 4.13: Graphical representation of the reasoning behind 4SG.

Starting at 2

Consider that, for each i = 1, ..., N , {Si(t)}t∈N is the first differences process of a

random walk {Ri(t)}t∈N, respecting the relation defined in (4.32), where H is the Hurst

127

parameter and P (Si(t) = Si(t + 1), ∀i = 1, ..., N, t ∈ 2N) denotes the probability of Si(t)

being equal to its successor, for any i = 1, ..., N and any t ∈ 2N:

P (Si(t) = Si(t+ 1),∀i = 1, ..., N, t ∈ 2N) = 22H−2. (4.32)

Notice that the expression 22H−2 on the right side of (4.32) was already inferred earlier

in this chapter, and that its appearance there assures that the processes follow a scaling

rule that is consistent with the self-similarity assumptions, for the non-overlapping blocks

of size 2.

Consider the time shift from t to t + 1 and observe that, thanks to the definition

of probability, the average number of realisations of Si(t + 1) at t ∈ 2N that is going to

remain equal to its predecessor is given by 22H−2×N . For convenience, and without loss

of generality, assume that {Si(t)}t∈N are i.i.d. and take only the integer values 1 and −1

(i.e., for each i = 1, ..., N , the expected value of {Si(t)}t∈N is 0 and the variance is 1).

Focus on the points of {Si(t)}t∈N with an even time index t ∈ 2N, and on the relations

between one of those points and its successor. Allow D2k(t) with k = 1 to denote the set

of the values at time t ∈ 2N of all the processes {Si(t)}t∈N that change their sign (from

positive to negative or vice versa), during the transition from t to t + 1, in accordance

with the following expression (valid for k = 1, 2, ...):

D2k(t) = {Si(τ), i ∈ N : τ = bt/2kc, (4.33)

Si(τ) = ... = Si(τ + 2k−1 − 1) 6= Si(τ + 2k−1) = ... = Si(τ + 2k − 1)}.

Let d2k(t) with k = 1 be the value obtained by summing and normalising all the

values in D2(t) at time t, as specified by equation (4.34):

d2k(t) =

#D
2k

(t)∑
j=0

Sj(t)√
#D2k(t)

, where Sj(t) ∈ D2k(t), k = 1, ..., Np. (4.34)

The normalisation requires dividing the sum by the square root of the cardinality of D2(t),

denoted by #D2(t). However, in this particular case, #D2(t) can be safely substituted by

128

its probabilistic equivalent, given by (1− p2)×N , where p2 = 22H−2. Notice that D2k(t)

and d2k(t) are both defined for t ∈ N though, by construction, neither of them changes

during the lifetime of the aggregation block to which they refer to. In other words, they

are constant except for t multiple of 2k (recall that τ is the largest integer not greater

than t/2k).

Allow for the variables E2(t) and e2(t) to be complementary in definition to D2(t)

and to d2(t), respectively. I.e. E2(t) is the set of all {Si(t)}t∈N that do not change their

value during the referred time shift, and e2(t) is the normalised sum of the values Si(t) in

E2(t), at time t. Given that e2(t) and d2(t) result both from the sum of i.i.d. variables,

the process {Y (t)}t∈N, given by (4.35), tends to a Gaussian process as N tends to infinity.

Considering the definition of each one of the processes in the referred equation, equation

(4.36) and the respective simplification in (4.37) hold true. For the same reasons, e2(t)

and d2(t) converge also to Gaussian variables, as N tends to infinity:

Y (t) =
e2(t) + d2(t)√

2
, (4.35)

Y (t) =

√
p2N × e2(t) +

√
(1− p2)N × d2(t)√
N

, (4.36)

Y (t) =
√
p2 × e2(t) +

√
(1− p2)× d2(t). (4.37)

It was already mentioned that e2(t) does not change when time shifts from t to t+1

and, as so, it follows that (for even t) Y (t+ 1) can be written in terms of Y (t) and d2(t),

as suggested by equation (4.38):

Y (t+ 1) = Y (t)−
√

(1− p2)× d2(t)−
√

(1− p2)× d2(t), if t ∈ 2N. (4.38)

At this point, an archaic (and still incomplete) form of the generator can already be

designed: if t is an even number, sum and normalise e2(t) and d2(t), which are occurrences

of two independent Gaussian variables; if t is odd, get the previously generated point, and

reverse the effect of the inconstant part given by d2(t). A generator like this would conserve

129

the scaling properties until the scale of 2 only. The weights of the components would be

given by
√

(1− p2) and
√
p2.

Passing Through 4

The previous progression shows that it really is possible to decompose the self-similar

process into constant and mutable parts. Lets take that demonstration one step further,

and consider now the scales of 4. The reader may notice that a special attention is given to

the scales that are powers of 2. This is mainly due to the two following motives: first of all,

the development of 4SG was influenced by the way fBm-SGA was thought and developed,

and second of all, it was already shown that the relations between points following that

scales scheme are easier to work out. For now, consider that t is a multiple of 4 (t ∈ 4N)

and that the process is preparing itself to transit from t+ 1 to t+ 2. According to what

was previously said, during the time shift from t to t + 1, approximately p2 × N of the

Si(t) remained equal, while the others shifted their sign. This means that, after being

aggregated for the scale of 2, approximately p2 ×N of the S
(2)
i (t) processes will be equal

to 1 or −1, and the rest will be equal to 0, as depicted by (4.39). The same holds for the

transition between t+ 2 and t+ 3:

S
(2)
i (t) =

S(t) + S(t+ 1)

2
=

S(t) if S(t) = S(t+ 1)

0 if S(t) = −S(t+ 1)
. (4.39)

The (1 − p2) × N processes, that change their value inside the scale of 2, have

fundamentally nothing to say about the self-similar properties of the underlying process

for other scales which are powers of 2 (because their sum (aggregation) for those scales is

equal to 0). Therefore, one just needs to assess how many of the {Si(t)}t∈N in E2(t) must

remain equal and how many can change their sign during the time being of a scale of 4.

It is critical to mention that the penultimate sentence is valid within the context of this

explanation, since it applies to non-overlapping aggregation blocks.

A self-similar process should follow the same scaling rules, independently of the

aggregation it has suffered. As the processes resulting from the aggregation for the scale

of 2 of the walks in E2(t) are indistinguishable from the original Si(t) (i.e. S
(2)
i (t)

d
= Si(t),

130

for Si(t) ∈ E2(t)), the very same probability p2 that applies to the latter, during the

transition from even to odd indexes, applies to the transition at hand for S
(2)
i (t). Thus,

for t ∈ 22N, the total number of processes that persist after 2 shifts is given by (p2)
2×N ,

and the number of processes that switch their value (from positive to negative or vice

versa), from t+ 1 to t+ 2 is given by p2(1− p2)×N .

As before, let d4(t) denote the normalised sum of the p2(1− p2)×N processes that

change their value every two points only, and let e4(t) be the immutable part so far.

Notice that (4.33) and (4.34) are consistent with the definitions of D4(t) and d4(t) also, as

for k = 2, D2k(t) = {Si(τ), i ∈ N : τ = bt/4c, Si(τ) = Si(τ + 1) 6= Si(τ + 2) = Si(τ + 3)}.

Y (t) is now defined as the contribution of 3 different components (equation (4.40)): d2(t),

which reverts its value every 1 point; d4(t), which reverts its value every 2 points; and

e4(t), which remains constant during all the transitions considered. Y (t + 1), Y (t + 2)

and Y (t + 3) can now be obtained as indicated by equations (4.41), (4.42) and (4.43),

where w2, w4 and w8 are the weights identified so far, duly concretised in (4.44). By

construction, the distribution of d2(t), d4(t) and e4(t) tends to the one of a Gaussian

variable, as N →∞:

Y (t) = w2 × d2(t) + w4 × d4(t) + w8 × e4(t) t ∈ 4N; (4.40)

Y (t+ 1) = Y (t)− 2× w2 × d2(t), (4.41)

Y (t+ 2) = Y (t+ 1)− w2 × d2(t) + w2 × d2(t+ 2)− 2× w4 × d4(t), (4.42)

Y (t+ 3) = Y (t+ 2)− 2× w2 × d2(t+ 2), (4.43)

w21 =
√

1− p2 =
√

(p2)1−1(1− p2),

w22 =
√
p2(1− p2) =

√
(p2)2−1(1− p2),

w23 =
√
p2 × p2 =

√
(p2)3−1. (4.44)

131

Y (t + 1), Y (t + 2) and Y (t + 3) (with t ∈ N) are all written in terms of their

predecessors. As previously hinted, the value of d2(t) changes after 2 points, reason by

which its contribution is deleted from (4.42), and the one of d2(t+ 2) is added.

(And) Generalising to Larger Scales

The three weights shown in the equation array (4.44) already uncover the pattern

that defines the several contributions for scales that are powers of 2. In here, it will

only be said that, if Np is allowed to denote the (finite) number of contributions (one for

each scale) to be taken into consideration, and k is allowed to denote the power of 2 of

the aggregation scale, the several weights w2k can be generically defined using expression

(4.45) and (4.46). These values result naturally from the iterative application of the

reasoning described in the previous subsection, for scales of aggregation that are larger

than 4:

w2k =
√

(1− p2)(p2)k−1, if k < Np, (4.45)

w2Np =
√

(p2)Np−1. (4.46)

The generalisation of the algorithm follows from the same iterative procedure, but

before continuing into that, recap the most important facts of the previous explanation.

It was said that it is possible to approximate a self-similar process by decomposing it

into several components d2k(t), that shift their contribution, from positive to negative,

in different moments of time. Additionally, it was argued that the components that

shift their contribution, within a given aggregation scale, have no active voice in what

concerns the self-similar properties of the aggregated processes for higher powers of 2,

which basically means that, once a given contribution d2k(t) has fulfilled its purposed

inside an aggregation block of size 2k, it may be safely substituted by another value. The

weights of each one of the d2k(t), with k = 1, ..., Np, were already defined.

At this point, the formal description of 4SG can be effectively completed using the

132

following set of expressions:

Start with

Y (0) =

Np∑
k=1

(w2k × d2k(0)), where

w2k =
√

(1− p2)(p2)k−1, if k < Np,

w2Np =
√

(p2)Np−1,

For each k = 1, ..., Np, set

d2k(0) = G(0, 1), and

s2k = 1.

To get Y (t), t > 0, do the following

Y ′(t) = Y (t− 1)−
min(Np,K)∑

k=1

(s2k × w2k × d2k(t− 1)) ,

For each k ≤ min(Np, K), set

s2k = −s2k .

For each k ≤ min(Np, K − 1), set

d2k(t) = G ((2p2 − 1)× d2k(t− 1), 4p2(1− p2)) ,

Y (t) = Y ′(t) +

min(Np,K)∑
k=1

(s2k × w2k × d2k(t)) .

To get K, start with K = 1, increment K ∈ N, until

t mod 2K =
2K

2
, for each t ∈ N, t > 0.

The algorithm deals with the possibility that, at a given iteration, K may be larger

than the number of contributions declared in the initialization of the procedure. In such

cases, all d2k(t), k = 1, .., Np are renewed simultaneously, bringing the longest dependence

to an end. The only dependencies that are preserved are the ones implied by (4.47), which

is part of 4SG:

d2k(t) = G ((2p2 − 1)× d2k(t− 1), 4p2(1− p2)) . (4.47)

This type of construction was already known from the inner workings of fBm-SGA,

being responsible for guaranteeing the self-similar properties for the scales of 2 for a given

133

series generated using the last mentioned method. In the case of 4SG, the same equation

is collateral, as it is not a crucial factor in the assurance of the self-similar properties

for the scales which are powers of 2. On the other hand, as it was said that d2k(t − 1)

could be replaced by d2k(t) after having contributed to the generation of the series, it

seems more logical to keep updating these values according to rules of persistence or anti-

persistence. Nonetheless, this collateral factor benefits 4SG, in regards to fBm-SGA, since

the self-similar properties can also be enforced for scales of type different than 2k.

It is obvious that a computational implementation of 4SG depends on the capability

to produce sequences of high-quality pseudo random numbers following a Gaussian dis-

tribution. This dependence however, is not as critical as it is for fBm-SGA. That is why

the last main section of this chapter is dedicated to the subject of generation of pseudo

random numbers.

One may notice that the representation in Figure 4.13 follows closely the description

of the algorithm, at least till the scale of 16. Nonetheless, the values of the weights in

the figure are not equal to the deduced ones. In there, the several portions are written

in terms of probabilities, instead of variances (which are the real weights), for the sake of

clarity.

The most interesting remark that came out of the design of 4SG is the ambivalence

of the expression given by 22H−2, where H is the Hurst parameter. Herein, this expression

is interpreted as a probability that ranges from 0.25 (exclusively) to 1 (exclusively), when

H varies from 0 (exclusively) to 1 (exclusively), that defines the resemblance between

points and aggregated blocks. Alone, it defines all the weights of the several contributions

for the scales of 2 and the means to update the values of d2k(t). The simplicity of this

important quantity has also influenced the designation given to the generator.

4.4.2. Quality Assessment via Hurst Parameter Estimation

To obtain a confirmation of the precision of 4SG (and to later use it as traffic gen-

erator), the algorithm was implemented in the object oriented programming language

Java. To provide the quality assessment and the computational efficiency analysis with

134

a baseline comparison, all the tests that were performed to the proposed generator were

also conducted for other two generation procedures, well known from the literature. The

Hosking and the Wavelets-based on FFT generators were chosen for this analysis (and

implemented in the aforementioned computer language) because of their distinct char-

acteristics: the first is exact while the latter is approximate; the first requires O(n2)

computations, while the calculation complexity of the second is of O(n log(n)).

As in section 4.3.2., the accuracy of 4SG was assessed by simulating several data

series with different Hurst parameter values, and by submitting the latter to different

Hurst parameter estimators. The methods chosen to participate in this analysis were:

MEBP, as described in section 3.2.1.; MVT, as described in section 3.2.2.; DFA, as

described in e.g. [67, 86]; RS, as described in [38]; Absolute Moments Time with n = 1

(AMTn=1), as described in [38]; and the retrospective version of the AV estimator, as

described in e.g. [38, 91].

As the reader may notice, the accuracy assessment of 4SG was made by using

more estimators than for fBm-SGA, mostly because some of the methods used in the

quality evaluation of fBm-SGA are not well suited for the analysis of series exhibiting

anti-persistent behaviour (namely MEBP and RS). One of the novelties of the analysis

is the usage of the AMTn=1 method, which basically explores the expansive (spatial)

properties of the generated series. Another novelty of the evaluation is the usage of the

AV estimator, which was implemented according to some of the specifications in [91], for

the Daubechies 10 family of Wavelets.

The large set of results obtained from this multifaceted simulation is going to be

divided into three major parts, depending on the generator (Hosking, Wavelets-based or

4SG) that indirectly originated them. No log-log plots will be included in this section,

because they where already included in different sections of chapter 2. The reader is

invited to (re)visit that chapter, and to notice that each one of those log-log charts

concerns the analysis of series with Hurst parameter values equal to 0.3, 0.5 and 0.7, that

could only have been created resorting to 4SG, or to other algorithm capable of forging

anti-persistence, but never via the usage of fBm-SGA. In this particular case, the reader

may be certain that they are one of the results of the analysis to the series that 4SG has

generated. No figures of sequences with different Hurst parameter values are going to be

135

included either because, this time, the explanation is to be focused on the results solely.

The simulation apparatus can be described as follows. Each generator was asked to

output 50 series of points, for each one of the Hurst parameter values ranging from 0.01

to 0.99, with step equal to 0.02. The newly created series were then taken as inputs of

the implemented Hurst parameter estimators, and processed in conformity. The average

and the variance of the 50 estimates of the Hurst parameter were then calculated and

stored in suitable records. These last two steps (statistical treatment and storage of the

values) were repeated for each possible combination of estimator / generator. The results

were finally plotted against the expected values of the Hurst parameter, for comparison

reasons.

Because the Hosking and the Wavelets-based generators had their own computa-

tional limitations (memory and time consumption related), the length of the analysed

series was dependent on the generator used: the sequences generated by the Hosking

method contained 217 points, and the sequences produced by 4SG or by the Wavelets-

based method were 219 points long. It is worth to mention that, despite the manifestly

smaller size of the sequences produced by Hosking, the simulations concerning the latter

were still the ones that took more time to be performed. A total amount of 58982400

points were generated and analysed. The configurable estimators were all set to start

aggregating at the base scale of 2, with a multiplication factor of 2. For the Hosking

related simulations, the maximum considered scale was of 212, and for the remaining

ones it was of 214. For some of the methods (RS and DFA), some of the initial scales

were not considered in the fitting procedure. The δ parameter of MEBP was adjusted to

2. The simulations were run on several computers: two Personal Computers (PCs) and

four servers. One of the PCs is a desktop computer with 512 MB of RAM, running at

2.8 GHz. The other is a laptop with 992 MB of RAM, and a dual core processor running

at 1.61 GHz, each. The four servers contain the Intel Pentium D processor, performing

at 3 GHz, and 2 GB of RAM. All the machines were running the Open Source Eclipse

Integrated Development Environment on top of the Microsoft Windows XP (with Service

Pack 2) during the simulations.

The next two subsections contain the results obtained for the Hosking and for the

Wavelets-based generator, while the quality analysis of 4SG is postponed to the third

136

subsection.

The Hosking Method

The Hosking method is a retrospective technique for the simulation of self-similar

processes. Its definition enables it to be classified as an exact method, and the sequences it

produces are perfect to test the estimation capabilities of the estimators or assess their be-

haviour for different Hurst parameter values. Unfortunately, its quality is counterbalanced

by its computational complexity (O(n2)), which renders the generation of moderately long

sequences of points a tedious task, and makes any long-term simulation impractical (see

section 4.4.3.).

The charts in Figure 4.14 and the values in Table 4.3 summarise the results obtained

for the Hosking method. To enhance visibility, it was decided to separate the results for

the several estimators in two different plots, based on a precision criteria. The estimators

that returned values closer to the expected ones are represented on the right side of

Figure 4.14, while the others are positioned on the left. The values in the table represent

a smaller subset of the results, but contain additional information about the variance (in

brackets) of the estimates for each one of the assessment methods.

Table 4.3: Target and (average of) estimated Hurst parameter values for the sequences generated

using the Hosking method. Each cell contains the average and the variance (in brackets) of the

results of 50 simulations.

Hurst MEBP MVT DFA RS AV AMTn=1

0.01 0.16(4.14 E-03) 0.01(3.48E-05) 0.07(1.23E-07) 0.13(1.03E-05) 0.19(2.20E-04) 0.01(8.07E-05)

0.11 0.24(4.10E-04) 0.11(4.21E-05) 0.15(1.14E-06) 0.21(1.84E-05) 0.06(1.19E-04) 0.11(5.29E-05)

0.21 0.30(2.25E-04) 0.21(4.08E-05) 0.24(3.69E-06) 0.29(2.36E-05) 0.19(8.40E-05) 0.21(1.07E-04)

0.31 0.37(2.27E-04) 0.31(3.57E-05) 0.33(4.47E-06) 0.37(2.91E-05) 0.30(4.63E-05) 0.31(8.49E-05)

0.41 0.45(1.79E-04) 0.41(3.04E-05) 0.42(7.23E-06) 0.46(2.57E-05) 0.41(6.62E-05) 0.41(3.05E-05)

0.51 0.55(6.87E-05) 0.51(3.73E-05) 0.51(1.05E-05) 0.54(4.71E-05) 0.51(5.30E-05) 0.51(8.09E-05)

0.61 0.64(5.26E-05) 0.61(3.82E-05) 0.60(1.47E-05) 0.63(5.66E-05) 0.61(9.04E-05) 0.61(1.07E-04)

0.71 0.73(4.60E-05) 0.71(3.87E-05) 0.70(1.21E-05) 0.71(7.71E-05) 0.71(8.01E-05) 0.71(9.50E-05)

0.81 0.82(2.84E-04) 0.80(1.21E-04) 0.79(1.49E-05) 0.79(7.89E-05) 0.81(7.14E-05) 0.80(1.20E-04)

0.91 0.91(4.18E-04) 0.88(1.32E-04) 0.89(1.78E-05) 0.86(6.31E-05) 0.91(9.29E-05) 0.88(1.61E-04)

As previously stated, the Hosking method is an excellent benchmark in terms of

137

Figure 4.14: Charts where the estimated Hurst parameter values are plotted against their ex-

pected value, for different estimators. In this particular case, the data series were generated

using the Hosking method. The chart on the left reflects the results for the estimators that per-

formed worst (generally speaking); the chart on the right reflects the results for the estimators

that were (generally) closer to the expected values.

quality. Therefore, this method can be used to test the estimators. By observing the

charts in Figure 4.14, one can see that the MVT and the AMTn=1 estimators assess

the low Hurst parameter values with superb accuracy, whereas the DFA and the AV

estimators start matching the expected Hurst parameters around the values of 0.3 and

0.2 respectively. Up until the Hurst parameter of 0.8, these four methods follow the line

given by y = x very closely. The divergence occurs when the Hurst parameter surpasses

the said value. After 0.8, DFA, AMTn=1 and VT tend to underestimate the real value of

the Hurst parameter with almost the same level of inaccuracy. The best results for the

high values of Hurst are clearly obtained by the application of AV.

138

The two remaining estimators, MEBP and RS, supply poor assessments for low

Hurst values. MEBP is affected by the incremental normalisation procedure, and it only

starts returning good estimates for the values above 0.6, whereas RS only manages to

approach the expected Hurst values in the interval]0.6, 0.8[. For this reason, the values

obtained using these estimators are plotted on the left side of Figure 4.14.

To sum up, MVT, DFA, AV and AMTn=1 methods assess the Hurst parameter

well over the bigger part of the possible Hurst parameter values, with the MVT and

the AMTn=1 achieving the best results for the smaller Hurst parameter values, and the

Wavelets-based estimator for the higher ones. AMTn=1 performed superbly, following

the footsteps of MVT. It is curious to notice how close the values obtained by the two

last mentioned estimators are, in Table 4.3. From the theoretical plane, this fact is not

hard to explain, as both estimators capture the dispersion of the aggregated processes,

though using different statistical means. RS proved itself to be a rather poor estimator

(at least in this simulations), whereas MEBP can be relied upon for the Hurst values

above 0.6. The conclusion that MEBP is not specially useful for the estimation of the

Hurst parameter of anti-persistent processes is inevitable. The reasons for such to happen

were mentioned before (see section 3.4.4.), and lie on the fact that the spatial span of the

fBm decreases with the Hurst parameter, diminishing the statistical significance of the

average number of crossings and, consequently, its ability to produce accurate results. The

variance of all the estimates decreases as one moves from persistent to anti-persistent. If

misunderstood, this small remark may lead to the conclusion that the precision of the

estimators is inversely proportional to the Hurst parameter but, in fact, it just means

that the statistical properties of the aggregated processes (or Wavelets decomposition),

on which the several methods are based on, do not vary as much as the fBm tends to

white noise (H ≈ 0).

Wavelets-Based Generator

It will be proven afterwards that, in terms of computational performance, none of

the implemented procedures is actually a match for 4SG (or fBm-SGA). Hence, the main

motivation for the analysis of the Wavelets-based generator is to provide the accuracy

evaluation with the perception of what can be expected from an approximate method. As

139

before, the whole set of results was partitioned into two charts (included in Figure 4.15)

and one table (Table 4.4).

Figure 4.15: Charts where the estimated Hurst parameter values are plotted against their ex-

pected value, for different estimators. The data series were generated using the Wavelets-based

method. Once more, the results were partitioned into two charts, being the estimates that most

closely follow the line of expected values plotted in the chart on the right.

While the previous measurements may be perceived as tests to the quality of the

estimators, here it is the quality of the method that is under the test. As expected, the

most accurate estimates are achieved when using the AV estimator, since the philosophy

behind both the generator (being the tested) and the estimator (being the tester) is the

same. The estimated Hurst parameter is consistently good over the whole range of possible

values, with some small discrepancies for low Hurst values. The estimates provided by

MVT and AMTn=1 are similar to those made for the Hosking method, with exception

of the low Hurst parameter values. Below 0.2 and 0.3 (respectively), the estimators

140

Table 4.4: Target and (average of) estimated Hurst parameter values for the sequences generated

using the Wavelets-based method. Each cell contains the average and the variance (in brackets)

of the results of 50 simulations.

Hurst MEBP MVT DFA RS AV AMTn=1

0.01 0.24(1.46E-03) 0.11(2.42E-05) 0.16(5.86E-07) 0.19(6.23E-06) 0.03(7.19E-05) 0.09(6.63E-05)

0.11 0.27(2.03E-04) 0.17(2.61E-05) 0.21(1.15E-06) 0.24(1.08E-05) 0.12(6.31E-05) 0.15(5.85E-05)

0.21 0.31(1.76E-04) 0.24(3.62E-05) 0.27(3.23E-06) 0.30(1.43E-05) 0.21(3.95E-05) 0.23(6.35E-05)

0.31 0.37(2.21E-04) 0.32(2.03E-05) 0.35(3.26E-06) 0.37(1.71E-05) 0.31(3.41E-05) 0.32(6.09E-05)

0.41 0.45(1.90E-04) 0.41(2.36E-05) 0.42(9.25E-06) 0.45(2.43E-05) 0.41(3.90E-05) 0.41(5.55E-05)

0.51 0.53(8.95E-05) 0.51(3.86E-05) 0.51(7.44E-06) 0.53(2.66E-05) 0.51(5.65E-05) 0.51(5.86E-05)

0.61 0.63(4.64E-05) 0.61(2.89E-05) 0.60(8.28E-06) 0.63(3.38E-05) 0.61(4.25E-05) 0.61(6.44E-05)

0.71 0.72(3.71E-05) 0.71(4.29E-05) 0.69(1.16E-05) 0.71(5.48E-05) 0.71(6.15E-05) 0.71(6.75E-05)

0.81 0.81(6.04E-05) 0.80(6.42E-05) 0.78(9.41E-06) 0.80(4.52E-05) 0.80(6.38E-05) 0.80(1.64E-04)

0.91 0.90(2.33E-04) 0.88(1.68E-04) 0.87(1.56E-05) 0.86(6.31E-05) 0.90(5.07E-05) 0.88(1.61E-04)

affirm that the generated series is less anti-persistent than the generator claims it is.

For values bigger than 0.85, the deviation is somewhat similar to the one verified for

the Hosking method, where the two last mentioned estimators tend to retrieve Hurst

parameter values that are lower than the expected ones. MEBP, RS and DFA provide

less accurate estimates for low values of the Hurst parameter but, while RS and MEBP

start improving only after 0.5, DFA starts providing values close to the expected ones

starting from 0.4. After AV, MEBP is the estimator that better defends the Wavelets-

based generator for higher values of the Hurst parameter.

To sum up, the sequences generated by the Wavelets method exhibit similar be-

haviour as those obtained by the exact Hosking method, except for the low Hurst values,

where the MVT and AMTn=1 estimators demonstrate poorer results, and AV superior

results than those obtained for the Hosking method. Since Hosking method is exact, it

is more likely that the Wavelets-based generator shows diminished performance for lower

Hurst values, than that the MVT and AMTn=1 estimators are biased.

Simple Self-Similar Sequences Generator

Now that the behaviour of the different estimators is known (from the Hosking

method simulations) and the vicissitudes of a moderately good approximate method have

141

been studied, it is time to analyse the proposed generator. As can be seen in the chart of

the right side of Figure 4.16 and in Table 4.5, the estimators that favour most 4SG are

AV, MVT and AMTn=1. Notice that this is very similar to what happened in the previous

section but, in this case, the related estimates seem to follow the line of expected values

more closely than for the previous case. From this angle, 4SG seems slightly better than

the Wavelets-based one. While the AV method returns estimates that are bigger than the

expected ones for values of the Hurst parameter in the interval]0, 0.32], the MVT and the

AMTn=1 return exact values for the same domain, and keep that degree of precision until

H = 0.79. After 0.32, the AV estimator curve is completely indistinguishable from the

line y = x, providing additional confirmation that 4SG is very accurate for those values.

Table 4.5: Target and (average of) estimated Hurst parameter values for the sequences generated

using 4SG. Each cell contains the average and the variance (in brackets) of the results of 50

simulations.

Hurst MEBP MVT DFA RS AV AMTn=1

0.01 0.28(7.30E-04) 0.01(2.44E-05) 0.18(7.96E-07) 0.22(5.78E-06) 0.06(7.73E-05) 0.01(6.93E-05)

0.11 0.27(5.75E-04) 0.11(4.19E-05) 0.22(1.69E-06) 0.26(9.21E-06) 0.14(7.70E-05) 0.11(6.79E-05)

0.21 0.31(5.05E-04) 0.21(4.24E-05) 0.28(3.42E-06) 0.32(1.22E-05) 0.22(4.38E-05) 0.21(6.05E-05)

0.31 0.37(2.99E-04) 0.31(2.09E-05) 0.35(3.99E-06) 0.38(1.35E-05) 0.32(6.69E-05) 0.31(6.10E-05)

0.41 0.44(1.79E-04) 0.41(3.09E-05) 0.42(5.58E-06) 0.46(2.03E-05) 0.41(5.25E-05) 0.41(4.60E-05)

0.51 0.54(8.16E-05) 0.51(3.22E-05) 0.51(5.56E-06) 0.54(1.96E-05) 0.51(3.96E-05) 0.51(4.20E-05)

0.61 0.63(6.00E-05) 0.61(4.91E-05) 0.60(8.77E-06) 0.62(3.47E-05) 0.61(5.00E-05) 0.61(7.01E-05)

0.71 0.72(5.66E-05) 0.71(3.77E-05) 0.69(1.34E-05) 0.71(5.84E-05) 0.71(2.89E-05) 0.71(8.45E-05)

0.81 0.82(2.46E-04) 0.80(8.39E-05) 0.79(1.97E-05) 0.79(5.94E-05) 0.80(5.05E-05) 0.80(1.48E-04)

0.91 0.90(5.59E-04) 0.88(2.59E-04) 0.88(4.09E-05) 0.85(1.37E-04) 0.91(1.19E-04) 0.89(1.49E-04)

The three remaining estimators behave like they have done for the Hosking and

Wavelets-based methods, except that they start from higher estimates, when H = 0.01,

than for the same value of the Hurst parameter in the previous sections. As the Hurst

parameter increases, the estimators tend to return values closer to the expected ones.

The RS estimator describes the exact same conduct for the three simulation scenarios:

it overestimates the Hurst parameter for values smaller than 0.73, and underestimates it

for the rest of the interval]0.73, 1[. This tendency is known from the literature [75] and,

as so, it should not be used against or in favour of 4SG. MEBP and DFA clearly backup

the capability of 4SG to simulate high quality persistent processes.

142

Figure 4.16: Charts where the estimated Hurst parameter values are plotted against their ex-

pected value, for different estimators. In this particular case, the data series were generated

using 4SG. The chart on the left reflects the results for the estimators that performed worst

(generally speaking); the chart on the right reflects the results for the estimators that were

(generally) closer to the expected values.

All the results lead to the conclusion that, in terms of quality, 4SG is (at least) as

good as the Wavelets-based method, but obviously not as good as the retrospective one.

They also provide support for the conclusion that the reasoning that led to the develop-

ment of the algorithm and the subsequent deduction of the weights of the contributions

are correct. For some of the estimators, 4SG was actually performing near perfection (see

chart on the right side of Figure 4.16). The next subsection brings focus to the aspect in

which 4SG (and also fBm-SGA) truly distinguishes itself from the other generators.

143

4.4.3. Computational Performance and Memory Requirements

of 4SG

This section aims to explore the computational performance of the three imple-

mented generators, and contains a brief discussion about the memory requirements of

4SG.

Computational Performance of 4SG

The results concerning the computational performance of the three generators are

summarised in the two charts shown in Figure 4.17 and in Table 4.6. The first chart

(left side of Figure 4.17) displays the time required by the generators to produce a given

series, against the number of points created. Because the computational complexity of the

Hosking technique is of O(n2), the time it spends to create a process grows exponentially,

and the logarithmic scale had to be used for the y-axis of that chart, so as to produce a

readable plot. The second chart of the figure compares only the two fastest generators,

4SG and the Wavelets-based. The values represented in the charts and in the table are the

average of ten measurements on the laptop with a dual-core processor, with X2 Mobile

Technology TL-50, performing at 1.61 GHz, and with 1 GB of RAM. The OS installed on

the computer was Microsoft Windows XP, with Service Pack 2. As before, the simulation

scripts were written in Java, and run in the Open Source Eclipse Integrated Development

Environment. It should be mentioned that up to 32768 points, some of the measurements

returned values that were smaller than one millisecond for the 4SG. The values above

0 ms can probably be attributed to the instability introduced by the OS itself, since no

other applications were running during simulation time.

Table 4.6: Time taken by Hosking, Wavelets-based, 4SG and fBm-SGA (for comparison) to

generate self-similar processes with different lengths. The time unit is millisecond.

Number of points 256 1024 4096 8192 16384 32768 65536 131072 262144

Hosking 1.5 18.7 315.7 1265.6 4740.6 18936 98832.8 378920.3 1241156.5

Wavelets 160.9 159.4 189 423.4 456.2 1101.6 2898.4 6342.2 14065.6

4SG 1.6 1.6 3.1 6.3 12.5 23.4 50 100 200

fBm-SGA 0 0 3.5 8.75 19.25 43.75 82.25 157.5 322

144

Figure 4.17: Performance comparison between different generators: on the left, the average time

spent by Hosking, Wavelets-based generator and 4SG (in logarithmic scale) is plotted against

the total number of points generated; on the right, the same analysis is conducted only for

Wavelets-based generator and 4SG.

From the observation of the charts in Figure 4.17 and the values in Table 4.6, it

may be concluded that 4SG is the fastest of the generators. The discrepancy between

4SG and the Hosking method is very high for the maximum number of points considered

in the simulations: the Hosking method takes 20 minutes to generate a series of 262144

points, whereas 4SG requires only 200 ms. The difference between 4SG and the Wavelets-

based generator is also noticeable, and specially emphasised by the chart on the right

side of Figure 4.17. In the referred plot, the computation time of the Wavelets-based

method seems to increase linearly, as the number of points generated increases. That

observation is, nevertheless, misleading and owns itself to the representation only, because

the computational complexity of this particular implementation is of O(n log(n)), meaning

that the points concerning the Wavelets-based method are better approximated by a

n log(n) curve than by a line, and that the time spent by the generator increases (much)

faster than the linear progression given by y = n.

These results deserve to be critically observed from the theoretical perspective. No-

tice that, as defined, both fBm-SGA and 4SG make use of a - lets say - sub-algorithm to

get the value of the variable K, that indicates the dependency from the past, in the first,

or the number of components that have to change their contribution, in the second. For

each point to be generated, the number of operations to be performed is given by the

145

number K, deduced by means of (4.30) and (4.31). The average value of this variable

defines the computational complexity of the algorithms.

Notice that 1/2 of the times, K is equal to 1 (and the algorithms perform 1 composite

operation), 1/4 of the times, K is equal to 2 (thus, the algorithms perform 2 composite

operations), 1/8 of the times, K is equal to 3, and so on. The average number of composite

operations per point generated (Cp) is, therefore, given by equation (4.48), where Np is

the number of precision levels considered (if one is referring to fBm-SGA), or the number

of contributions (if one is referring to 4SG):

Cp =

Np∑
K=1

K

2K
. (4.48)

The expression composite operation is used herein to denominate a finite and con-

stant number of floating point computations (normally encompassing no more than 10

sums or multiplications). Because the sum in (4.48) tends to the Gabriel’s staircase series

which, by its turn, converges to 2 (see expression (4.49) and [118]), the order of complexity

of the algorithm is (under pessimistic assumptions) given by O(2n):

Cp−−−→Np→∞

2−1

(1− 2−1)2
= 2. (4.49)

This linear relation between the size of the series and the time used to generated them is

perfectly seen on Table 4.6.

Within the approximate methods to simulate fGn (or fBm), 4SG constitutes a very

good choice, presenting an excellent trade-off between precision and computational com-

plexity. It is theoretically faster than any other method described in the literature, as the

ones in [115] or in [112], claimed to run with a complexity of O((n+2)×ε−2) and O(w×n)

(respectively), where ε is an accuracy parameter in the interval]0, 1[and w is the size

of the Discrete Wavelet filter. In the studies included in [115], the method was said to

produce fairly good approximations of fGn for ε = 0.1, for which the latter embodies a

manifestly slower choice (at least 50 times slower). In [112], the several studies conducted

for more than one type of Wavelets and filter lengths, led to the conclusion that the accu-

146

racy of the procedure is improved by the usage of Daubechies Wavelets (instead of Haar)

and by choosing bigger filters (e.g with lengths of 16, 32 or 64). Nevertheless, the results

presented in [112] show that the DWT based method is not particularly suited for the

generation of highly persistent fGns. A good implementation of the method would be at

least 16 times slower than the one presented herein.

The computational complexity of 4SG is not dependent of the quality of the ap-

proximations, and its improved dexterity is achieved by defining components that may

last for long periods of time, rather than by means of truncation of the farthest past of

the series. This fact comes as a direct consequence of the approach taken for devising

the algorithm. 4SG was not the first algorithm the author has proposed and, as such,

this second construction was the result of a reverse engineering process, inspired by an

empirical knowledge of the problems that an implementation of this kind of algorithms

may present. To economise the resources, the generation of self-similar sequences was

observed from a perspective of continuity. The evolution of the processes in time is seen

as the cadence of simple transitions, which can be efficiently coded in a small number of

sums (apart from the operations used in the Gaussian numbers generator).

Memory Requirements of 4SG

4SG is extremely modest in terms of memory requirements, for they can be expressed

in terms of a multiple of the integer part of log2(n)−1, where n is the number of generated

points. Obtaining the fixed amount of variables required by the algorithm is the same of

identifying the number of components that are essential to the generation of the referred

quantity of values. The essential components are the ones that change their sign (their

contribution) at least once during the execution of the algorithm (i.e. they are the ones

whose longevity is smaller than the size of the synthesised sequence), since all the others

remain constant during the entire span of the sequence. Notice that the longevity of

the contributions defined by 4SG is given as a power of 2, and that their value may be

renewed after being used twice (hence, the variable may be reused). In practice, this

means that the biggest essential component of a series with n known occurrences, has

the maximum duration of 2K < n, and that, consequently, one does not require more

than K = blog2(n) − 1c variables to store the several values the referred components

147

may take. As an example, it could be said that a Java implementation of 4SG would

take approximately 128 B of memory to produce a series with 217 values on-the-fly (i.e.

without having to store all the generated values in memory), while the Hosking method

would require approximately 1 MB (8192 times more) to perform exactly the same task.

4.4.4. Usefulness of 4SG Within the Scope of the Thesis

At this moment, the author considers that the two major contributions that the

development of 4SG has brought to this thesis are still difficult to grasp, but also that

that will change in the following chapter. While the worth of fBm-SGA was proven even

before its explanation, the worth of 4SG will only become clear when the time to generate

self-similar traffic, inject attacks into the simulated traces, and interpret the results comes.

More than a fast algorithm to simulate fGns, 4SG constitutes a personal interpreta-

tion of self-similarity, which came in handy during the remaining part of the investigation.

While the fact that this algorithm is capable of generating anti-persistent processes is

completely irrelevant in the scope of this work, its capability to generate arbitrarily long

self-similar series in an on-demand basis (while assuring a reasonably good quality of the

outputs) is going to be largely explored to create traces of traffic in a packet-by-packet

manner. This enables a more realistic emulation of an online analysis, avoiding having to

store the traces before processing them. The decision of using this algorithm for the traf-

fic generator is principally founded on the fact that 4SG preserves better the long-range

dependencies than fBm-SGA.

4.5. The Source of Randomness: Prime Remainder

Revolution Pseudo Random Number Generator

During the design and development of the previously described algorithms, the au-

thor was constantly wondering about the perfect means to provide them with the pseudo

random data they require (i.e. series of uncorrelated values following a Gaussian distri-

bution). The prerequisites to be fulfilled were, once more, quality and low computational

148

cost.

Motivated by the necessity to generate arbitrarily long sequences of pseudo random

numbers, and suspecting that the Java in-built PRNG was not good enough for the task

(specially in terms of quality), the author conducted a search for a high quality PRNG,

which led first to the substitution of the previous generator by the well-known Mersenne

Twister (MT) [119], and later on, to the creation of a new PRNG, entitled herein of

Prime Remainder Revolution Pseudo Random Number Generator (PRR PRNG) or (more

compactly) Prime Remainder Revolution (PRR). The proposed algorithm is not better

than MT in terms of computational complexity, but it is equally capable of generating high

quality sequences of pseudo random numbers. Because the author trusts on the quality of

the newly devised and tested algorithm, it was used during all the experiments conducted

for 4SG and for the simulation of the network traces. This choice was facilitated by the

fact the proposed algorithm is only two and a half times slower than the fastest Java

implementation of MT.

This section describes that part of the research work, by briefly explaining the main

lines that define the novel PRNG, and the tests it was submitted to. At the end of the

section, the preferred method to convert uniformly distributed values into occurrences

of a Gaussian variable is also briefly criticised. Notice that the following description

constitutes a simplified version of the one in [33].

Pseudo Random Number Generators

Computer-based simulation embodies nowadays a very attractive working tool for

researchers. The biggest advantage of such simulations over traditional experimentation

draws on their efficiency. Using a computer, one can simulate an enormous pool of logically

represented experiments and analyse them. Transposing that procedure to real life requires

may take too much time, rendering the empirical observation infeasible.

A PRNG is the procedure by which a computer creates an apparently uncorrelated

and uniformly distributed sequence of numbers. As computer programs, PRNGs can only

be considered within the limitations in which they are defined: their output is determin-

istic, periodic and depends of the initial value that initialises the procedure, typically

149

termed seed [120]. PRNGs constitute a rather attractive solution over real sources of

random numbers, based on the transformation of physical events into a computer repre-

sentation (see e.g. [121, 122, 123]), as they are often faster than the latter.

PRNGs are crucial components of any computer-based simulation, as they enable

the virtual representation of the random conditions by which an event is affected in the

real world. Because they constitute basic components of the simulation apparatus, a fault

in terms of quality of randomness can result in a biased reproduction of a model, possibly

leading to false or deficient conclusions. An analysis of some implementations of Linear

Congruential Generators (LCGs), for example, concluded that for some parameters, an

LCG epitomises a poor quality generator and that the simulations based on them can be

wrong and should be re-evaluated [124]. PRNGs are also used in gambling machines, in

online gambling games software, video games and computer security related applications.

In the computer security field, PRNGs are often the source of encryption keys, nonces,

grains of salt or stream ciphers.

Methods to create uncorrelated sequences of numbers exist since ancient times.

Generation of random events was done with resort to simple techniques as dice throwing

or coin flipping. The Middle Square Number PRNG, proposed by Von Newman in 1946

[125], is the first reference in the history of a computer-based PRNG, and embodies the

perfect example of what was said previously for PRNGs. According to this method,

the next (pseudo) random number of a sequence is formed by the middle numbers of the

square of the previously outputted number. Since that date, many other true and PRNGs

were proposed, used and studied in detail. The exhaustive enumeration of them all would

not be useful in the scope of this thesis and, for the sake of this explanation, only the

three PRNGs that somehow were used during the research work, are to be mentioned with

more or less detail. Refer to [126], for instance, for an interesting qualitative analysis to

a fairly big list of PRNGs and to [127] for more information on this subject.

One well-known family of generators is the aforementioned LCGs family of genera-

tors [128]. As the algorithm proposed in this section makes extensive use of this type of

generators, a more detailed insight to their operational model is provided in one of the

following subsections. Another popular reference when it comes to PRNGs is MT [119],

developed by Matsumoto and Nishimura. Having the purpose of providing the reader with

150

a baseline comparison, it was decided to use a fast Java implementation of MT, available

at [129], and run it in parallel with the algorithm proposed in this part of the thesis. As

requested by the authors of the said PRNG, here it is stated that the procedure in [129]

is the translation into Java of the original MT written in C++.

Another PRNG that is going to be used with the same objective as MT is the

embedded Java PRNG, represented by the Java Random Class [130, 131], mainly because

it did not involve any additional integration or implementation concerns and because it

was the first source of randomness of 4SG and fBm-SGA. For a quick insight on the

quality of this generator, refer to [132].

Evaluation of Pseudo Random Number Generators

The evaluation of a PRNG follows normally three major criterion: (i) the compu-

tational requirements, which includes the computational complexity of the algorithm and

the amount of memory it requires; (ii) the quality of its outputs, which measures how

close the procedure imitates real randomness ; and (iii) its period, which is one of the

most clear indicators of the limitations of the PRNG, and determines its usage in applica-

tions requiring long sequences of pseudo random data. While cryptographic applications

favour the unpredictability of the produced sequences over the computational speed of the

method, simple applications of PRNGs tend to require fast generators that behave well

in a sufficiently large number of empirical tests [120, 126].

The speed of a PRNG can be assessed by deducing the computational complexity or

by setting up a simple computational simulation scenario. Testing the quality of a PRNG

however, is not as straightforward and requires one to submit the PRNG candidate to a

battery of tests of randomness. The number of tools designed for that purpose reflects

somehow the importance PRNGs gained along the years. Knuth’s collection [133], ENT- A

pseudo random Number Sequence Test Program [134], pLab’s Tests for Random Numbers

[135], Crypt-X [136] and the DIEHARD Test Suite [137] are examples of such tools or

collection of tests. Some of them are available in the Internet in the form of downloadable

packages, along with some of the qualifications an algorithm must possess in order to be

considered a good PRNG.

151

4.5.1. The Prime Remainder Revolution Pseudo Random Num-

ber Generator

The main idea behind PRR is to use a set of normal LCGs instead of only one,

structured in such a way that the generation is performed by choosing coordinates of a

disordered table of numbers. In such conceptual reality, selection of random sequences of

numbers is performed in 2 dimensions, instead of e.g. 1 (like LCGs) or 624 (like MT),

although in a different sense than these last two. With this type of construction, the

author aims to avoid some of the known (randomness) problems of LCGs [124], while

keeping the computational complexity as low as possible (LCGs embody fast means to

create sequences of numbers, specially for some combinations of their parameters).

After getting to know the theory of LCGs a little better, it will also be described

how one can make use of the concept of constantly changing some of the parameters

of LCGs in order to increase the period of the sequences produced and, in some way,

improve its randomness. Take into consideration that the notation used in this section is

self-contained (i.e. the definitions provided for mathematical symbols or concepts should

locally superimpose any other made until this moment).

The origin of the expression Prime Remainder

Consider the formula given by (4.50), where Rn denotes the result of the modulo

operation for a given index In ∈ {0, 1, ...,M − 1}, and F , M are positive integer values

respecting condition F < M . In the case of M being a prime number, the set defined by

{Rn}n={0,...,M−1} contains all the numbers between 0 and M−1, inclusively (this property

can be derived from the combination of the Euclid’s lemma and with the mathematical

theorem known as cancellation law). These values constitute all possible remainders of

M :

Rn = (F × In) mod M. (4.50)

It is not difficult to see that, in the case of having M = 7 and F = 1, for example,

{Rn}n={0,...,M−1} = {0, 1, 2, 3, 4, 5, 6}. Ordering In={0,...,6} results in the ordered sequence

152

[Rn]n=[0,...,M−1] = [0, 1, 2, 3, 4, 5, 6], and repeating the same procedure for F = 3 (for

example), results in a differently ordered sequence [Rn]n=[0,...,M−1] = [0, 3, 6, 2, 5, 1, 4]. For

any prime number M , one can always obtain a total of M−1 differently ordered sequences.

Notice that [Rn]n=[0,...,M−1] (with square brackets) denotes an ordered sequence and not a

set.

Consider now that some of these sequences constitute the columns of a table, as

depicted in Figure 4.18. By construction, this table will always contain all the possible

remainders of M , dispersed through its lines and columns. Furthermore, the number of

incidences of a given value is equal to the number of incidences of any other value of the

referred structure. In terms of distributions, this means that one can obtain a uniformly

distributed sequence of numbers just by randomly choosing coordinates of the table and

returning the value to which they point to.

In Figure 4.18, it is also depicted how each number composing the table can be

obtained. As can be seen, the referred structure does not need to be entirely stored

in memory since its values can be retrieved by indicating the index of the line and the

factor that originated the sequence displayed in one particular column. An ordered array

containing all the considered factors (F) is thus sufficient to calculate every single value

in the table. Because these factors constitute the origin of all the sequences in the matrix,

they will be called seed factors, from this moment on.

The fact that the first line of the table contains only 0’s (zeros) creates a sense of

order, in regards to the whole structure. The stratagem schematised in Figure 4.19 and

formalised in (4.51) can be used to lessen that sense:

Rn = (F × I + c2) mod M. (4.51)

The square function summed to the left side of the modulo, in expression (4.51), can be

safely substituted by any other non linear function of the column index (symbolised by a

c) to achieve the same effect.

After the application of this additional step, the numbers on the table seem to be

more randomly scattered. The author would like to bring the attention to the fact that

153

Figure 4.18: Example of a 7× 4 table containing the remainders of the prime 7. The sequence

of numbers in each column is the result of the application of (F × In) mod 7 to different values

of F (one per column), where In denotes the index of the line.

Figure 4.19: Example of a 7× 4 table containing the remainders of the prime 7, disposed in an

order different than in Figure 4.18. In this table, the sequences are obtained via the application

of (F × In + c2) mod 7, where c denotes the index of the column.

the prime considered in the example is a Mersenne prime on purpose, as it will be shown

that this choice impacts the performance of an implementation of the algorithm.

The name of the proposed PRNG is inspired in the means used to construct this

154

table of numbers (the numbers in the table are the remainders of a prime). Nonetheless,

the procedure discussed in this section may be simply thought as a comfortable and

efficient means to store and rapidly construct (meaning during execution time) a table

with numbers, since the storage of the referred structure would result in impractical or

onerous implementations for large values of M . Having this said, the next problem to be

addressed is how to get pseudo random values of this structure, and that is exactly where

the old LCGs are proven useful.

Linear Congruential Generators

An LCG is a PRNG based on the recursive formula given by (4.52), where Xn

denotes the previously generated value and Xn+1 the next value of the pseudo random

sequence. A, B and M should be integer values respecting conditions (4.53):

Xn+1 = (A×Xn +B) mod M. (4.52)

0 < A,B < M. (4.53)

For a fixed M , the sequence of numbers produced via repetitive application of (4.52)

is uniquely determined by A, B and by the positive integer number X0 < M used as the

seed of the generator. For obvious reasons, an LCG only embodies a fairly good PRNG

for some combinations of the parameters A, B and M (for example, if A, B and M

are all even, the generator retrieves only even numbers, which are not pseudo random).

Moreover, it can be proven that the period of a given LCG is maximum when conditions

(4.54), (4.55) and (4.56) are met [128]. When such is the case, the period of the generator

is M :

A− 1 is divisible by all prime factors of M ; (4.54)

If M is a power of 2, A− 1 must be a multiple of 4; (4.55)

155

B and M are relatively prime. (4.56)

By construction, LCGs are incapable of returning the same value consecutively

prior to its period has ended, which is in part related with the lattice structure of the

sequence they produce. This was one of the limitations the author aimed to solve with

PRR. The replication of each one the values of the space of occurrences in the table

of remainders, combined with the procedure described below, enables the state of the

generator to essentially evolve differently than LCGs, and output sequences that could

not be attained using the last mentioned type of PRNGs.

Putting it Together: the PRR Algorithm

PRR relies on the extraction of numbers from the table of (prime) remainders which,

in this case, is done by assigning the responsibility of choosing the column and the line

indexes to LCGs. Observe Figure 4.20 for an illustration of these words, and notice that

the randomness will be the result of the conjunction of two different factors: (i) the way the

numbers are scattered in the table (which results from the selection of the seed factors at

the initialization stage of the algorithm, and from the means used to scatter the numbers

in the table, given by (4.51)); and (ii) the arbitrariness introduced by (at least) two

LCGs working simultaneously. Through experimentation, it was concluded that, apart

from conditions (4.54), (4.55) and (4.56), the parameters of the LCGs do not require

any special treatment and they can contain different values every time the generator is

initialised. This conclusion finds theoretical support in the previously described factors.

Using equations (4.51) and (4.52), and the notation introduced previously, the al-

gorithm in Figure 4.20 can be formalised by expressions (4.57), (4.58) and (4.59), where

(4.58) and (4.59) are LCGs with B = 1, sometimes referred to as column or line selectors,

and F (Xn) is the factor F that defines the sequence of numbers on a given column index

Xn:

Rn+1 = (F (Xn+1)×Wn+1 +X2
n+1) mod M, (4.57)

Where Xn+1 = (A1 ×Xn + 1) mod M1 and (4.58)

156

Wn+1 = (A2 ×Wn + 1) mod M2. (4.59)

In the particular example depicted by Figure 4.20, M2 and M are both equal to 7,

and M1 is equal to 4. M2, M1 and M do not have to exhibit any direct relation. However,

as (4.59) defines univocally the sequence of indexes that are going to be generated (and

their range), the value of M2 should be either equal to M , or a transformation that maps

the output of (4.59) into the desired range should be provided. Because of the same

reason, M2 cannot be smaller than M either (if M2 < M , the values of Wn+1, retrieved

by (4.59), would only cover a small portion of the interval [0,M − 1], and the congruence

in (4.57) would not be capable of returning the entire sequence of remainders of M).

Figure 4.20: Graphical representation of the PRR algorithm: the simple version.

As the model adopted is not very stringent in terms of the parameters of the LCGs,

offering the possibility to explore that aspect, the author decided to take advantage of

that fact in the following manner. Consider that M1 and M2 are both powers of 2. In

such case, the only condition the LCGs defined in (4.58) and (4.59) must met is that

A1 − 1 and A2 − 1 must be multiples of 4. These numbers can therefore be created each

time (4.58) or (4.59) are called or simply renewed frequently using other PRNGs.

Figure 4.21 illustrates the procedure by which each one of the LCGs depicted in

Figure 4.20 is regularly updated by a herein termed of master LCG. The indexes of these

157

LCGs are intentionally different than n, to emphasise that these sequences may evolve at

a slower rhythm than the one of the slaves. Notice that condition (4.55) is completely

satisfied when M4 = b(M2 − 1)/4c and M3 = b(M1 − 1)/4c (where b.c is, as before, the

floor function), and that Figure 4.21 can be mathematically formalised by the following

set of expressions:

Rn+1 = (F (Xn+1)×Wn+1 +X2
n+1) mod M, (4.60)

Where Xn+1 = ((4× Yi+1 + 1)×Xn + 1) mod M1, (4.61)

Wn+1 = ((4× Zj+1 + 1)×Wn + 1) mod M2, (4.62)

Update Yi+1 by using Yi+1 = (A3 × Yi + 1) mod M3, (4.63)

Update Zj+1 by using Zj+1 = (A4 × Zj + 1) mod M4, (4.64)

M4 = b(M2 − 1)/4c, and (4.65)

M3 = b(M1 − 1)/4c. (4.66)

These conditions present PRR under general terms only. In order make it more

concrete, some specifications can be made at this point. For instance, the Mersenne prime

231 − 1, which is represented by 31 1s in the binary base constitutes a good choice for M

(focus on expressions (4.68) and (4.69) and on the explanation that precedes them). M1 =

210, M3 = 28, M2 = 231 and M4 = 229 comprise particularly interesting choices also, if the

computational performance of the algorithm is already being taken into consideration,

since the modulo operation is easily optimized for values that are powers of 2. In such

cases, the operation a mod b can be replaced by a logical AND, if the second input of the

158

Figure 4.21: Graphical representation of the PRR algorithm: the less simple version.

congruence is substituted by its predecessor (equation (4.67)):

a mod b = a&(b− 1), if b = 2k, for some k ∈ N. (4.67)

The modulo operation a mod P , where P = 2p− 1 is a Mersenne Prime can be also

optimized [138] using the procedure described by expressions (4.68) and (4.69), where the

symbol � denotes the bitwise shift operation and & denotes the bitwise operation AND:

a mod P =

 d, if d < P

d− P , if d ≥ P > 0
(4.68)

where d = (a&P) + (a� p) and P = 2p − 1. (4.69)

The Period of PRR

The period of the proposed generator can be found by following a simple reasoning.

Consider only the last mentioned version of PRR. For a fixed set of seed factors, the

sequence of numbers produced by PRR depends directly from two different LCGs and

159

indirectly from another two. The number of iterations the algorithm takes until both

line and column index selectors start repeating themselves simultaneously constitutes the

period of PRR.

Without loss of generality and for the sake of simplicity, consider the composite

generator defined by equation (4.70) and condition (4.71), where M is a power of 2. As

mentioned in the previous section, PRR allows the modification of some of the parameters

of the LCG, as long as condition (4.55) is respected. Consider now that the referred

alteration is to be performed by the time the period of the selectors is reached, formalised

as follows:

Xn+1 = ((4Yi + 1)Xn + 1) mod M , where (4.70)

Yi+1 = (A3Yi + 1)modbM−1
4
c, if n mod M = 0. (4.71)

It is relatively simple to conclude that for each value of [Yi]i∈N, the LCG (4.70) will

generate a unique sequence of M numbers, before its formula is updated. Having this

in mind, it is equally simple to infer that the period of the generator composed by LCG

(4.70) and condition (4.71) is the product of the periods of the two LCGs constituting it.

The exact value of the period of the composite generator is therefore given by

bM × M − 1

4
c. (4.72)

The period of PRR can never be smaller than the maximum period of the two

composite generators it includes, because the sequences it produces only start repeating

themselves after both generators start doing the same simultaneously. By construction,

the composite line index generator is the one with better chances of having the largest

period, since the number of columns of the table of remainders, M1, is associated with

the amount of memory required for the storage of seed factors and, as such, it has to

be a relatively small value. According to this and to formula (4.72), the period of PRR

for the aforementioned example (where M1 = 210, M3 = 28, M2 = 231 and M4 = 229) is

approximately 260 = 231 × 229.

160

Seeding PRR

Seeding PRR corresponds to the adjustment of a large set of parameters. First of

all, the seed factors have to be chosen. Ideally, all values should be different to enhance

the arbitrariness of the table of remainders. The parameters (A1 and A2) of LCG1 and

LCG2 depicted in Figure 4.21 must also to be chosen randomly, while taking into account

conditions (4.54) or (4.55). Finally, the starting points of the four LCGs have to be

decided.

Initializing PRR in the particular case where M1 = 210, is the same of assigning

210+6 = 1030 values to the parameters of the algorithm. This can be carried out minutely,

or by letting another (weaker) PRNG fill up the critical parameters. Such PRNG can be

another LCG, seeded with a unique value, in resemblance with what happens with the

initialization procedure of MT (see [129]).

The initialization procedure of the implementation of PRR used in the scope of this

research work, accepts a 64 bit long seed and divides it into two 32 bit long integers. Each

integer seeds two instances of the LCG given by equation (4.73), which are then used to

generate all the previously mentioned variables of PRR. The particular instantiation of

an LCG in (4.73) is known to produce reasonably good pseudo random numbers from

[139]:

Xn+1 = (1664525Xn + 1013904223) mod 232. (4.73)

4.5.2. Analysis of the Pseudo Random Number Generator

As previously explained, PRR is the result of a naive approach to the subject of

PRNGs, which evolved later to a more serious research work. To test the algorithm in

terms of the quality of the sequences produced, the author opted for the Diehard Battery

of Tests of Randomness, which was developed by George Marsaglia, and is pointed out

by many authors (see e.g. [140]) as a reliable means to test PRNGs. The mentioned

set of tests has the advantage of being easy to use, since an executable file is available

for download at [137]. After downloading and unzipping the package, the only thing one

161

has to do is to generate files containing a fairly long pseudo random sequence of numbers

and write their name in the command line after the name of the executable Diehard file

(e.g. C:\Diehard Dir\Diehard.exe rng filename.dat). The version of the software

used herein already contains the tough tests described in [141].

The computational performance of PRR was estimated via empirical observation and

analysis of a possible implementation of the algorithm on an object oriented language.

The results for the computational speed and for the memory requirements apply solely to

that implementation.

Tests of Randomness

Some of the tests of the Diehard battery require the file containing the random

sequence of bits to have at least 270 Mb of data. As the considered implementation

returns 31 bit long integers only, the algorithm was forced to generate at least 75497472

integers each time a file was to be tested.

In this section, it will only be included a brief summary of the results, obtained for

the three considered generators. No detailed description of what each test does will be

provided, since that falls out of the scope of this thesis. It will just be referred that the

tests of randomness take advantage of statistical models the random bits in the file must

follow, after being transformed into different representations. Normally, such resemblance

is assessed using goodness-of-fit tests, which return p-values (probability values) that

should be uniformly distributed in the interval [0, 1[. As in [126], a given test is tagged

herein as passed if all the p-values within a test were greater than 0.01 and less than

0.99. If some of the p-values fall out of the aforementioned interval, the tests are repeated

for another four times and considered as passed when the majority of the four tests are

tagged as passed, according to the previous rule. Otherwise, the test is tagged as failed.

Refer to [141] or to the documentation on [137] for more details on each individual test

of the Diehard battery.

Table 4.7 assembles the results obtained for the tests of randomness. Its contents

attest the quality of PRR and MT, in terms of randomness of the sequences generated,

and at the same time, the failure of the Java PRNG in some of the tests, namely in the tuff

162

Table 4.7: Summary of the quality tests results for the three considered PRNGs.

Test PRR MT Java PRNG

Birthday Spacings passed passed passed

GCD∗ passed passed passed

Gorilla passed passed failed

Overlapping Permutations passed passed failed

Ranks of 31x31 and 32x32 matrices passed passed passed

Ranks of 6x8 Matrices passed passed passed

Monkey Tests on 20-bit Words passed passed passed

Monkey Tests OPSO† passed passed failed

Monkey Tests OQSO‡ passed passed failed

Monkey Tests DNA passed passed failed

Count the 1‘s in a Stream of Bytes passed passed passed

Count the 1‘s in Specific Bytes passed passed failed

Parking Lot Test passed passed passed

Minimum Distance Test passed passed passed

Random Spheres Test passed passed passed

The Squeeze Test passed passed passed

Overlapping Sums Test passed passed passed

Runs Up and Down Test passed passed passed

The Craps Test passed passed passed

∗Greatest Common Divisor (test) (GCD).

†Overlapping-Pairs-Sparse-Occupancy (OPSO).

‡Overlapping-Quadruples-Sparse-Occupancy (OQSO).

163

Gorilla test. This conclusion corroborates what was said in [132] about the last mentioned

algorithm and, most importantly, these results substantiate the idea that ultimately gave

origin to the algorithm presented herein.

Computational Performance of PRR

The PRR algorithm was implemented in Java programming language, following all

the specifications from section 4.5.1.(including the optimization procedures). The follow-

ing results apply to the optimized code of PRR of the less simple version described before.

The experiments to assess the computational speed of the algorithm were conducted on a

desktop computer, running the Open Source Eclipse Integrated Development Environment

on a 2.4 GHz Pentium IV machine.

The chart in Figure 4.22 contains the comparative analysis results obtained by

means of computer simulation. They concern the time a computer program implementing

each PRNG takes to generate a sequence of 70000000 integer values. (The length of the

sequence has to do with the number of values required by the Diehard battery of tests, and

not with any other particular reason.) During execution time, no other applications were

running on the machine (except for the Eclipse Integrated Development Environment) to

reduce the possibilities of having the results biased by any unknown tentative to access

the processor. Because of the same reason, the experiments were repeated 30 times and

the average and variance were calculated and included in the plot. To overcome any

possible initial instability, the first run of each experiment was not taken into account

when calculating the aforementioned statistics.

PRR is represented by the upper line of the chart, which means that, in terms of

computational speed, it is the slowest PRNG of the set of 3. The fastest of them all is MT,

which takes only an average time of 2 s to produce the 70000000 numbers, performing

at approximately 33777038 points per second. The implementation of PRR used in the

scope of this work is thus 2.54 times slower than MT and 1.01 times slower than Java

PRNG.

Notice that, in order to level all PRNGs implementations, an additional method that

concatenates several outputs from PRR in such a way it produces 32 bit long integers

164

Figure 4.22: Time spent (in seconds) to generate a pseudo random sequence containing 70000000

integer values using PRR, Java Class PRNG and MT.

(instead of 31 bit long integers) is required, because the other two are already designed

to output numbers with 4 bytes resolution. As the considered implementation of PRR is

only capable of generating 31 bit long integers, generating 32 bit integers requires 1.03

more function calls than any of the other two. Using a different set of parameters should

enhance the performance of the algorithm, by allowing longer bit streams to be generated,

but it would certainly require the variables to be handled differently, since the longest

native type in Java supports only 64 bit operations.

Memory Requirements

During some of the qualitative experiments conducted to the algorithm, the author

of this thesis came to the conclusion that, in order to be able to produce high quality

sequences of numbers, PRR requires the width of the table to be bigger than 512. The

optimized version of the algorithm used herein utilises a total of 1034 integer variables

(1024 seed factors plus LCGs variables plus local scope variables), represented by 1033

normal type int variables and by a type long variable. The computational representation

of the int type in Java is 32 bits long, while the long type extends the representation

for another 32 bits (64 bits in total). Therefore, generating pseudo random sequences of

numbers using a Java implementation of PRR encompasses an inherent cost of, at least,

165

4140 B of memory. On the other hand, the considered MT implementation makes use

of only 634 integer values, represented by the Java int type. That configuration requires

solely 2536 B of memory. The third PRNG considered uses a completely negligible amount

of memory, when compared with the other two, since it requires only storage capabilities

for 3 integer values (12 B).

Notice that the number of seed factors is always given in terms of a power of 2.

In this case, such fact is strictly related with the processing proficiency of potential im-

plementations of the algorithm, since the arithmetic operations modulo a power of 2 are

more computational acquiescent.

4.5.3. The Generation of Normally Distributed Numbers

Now that the theory that supports the most primitive parts of the pseudo ran-

dom sequences generator is exposed, it is time to describe the set of operations that

enable the transformation of uniformly distributed numbers in a sequence of values with

a Gaussian distribution. This transformation constitutes the link between PRR and

each one of the previously described algorithms, since the latter are built on top of

Gaussian Random Numbers Generators (GRNGs), and not directly over a Random Num-

ber Generator (RNG).

As brilliantly stressed out by the survey made by David et al. [142], a fairly big

panoply of methods to replicate Gaussian variables is available in the literature. After

investigating the several methods pros and cons, the author of this thesis decided for the

implementation of the Polar method [143], not only because of its popularity and easiness

of implementation, but also because it offers a good trade-off between complexity and

quality [142]. Additionally, its implementation for the programming language in which

all the procedures developed along this work were codified was already present in the class

of the fast version of the MT generator, previously downloaded from [129].

The description of the viscera of the Polar method is not critical to this presentation,

for its rationale can be found in the World Wide Web (WWW) or in the literature very

easily (for example in [142, 143, 144]). Either way, the author would like to briefly discuss

166

its implementation, to provide closure to the subject of the computation complexity of

fBm-SGA and 4SG.

The procedure that may be used to obtain a sequence of values following a Gaussian

distribution from an uniform variable using the Polar method is described by (4.74), where

U(−1, 1) denotes an occurrence of an uniformly distributed process, taking real values in

the interval]1,−1]:

Set s = 1 and

While s ≥ 1 or s = 0 do

X1 = U(−1, 1) and

X2 = U(−1, 1).

s = X1 ×X1 +X2 ×X2,

Return M ×X1 and M ×X1,

Where M =

√
−2

ln(s)

s
. (4.74)

The implementation of the algorithm in computer language is normally done by

codifying the expression X1 = U(−1, 1) as X1 = 2 × U(0, 1) − 1, and by transforming

the outputs of the PRNG into floating point values in the interval]0, 1]. This last task is

performed by dividing the pseudo random number with a predefined length nb (number of

bits), by the successor of the maximum value it may get (given by 2nb+1), and by casting

the result into the float representation. Notice that the multiplication 2× U(0, 1) incurs

in the infinitesimal loss of information of one bit, as the mantissa of the number resulting

from that operation will always be even (i.e. the less significant bit is equal to 0).

As can be seen in (4.74), the Polar method is capable of returning two different

values of a Gaussian variable at the cost of a finite number of operations, as S is known

to fall into the interval [0, 1[with fix probability π/4 [142, 143]. This means that the

complexity of this method is of O(4/π × n).

Because the maximum resolution of the mantissa of a double type variable in Java

is 53 bits, the implementation of this procedure in the referred object oriented language

167

requires the generation of (at least) 53 bit long numbers, which basically means that the

particular instantiation of PRR described above has to be called approximately 1.71 times

per point generated. It is possible to achieve the highest resolution possible if, instead

of codifying X1 as 2 × U(0, 1) − 1, it is directly codified as X1 = U(−1, 1) − 1. That

type of output is obtained by first constructing a 54 bit long integer via the application

of the xOR operation to two 31 bit long integers (one of them shifted 23 times), and

by (secondly) dividing the number by 253, casting it to a float variable. Notice that

the floating point retrieved by this procedure has 54 bits of resolution (one more than

when using 2 × U(0, 1)). The values of X1 and X2 are obtained by subtracting 1 to the

pseudo random uniform U(−1, 1). As a note of curiosity, this particular implementation

of U(−1, 1) speeds up the referred computations in approximately 4%, when compared

to the direct codification of X1 = 2× U(0, 1)− 1.

4.6. Conclusion

While the previous chapters of this thesis were focused on the estimation of the

Hurst parameter of a given time series, this chapter brought the spotlight precisely to

the reverse of the medal. After having enunciated the main reasons for this change of

perspective (the necessity to test the modified estimators, and the need to simulate self-

similar traffic), the most interesting features of a self-similar sequences generator were

identified, by briefly discussing the several simulators of fBm proposed in the literature.

The directly proportional relation between computational complexity and the qual-

ity of most of the generators became clear after the overview of the state of the art.

The description of two novel algorithms for synthesis of sequences with the approximate

properties of an fGn was then included, proving that it is possible to create approximate

long-range dependent series with good quality in a sequential and efficient manner, while

avoiding having to store the entire past of the data series during the generation procedure,

and preventing processing an increasing set of data, each time a point is to be produced.

Contrarily to the methods that try to reduce complexity by truncating the impact of the

past to a certain extent, the two proposed algorithms achieve the same purpose either by

selecting particular points of the (arbitrarily long) past of the series, or by decomposing

168

them into a finite number of components that store the immutable part of the series for

a virtually infinite period of time.

The first algorithm presented was fBm-SGA, which is inspired in the VT method,

and is capable of producing arbitrarily long sequences with properties similar to the

ones of an fGn exhibiting persistent behaviour (i.e. long-range dependence). The true

novelty of the procedure resides on the so-called persistence probabilities, derived along its

mathematical explanation. The said probabilities describe self-similarity as a measure of

a given point being equal to a point of the past which, after all, constitutes a very intuitive

way of seeing that property. The fBm-SGA was used on the experiments taken for the

modified estimators. The results of those experiments may be found on chapter 3. The

quality of the algorithm was assessed by using impartial estimators, implemented in their

retrospective form (VT, DFA, EBP and RS).

While the fBm-SGA is only suitable for the generation of long-range dependent

processes, the second algorithm presented is not. 4SG elaborates on a different ideology,

by stating that the self-similar sequence can be decomposed into components that change

their contribution from time to time and their weight on the overall mass of the process.

The weight of the components depends on the Hurst parameter: the more self-similar the

process is, the more substantial the contribution of the heavy-tailed components is. The

real challenge behind this way of thinking was on the calculation of the weights of the

components, which turned out to be all dependent from the value given by 22H−2. Within

a fairly complex theory, this simple expression defines the relations of all the aggregation

blocks with sizes that are powers of 2. Due to its reduced computational complexity and

improved quality, 4SG was used in the simulations concerning self-similar traffic. The

evaluation of 4SG was performed using six different Hurst parameter estimators (RS,

DFA, MEBP, AV, MVT and AMTn=1), being the results obtained for the AV, MVT and

AMTn=1 specially favourable, arguing clearly in benefit of the capability of the algorithm

to generate sequences exhibiting persistent and anti-persistent behaviour. MEBP and

DFA also agree with the remaining ones, but only for Hurst parameter values bigger than

0.6 (in the case of MEBP) and 0.4 (in the case of DFA).

The computational complexity of both algorithms was theoretically assessed as being

of O(n), and corroborated by empirical observation. The performance of 4SG surpasses

169

theoretically the performance of most of the exact or approximate methods in the lit-

erature, and outperforms by far the Wavelets-based generator used in the experiments

described herein. The method is capable of producing approximately 1310720 points per

second, while the Wavelets-based method would not produce more than a centesimal part

of that number. The modesty of the procedures is also written in terms of the amount of

memory they require, for they are satisfied with the space to store only a small multiple

of log2(n) variables, where n is the length of the series to be generated.

In the final part of the chapter, a PRNG was explained with detail, and tested using

a well-known and stringent battery of tests of randomness. The development of PRR per

se is a side effect of the objective to get the most reliable and fastest means to feed the

simulation procedures of self-similar processes with random sequences of values following

a Gaussian distribution. While PRR draws on a relatively simple rationale and trusts

on the old LCGs to retrieve values from a table, during all the (endurance) experiments

conducted by the author, it passed all the tests of randomness to which it was submitted.

Even though its current implementation in Java programming language is not as fast as

the optimized version of the well known MT (PRR is approximately 2.5 slower than the

latter), its performance is not prohibitive at all, and the method was used during all of the

experiments reported in this thesis. As the randomness of the outputs of PRR results from

a combination of different factors, the initialization of the parameters of the algorithm

can be carried out without many concerns. The same fact offers also the possibility to

change the parameters of the column and line index selectors during runtime, which may

be explored in such a way as to increase the period of the PRNG. Moreover, the design

of PRR enables the adjustment of the quality of the produced series, via the specification

of the width of the table of remainders.

The responsibility to transform the outputs of PRR into occurrences of a Gaussian

variable is herein attributed to the mechanism known as the Polar method. During a brief

discussion on how the procedure was implemented for the sake of this research work, it

was shown that its computational complexity is in average of O(4/π × n).

170

Chapter 5

Traffic Simulation and Study of the

Impact of Network Intensive Attacks

5.1. Introduction

When the initial guidelines of this work were drawn, the possible static definition

of the behaviour of the self-similarity degree during a network attack was included as

an objective. The problem however, turned out to be more fundamental than that,

as such behaviour had still to be understood, before jumping to (perhaps) precipitate

conclusions. During this chapter, it will become clear that the self-similarity degree is,

in fact, affected by some kind of attacks and that such behaviour can be theoretically

described. Nevertheless, this behaviour is written in statistical terms, which vary with

the intensity of the attack and with the traffic load.

The following section of this chapter (section 5.2.) is dedicated to the delineation of

the application scope of a possible IDS based on the analysis of the self-similarity degree

of the network traffic. The discussion is directed towards the clarification of some of the

limitations imposed by the nature of the approach. After that, a brief overview of the

most important network based IDSs and Traffic Monitoring Systems (TMSs) is included.

The enumeration of the several open source or commercial products is made so as to point

out their most interesting features. A small section where the related works are analysed

from a critical perspective is then included.

The detailed description of the means used to create legitimate traffic traces (at least

171

from the self-similarity point-of-view) constitutes the starting point for an in-depth anal-

ysis of the impact an attack has in the local scope Hurst parameter values. Though

the pertinence for developing a simulator of network traffic and of attacks becomes

clearer after the reports on the experiments conducted for the well known traces from

the Massachusetts Institute of Technology / Defense Advanced Research Projects Agency

(MIT/DARPA) data sets [145], included in the beginning of section 5.5., it was decided

to describe the simulator in section 5.4., for the sake of the organization of this chapter.

The type of attacks taken into consideration within the scope of this work and the way

they were injected into the generated traces are also discussed in some of the subsections

of that part. The study of the evolution of the local scope Hurst parameter values is then

made by means of computer-based simulation, and discussed after the brief subsection

dedicated to the MIT/DARPA data sets. Sections 5.5.2., 5.5.3. and 5.5.4. tackle the

three possible general scenarios that the windowed-modified estimators may face during

an attack. The subject of the loss of self-similarity is addressed in section 5.5.6., after the

proposal of an anomaly detector based on the findings of the previously referred sections.

A theoretical perspective of the results is then provided in section 5.5.7..

This chapter is partially based on papers [29, 30, 31].

5.2. Application Scope of an Intrusion Detection

Method based on Self-Similarity Analysis

The main purpose of this section is to delimit the application scope of an intrusion

detection tool based on self-similarity analysis within the IDSs general framework. The

description of the most common ways to classify IDSs is, henceforth, structured so as to

converge to the categories that best suit the referred approach, without going into too

much detail.

An IDS is the network device or the software module specialised in the detection

of security events. Its main functions include the inspection of files and logs, or of all

inbound and outbound network activity that may indicate a network or system attack.

The commercial attractiveness of this kind of systems is due to the increased importance

172

that security incidents are gaining, namely in the enterprise environment [146]. There are

several ways to categorise an IDS [7, 8, 9, 10, 25], as further discussed in the following

subsections.

5.2.1. Information Sources

In terms of information sources, an IDS can be classified as a Network Intrusion

Detection System (NIDS), if it monitors traffic from more than one network node (these

systems are usually placed in or near a network gateway, router or switch); or as a Host

Based Intrusion Detection System (HIDS), which is often an user-end monitor software,

that runs in the background of an OS checking for suspicious behaviour of applications,

or unwanted modifications to key system files. More recently, the so-called Application

based Intrusion Detection System (AIDS) [147] category was added to this particular

way of classifying IDSs, so as to tackle the systems that use the transaction logs between

applications, and the feedback obtained from the interaction with the application itself, to

detect suspicious behaviour related with non-authorised attempts to gain root privileges

(e.g. user to root non-authorised behaviour).

As previously stressed out (see section 2.3.2. of chapter 2), self-similarity is a prop-

erty of the network traffic, and reaches its biggest expression in popular aggregation nodes,

fed by the several tributes coming from the hosts or other aggregation nodes. As so, and

from the information sources (or system location) perspective, the self-similarity analysis

tool is restricted to NIDSs.

5.2.2. Analysis Approach

From the point of view of the analysis, an IDS can be classified as a Signature-

based IDS, if it relies on the identification of sequences of bits that describe a known

attack, being therefore connected to a typically large database, which is updated with

new signatures of attacks every time a new threat is detected (or in a regular time spaced

manner); or as Anomaly-based IDS, if it basis the detection of possible menaces to the

integrity of the network, or system, in the extraction and analysis of standard features of

173

normal behaviour, and on the detection of suspicious deviations to that normality.

Signature-based NIDS, also known as Misuse-based NIDS [8, 25] are typically based

on a complex protocol data unit filtering function. Every time one of those units of

information reaches the NIDS, it is cross-checked with the signatures contained in the

database to verify whether it contains any traces of a malicious program, or if a given

succession of values representing the traffic match the ones of a previously identified

attack. If the protocol data unit is considered part of an intrusion, it is discarded or

submitted to further analysis. This operational model relies mainly on the assumption

that most attacks have clearly defined signatures, and its efficiency (in terms of detection

rate and computational performance) is dependent on the amount of information available

for examination. In the case of network systems, packet inspection techniques and, more

recently, DPI mechanisms [11] are used to achieve higher detection performance, for they

enable the system to parse, organise and process the payload generated at the application

layer of the TCP/IP architecture, maximising the amount of information subdued to

signature matching. However, this kind of inspection can impose significant delay to

traffic flow/system response functions.

Signature-based IDSs are typically updated by a central server or through a self-

learning procedure. In the latter case, the IDS has the capability to auto detect unknown

attacks and to infer fingerprints for them, updating its own database. Construction

of new signatures can be done using some kind of heuristics (Bayesian, neural, artificial

intelligence algorithms [148], etc.) but they are normally difficult to arrange automatically,

and typically they require administrator intervention (either local or remote).

Some attacks are designed to bypass the intrusion detection or prevention system

through exploitation of known network mechanisms, as fragmentation or end-to-end en-

cryption, or through illegal manipulation of the information of the flows (e.g. spoofing

the source address of the protocol data unit). Because of their operational model, sys-

tems based on packet inspection are particularly susceptible to encryption or obfuscation

mechanisms [149], as the latter randomise the contents of the packets, frustrating any

attempt to act upon their analysis.

The biggest disadvantage of Signature-based NIDS (and of Signature-based IDS, in

174

general) is related with the computational effort to which the system is subdued. Cross-

checking an input stream of values, or a string of bits, with an increasing list of signatures

may prove itself to be an inglorious task in the long term, specially when the proliferation

of bandwidth intensive services and the standardisation activities of the 40 Gbps and

100 Gbps Ethernet technology [13, 14] promise to bring more data to the aggregation

nodes. In spite of their disadvantages, the signature-based systems constitute the niche in

terms of network security systems, and the DPI techniques are seen as the most reliable

means to assure security and QoS to the users of a network, for they enable a more

accurate management of the traffic [11, 149].

As previously said, Anomaly-based IDSs (a.k.a. Behaviour-based IDSs) [8, 148, 150,

151] draw on the definition of normality, and on the investigation of the best means

to enhance the divergence from that normality to perform the task of identification of

malicious activities. The philosophy of Anomaly-based IDSs is opposite to the one of

Signature-based IDSs in the sense that the former strive for the codification of what

is good in an information system, rather than aiming for the enumeration of all the

possible instances of misconduct. Because of that, anomaly based mechanisms require

less computational resources.

Within the scope of action of NIDSs and, more particularly, of traffic monitoring

and analysis tools, the prime source of information are the protocol data units flowing

through the devices. Hence, the anomaly-based detection methods have to be built on

top of that constraint. The task of profiling draws on the specification of a mathematical

model for one of more traffic aspects, which may either be extrapolated from observation

of historical data, or explicitly given by the constraints of the system. The model may e.g.

be the expected probabilistic distribution of the values representing the referred traffic

aspect or a more complex conjugation of several rules of good statistical behaviour. In

such case, an infraction occurs when the empirical distribution ceases to comply with the

expected one. The normality may also be delivered in the form of a statement, being the

developer the one responsible for the formalisation of the best means to verify the validity

of the statement during online analysis.

An anomaly-based IDS has many advantages when compared with the signature-

based IDSs, but also some drawbacks. Depending on how good the laws defining the

175

behaviour are, the system in question can suspect about new attacks without additional

reconfigurations or updates. These systems calculate several statistics for a single or mul-

tiple packets and draw conclusions about their fitness by testing the resulting metrics: if

they are out of a predefined confidence interval or surpass a given threshold, the traffic is

considered abnormal and further measures should be taken. In theory, the better the traf-

fic description model and its dimensions are, the better and more effective the developed

system is. A greater share of the existing anomaly-based NIDSs use classic statistical

metrics and counters for detection of traffic anomalies and draw often on heuristics when

there is a need to dynamically update the values of the thresholds [9].

Some of the anomaly-based IDSs require the characteristics or the models to be

adjusted before being used. In those cases, the learning phase is critical. Assuming that,

during the learning phase for such a system, the latter is fed with a huge amount of

abnormal data, the NIDS can become vitiated and potentially subverted. Additionally,

if the system features a continuous adjustment loop and traces the current state of the

network (or host) communications, a number of false attacks can lead the NIDS to alter

detection thresholds, in such a way that a real attack passes unnoticeable or is classified

as a false positive alarm. Also with the subversion in mind, some probes are intentionally

dispersed in the time domain (e.g. Portsweeps), to dilute possible patterns. These last

type of probing activities are called stealth probes [152].

A third type of analysis approach called Stateful Protocol Analysis is specified in

[153]. It requires the IDS to understand the state machines of the protocol being used

in the communications and the detection of an anomaly is performed by checking if the

states (composed by one or more events and other significant information) are rightfully

following the flow diagram of the model (e.g. the detection procedures may check if a

given sequence of protocol data units is respecting the protocol state machines specified in

a given Request For Comments (RFC)). The occurrence of a non listed state is indicative

of a potential anomaly. Though this particular type of analysis is not applicable in terms

of what is studied in this thesis (see next paragraph), it comprises a feature of many of

the commercial IDSs described below.

A tool for intrusion detection inspired in real-time self-similarity analysis embodies

a traffic characterisation mechanism, as the assumption of normality is placed upon statis-

176

tical properties of the network traffic. As those statistics apply solely to some of the most

general aspects of the traffic (the bit count per time unit process), it should be empha-

sised that, actually, the method strives for categorising traffic in the dark. TCD techniques

draw on less (and different) assumptions and rely on less information than other types

of techniques. Their scope is limited to the information the flow collectors may retrieve,

and to the header of the protocol data units under analysis [15], which travels in plain

text more often than the payloads. The major drawback of these techniques is that their

operational model can only be used to suspect about the illegitimacy of a given traffic

segment or flow, and not always to point out the specific details of an attack. Therefore,

while the traffic characterisation methods can pose an attractive choice because of their

efficiency (the statistics can normally be calculated using low computational resources),

they cannot be always considered as a complete detection mechanism alone. The task

of intrusion detection based on self-similarity analysis is therefore circumscribed by the

advantages and disadvantages of TCD.

5.2.3. Response Type

From the point of view of system activity, a NIDS can be considered as a passive

NIDS, that logs and emits an alarm upon detection of a potential attack, or as an active

NIDS, which responds to a potential attack by automatically triggering further investi-

gation procedures, by disconnecting a user or by dropping suspicious packets. As the

two categories do not necessarily exclude each other, there are also hybrid response type

systems [9], which are capable of issuing actions belonging to both of the above mentioned

categories.

As a consequence of what was said in the previous section, the response type of a

NIDS built on top of the means for fast Hurst parameter estimation may be considered an

active response type system, but its actions should be confined to the possibility to trigger

further investigation procedures and emit alarms during a potential intrusion. As previ-

ously explained, the output of anomaly-based techniques (and more particularly of TCD

techniques) should be carefully considered before starting to drop protocol data units.

These methods should complement (or be complemented by) other detection techniques,

177

or if such is infeasible or not applicable, their classification should be submitted to human

discernment.

5.2.4. Analysis Timing

A final remark regarding the analysis timing of the means used to assess the self-

similarity degree may still be made before ending this section. While the examination

of audit logs may be performed in a periodic or offline manner, real-time operation is of

critical importance in network security equipment [9]. Thus, one of the major objectives of

this thesis was to find the means that could enable the estimation of the Hurst parameter

to be conducted in real-time. The discussion in chapter 3 proves that that objective can

indeed be achieved, and that a possible IDS based on the fractal structure of the traffic

would actually fulfil the prerequisites for an online implementation.

5.3. Overview of Open Source and Commercial NIDSs,

and Critical Analysis of the Related Works

In the previous section, it was shown that the conditions where a tool for intrusion

detection based on self-similarity analysis has the best chances of succeeding are met

within the application field of NIDSs. This section contains the compilation of the results

of a search for open source or commercially available NIDSs and TMSs (first subsection),

and the critical analysis of the works that are more closely related with the subject of

this thesis (second subsection). The initial search for the commercial security products

was specially motivated by the fact that the work was being conducted inside a company

developing network equipment.

5.3.1. Overview of Open Source and Commercial NIDSs

The main purpose of this section is to provide the subject at hand with a general

perspective of which are the most common technologies employed by NIDS and TMS

developers. The following list contains the description of some of those systems and of

178

their main features (a broader list of NIDSs may be found in [154]), but it does not

include the detailed explanation of their inner workings. While the analysis approach

behind some of the referred features is easily obtained from the description included in

the previous section, others are not. Unfortunately, the details of a small part of them

are not discriminated in the products documentation either, due to e.g. industrial secrecy

policies.

1. Cisco has IDS and Intrusion Prevention System (IPS) solutions [155]. The vast

portfolio includes systems for hosts and network aggregation points, as well as the

systems or software modules for their centralised management, and correlation of

the information coming from distributed security sensors. In [156], it is claimed

that their solutions are capable of defending the networking devices against known

and unknown threats like worms, network viruses and application level intrusions.

The Cisco IPS is conceived for online operation, and it supports protocol parsing,

IDS/IPS evasion protection, active response actions, active notification actions, web

administration interface and additional support for secure communications between

security systems (via compliance with the Internet Protocol Security (IPSec) frame-

work), apart from application misuse, stateful pattern recognition, anomaly-based

detection, heuristics and standard signature-based techniques (the complete list of

features may be found on table 9 of the data sheet of the product in [156]). Cisco so-

lutions are also known for their advanced and intuitive management front-end, and

for complementing their offer with additional services, which include near real-time

actualisation of the database of attacks.

2. Allot Communications claims to have a TMS solution (NetEnforcer [157]) capa-

ble of providing more than one hundred metrics of the network traffic and of its

performance. Their major business area comprises network traffic classification,

prioritisation, and shaping on a per application or on a per user basis. Their most

prominent brand promoter is the DPI acronym, which is mostly used to show the

granularity that the system is capable of achieving. As far as the author could

assess, the set of metrics provided by the TMS precludes self-similarity analysis

in real-time. Apart from the referred characteristics, NetEnforcer comprises also a

scanner for mitigation of known Distributed Denial of Service (DDoS) attacks and

179

Worms, and offers monitor and control capabilities for P2P and VoIP related traffic.

3. NIKSUM NetDetector [158] seems to be an emergent security solution for informa-

tion networks. The product is presented as a full-featured appliance for network

security surveillance, detection, analysis, and forensics, and it is claimed to draw si-

multaneously on signature- and on statistical anomaly-based techniques to perform

intrusion detection. One of the most publicised features of the solution is related

with its capability to reconstruct the streams of well-known protocols / applications,

(as Hypertext Transfer Protocol (HTTP), e-mail, File Transfer Protocol (FTP), Tel-

net, etc.), being therefore suitable for the identification of malicious code flowing

within application layer requests or responses. Once deployed, NetDetector is con-

tinuously capturing and storing the network traffic, for future comparison and for

real-time reaction to attacks. This operational model could actually embody a scal-

ability problem, if it was not for the explicit suggestion of the manufacturer to

improve the storage capabilities of the solution as the network grows. The interface

of the system is said to be highly intuitive and accessible via web-browser (using

an authenticated and encrypted channel). NetDetector is presented as being com-

patible with other security solutions (e.g. with Cisco IPS), and as a useful forensics

tool.

4. Appliance [159, 160], from SecurityMetrics, is a security solution that combines

correlated intrusion detection with vulnerability assessment to achieve higher per-

formance and decrease the false positive alarms rate. By actively exploiting the

several components of the network in a timely and controlled manner, the Appli-

ance is capable of constructing a database of the attacks to which the systems are

susceptible to. It may then be configured to raise alarms for the subset of the attacks

that actually constitute a threat, effectively decreasing the number of false positives

notifications sent to administrators. Apart from the signature matching detection

techniques, the solution also incorporates a frequency based detection method, that

aims to discover unusual amounts of a given type of protocol data units, during pre-

defined periods of time. The system is suitable for the detection of known Denial

of Service (DoS) attacks and worms, as well as for the protection against viruses

and cross-site scripting attacks. Because the equipment acts as a layer 2 bridge, its

integration in the existing infrastructure is simple and does not require too much

180

effort, in terms of configurations. The update of the software of the solution is made

automatically during the night.

5. Check Point presents itself as the owner of the intellectual property rights of the

stateful protocol analysis [161], a technology that decides on the legitimacy of the

protocol data units by checking weather they respect the premisses of the protocols

they carry. Stateful inspection presumes the monitoring of both directions of the

connections / sessions at the device where it is applied, namely via the construction

and storage of a table of states, which enables the security solution to observe if the

incoming data falls within one of the possible paths of the state machines of a pro-

tocol, otherwise declaring an attack. The factor that most favours the performance

of the referred procedure is that the context information table can be efficiently

constructed in real-time, and it does not require as much storage space as e.g. a

signatures database. The Check Point IPS/IDS solution is termed IPS-1 [162], and

it includes several technologies built on top of stateful inspection, namely detection

of known or unknown protocol breaches and proactive defence against probing (the

IPS maintains all the layer 3 ports closed while no rightful connection has been

established to one of them). The number of protocols that are natively supported

by the solution covers all the 6 top layers of the OSI model. Besides employing

the signature-based techniques, the IPS-1 is said to be able to seamlessly correlate

the alarms emitted by different security entities in the same network, detect and

detain unknown but rapidly spreading menaces, and perform smart IP reassembly,

prior to data examination. Automatic updates are available as a service through

the Check Point SmartDefence Services, and the management is said to be intuitive

and centralised, so as to benefit scalability.

6. The Juniper Networks Intrusion Detection and Prevention solutions present an im-

pressive list of features. In [163], the several series of the products are said to imple-

ment eight different detection methods that cooperate to achieve higher detection

ratio. One of the most interesting features is termed Stateful Signature Detection,

and consists of the procedure by which small portions of the traffic are selected

prior to the application of signature-based methods. The selection of the portion of

the traffic is determined by the protocol context. Apart from that, all the security

systems include protocol and traffic anomaly detection and the obligatory protection

181

against DoS attacks. According to the data sheet of the products, the detection of

unknown threats is covered by the usage of techniques based on heuristics, and by

the same day coverage service, which is concretised on the commitment of the com-

pany to update the signatures database as soon as the fingerprints of a new attack

are discovered. Some of the IDS/IPSs include also an Honeypot function, so as to

actively track probing activities and to gain insight into real-world threats. The

management of the systems is centralised and role-based, enabling the assignment

of different responsibilities to different administrators. Additionally, the continuous

support of the Juniper Security Team and of their security suggestions service spare

the network administrators from the daily research task for new threats.

7. The Enterasys NIDS is named Dragon IDS/IPS [164], and it is built on top of a

technology that was distinguished with a quality and with a trust award in 2004

and in 2006, respectively [165, 166]. Enterasys claims that their solution has active

response capabilities that can be used to dynamically tune the policies of the firewalls

to which the system is connected to, in order to frustrate and/or stop intrusions.

The NIDS is said to be capable of interacting with other NIDS or with several

sensors located at the given network, enabling a more accurate identification and

isolation of the source of the attacks. The problem of the scalability is addressed by

the multithreaded architecture and via the support of virtual sensors. Its detection

methods include the ones based on signatures matching, and on anomaly, protocol

and behaviour analysis. By the time this thesis was written, the most recent release

of the product was publicised as being capable of reconstructing data flows (e.g.

TCP or HTTP sessions) at a data rate of 10 Gbps, and of processing them in real-

time. The specifications of the system included also the response capabilities to

DDoS attacks and the transparent operation of the NIDS within the network. It

is equally emphasised that Dragon is capable of looking for vulnerabilities within

VoIP calls, and of performing Zero Day detections (probably thanks to non-specified

anomaly based techniques). The front-end of the Enterasys security solution is

written in Java, and the management console may be accessed using a web browser.

8. Bro is the name of the Vern Paxson open source IDS proposal [167]. It targets

high-speed, high-volume networks, and it is conceived to run in (cost effective)

commercially available PC hardware running the UNIX OS. Bro is said to be

182

specially useful for sites requiring flexible and customisable detection capabilities,

mostly because its specialised policy language allows it to make the operation of the

IDS dependent from the site policies and from the discovery of new attacks. While

its monitoring functions are passive, the IDS may be configured to issue active

responses through the execution of commands, or to merely generate and send a

security log. Bro parses the traffic to extract application level semantics, which

may then be submitted to the so-called event-oriented analysers. It is actually this

particular mode of operation that enables the intrusion detector to run so efficiently.

Thus, the IDS is not only suitable for the identification of attacks with a predefined

signature, but also of the ones that may be defined in terms of events. Its biggest

disadvantage is that the system has to be handled by experts. Additionally, as it is

stated in [167], Bro should be understood as a solution for those who seek an IDS

that has to be built as need arises, rather than an out of the box solution.

9. The most popular open source network intrusion prevention and detection system

is SNORT, which may be freely downloaded from [168], where it is publicised as the

de facto standard NIDS for the industry. The system utilises a rule-driven language

that combines the benefits of several approaches for the identification of threats,

namely a signature matching engine, protocol and anomaly inspection methods.

SNORT follows the market trends very closely and, at the time this thesis was

written, its most recent release was already capable of natively supporting Internet

Protocol version 6 (IPv6) and Multi Protocol Label Switching (MPLS) (which is

a major feature for carrier networks). The architecture of the SNORT Security

Platform favours online deployments of the NIDS, and its multithreaded execution

modes were listed as one of the solutions for the scalability problems.

As it was previously stressed out, most NIDSs are built on top of signature-based

detection techniques, and use technologies as protocol parsing, stateful protocol analysis

and anomaly-based mechanisms to enhance the attractiveness of the product. Most of the

developers of these kind of systems seem to be investing a lot of effort in the intuitiveness

of their interface, as well as in the scalability problem. Multithreaded execution support

appears to be one of the solutions for such a problem, since the urge to go deep into the

protocol data units contents encompasses a computational cost that cannot be avoided

183

nor neglected. In the case of commercial systems, the actualisation of the software and

of the database of the signatures is often sold as a management service. Most systems

act simultaneously as IDSs and as IPSs, and some of them draw on the correlation of

the information coming from host security sensors, or from other security equipment,

to detect and isolate sources of attacks, namely of DDoS attacks. When applied, the

statistical treatment of the captured traffic is confined to the calculation of the most

common metrics, as the average or standard deviation of several networking aspects. At

the time this thesis was written and to the best of the knowledge of the author, there were

no security solutions implementing real-time self-similarity analysis as a means to perform

intrusion detection. The conclusions of this chapter provide a possible explanation to that

fact.

5.3.2. Critical Analysis of the Related Works

Since the developments that unfolded the self-similarity nature of network aggre-

gated traffic [16, 39], the concept of self-similarity has gathered special interest from

the networking research community, being the subject of many contributions along the

years. During the initial years after its discovery, the phenomenon of self-similarity

was mostly observed from the perspective of its impact in the network resources utili-

sation, and only after the year 2000 one may find contributions that relate the peculiar

statistical behaviour of the traffic with the subject of intrusion detection. References

like [22, 23, 24, 169, 170, 171], for example, discuss the importance of guaranteeing the

self-similar properties of the background traffic used in the evaluation of intrusion de-

tection mechanisms [22, 23, 24, 169, 170], and the problem of the possible loss of the

fractal structure during an attack or during an erroneous state of the network [170, 171],

but not on the concrete behaviour of the self-similarity degree during an intrusion. The

last mentioned topic is addressed in a smaller number of contributions [20, 21, 25, 26],

which are going to be discussed below with more detail. Please notice that the following

statements represent a critical perspective of the author of this thesis and that they must

always be understood while having that consideration in mind.

The first work the author would like to address in this section is the one of Li

184

[25], dated from 2006. As far as the author of this thesis could assess, in [25], long-

range dependence is presumed to be a property of the size of the protocol data units,

rather than of the amount of information per time unit. The reasoning is then built on

top of that assumption, and the practical demonstration that the Hurst parameter values

decrease during DDoS (flood) attacks is made via the analysis of the MIT/DARPA traces.

The Hurst parameter is assessed by means of a parametric minimisation of the difference

between the empirical and the expected autocorrelation function of self-similar series. The

window sizes used in the study are not discriminated, though one might extrapolate from

the few references to those details that the non-overlapping sections to which the analysis

was applied to were of size 214, and that the maximum lag for which the autocorrelation

was calculated was of 16. The theoretical proof of the results obtained from the referred

analysis is made by enunciating two corollaries which, in the opinion of the author of this

thesis, are demonstrated in an extremely terse manner.

One of the conclusions that could be drawn from [25] is that a DDoS decreases the

burstiness of the traffic (since it causes the Hurst parameter to decrease), which could

consequently lead to the conclusion that the quality parameters of the network could

actually improve during a flood attack. Such conclusion is wrong, and the explanation

for the apparently consistent results included in the paper is difficult to grasp from the

description per se, but it must be related with its initial assumptions or with the utilised

estimation method. In this chapter, it will be shown that the local scope Hurst parameter

estimates obtained from the implementations of WMVT and WMEBP may increase for

moderately intense flood attacks (depending on the traffic load), and that self-similarity

is actually lost during higher intensity floods, contrarily to what is suggested in [25]. The

change in the Hurst parameter estimates happens during the transition period where the

attack is either entering or leaving the observation window, and it is even shown empir-

ically (and later corroborated theoretically) that the self-similarity is locally preserved

while the attack lasts. Nonetheless, it should be mentioned that the series to which the

analysis is applied to is different from the one in [25], and that the estimation methods

are different also.

The paper entitled Iterative Window Size Estimation on Self Similarity Measure-

ment for Network Traffic Anomaly Detection [21] aims for the assessment of the window

185

size that most favours the detection of anomalies based on self-similarity analysis. Their

proposal consists of an iterative (brute force type) algorithm that applies the HEAF es-

timator to the same data set sampled for different window sizes, ranging from e.g. 500 s

to 2000 s (with a predefined step size of 100 s). The criteria the algorithm aims to max-

imise is the inversely proportional relation between the number of anomalies detected and

the number of false alarms. Analogously to what was done by Li [25] and to what is

initially done in this thesis, the analysis was conducted for the 1999 MIT/DARPA data

sets. The main focus of [21] is thus not directed towards the analysis of self-similarity.

After discussing the results, the sample size of 1400 s is indicated as the one with the best

detection rate, for intrusions with duration larger than 500 s. No theoretical support is

provided for such conclusion.

The research work described in [26] starts by referencing the previously discussed

work of [25], apparently supporting the conclusions of Li, but in their report, they show

that the estimates of the Hurst parameter increase during the anomalies they examined

(recall that in the work of Li [25], the value of the Hurst parameter was said to decrease).

In [26], observation windows with a length of 30 minutes are used, and the traces of traffic

are aggregated for time units varying between the 10 ms and the 1000 ms. The loss of self-

similarity is assessed via the evaluation of the average deviation between the theoretical

and the empirical autocorrelation functions (the autocorrelation function is calculated

for lags up to 200 units). For departures larger than 10−3, an anomaly is signalled, but

nothing is added in [25] regarding its intensity or duration. The results contained in [25]

show that the values of the Hurst parameter obtained for abnormal traffic is never larger

than 1, but that the difference between the autocorrelation functions may indicate loss of

self-similarity (expressive departures are achieved during some of the attacks analysed).

The work of Allen and Marin [20] is, in the opinion of the author of this thesis, the

most concrete and coherent of all the studies discussed in this section. The type of attacks

they tackle in their investigation coincides with the ones considered in this study. The size

of the sample pools varies between the 10 and the 30 minutes, depending on the size of

the traces and on the traffic load. The value of the Hurst parameter is calculated every 5

minutes. The 1999 MIT/DARPA data sets were, once more, used in the evaluation of this

particular proposal. A DoS - Traffic Exploit attack (designation used in the reference) is

186

signalled when the value of the Hurst parameter, estimated by the Periodogram or the

Whittle estimator, is either superior to 1 or inferior to 0.5. The paper does not contain a

study to the evolution of the self-similarity degree, and does not consider the possibility

of having DoS - Traffic Exploit attacks that do not result in the loss of the self-similarity.

The definition of loss of self-similarity presented in [20] is not correct, but it seems

to fulfil the objectives of the proposers. It is true that the Hurst parameter of self-similar

series should be confined to]0, 1[, and the one of long-range dependent series should be

larger than 0.5, but such does not necessarily mean that the estimators will return values

out of the referred interval for all non self-similar series. Sastry et al. [172], for example,

discussed how Wavelet analysis and single value decomposition could be used to specify

the number of scales in which the series under analysis remains self-similar, and in which

ones the anomaly is reflected. Though their approach is different from the one in [20] and

from the one taken in here, it shows that the subject of the loss of self-similarity during

an anomaly may be analysed from several angles, and that a clear line between the two

states is not that easy to draw.

Notice that the concepts of observation window, sample size or non-overlapping

segments or blocks, utilised in the references discussed herein, are not equivalent to the one

of observation window formalised in chapter 3. In [21], the term window is normally used

to refer the block size (or the sample time, according to the reference) taken by the HEAF

estimator which, according to the authors, can be chosen by an iterative mechanism, that

aims for the optimization of the relation between data insufficiency and sensitivity. In

the remaining research works, the concept is used to refer to subsets of values to which

the analysis was applied to. Additionally, the movement of the observation window is

defined by jumps.

It is of the opinion of the author that the work reported in this thesis differs from

the aforementioned works in the following three aspects:

1. First of all, in this work it is not presumed, nor concluded, that the presence of some

kinds of attack results inevitably in the loss of self-similarity. It is concluded that,

depending on the relative location of the observation window during the time span

of an intrusion, the self-similarity may be either preserved at a local scope or lost.

187

For some situations, the estimators signal an increase of the self-similarity degree.

2. Secondly, the self-similarity analysis is herein made by using well-known estimators

that were strictly modified for the purposes of this research, enabling a more granu-

lar (i.e. step-by-step) examination of the evolution of the Hurst parameter values

during an intrusion. The modified estimators enable operation over significantly

smaller observation windows than in the previously discussed works. Additionally,

the window step can be as small as the smallest aggregation scale considered (e.g.

it can be as small as a millisecond), without having any problem concerning the

computational feasibility of the calculations.

3. The validity of the hypothesis was pursued via the application of two completely

different (and independent) estimation methods, for the sake of impartiality. Fur-

thermore, all the assumptions and results are coherent with the theory developed

along the research work, and the analysis was conducted in such a way it enables

the results to be generalized to scenarios different from the ones considered herein.

5.4. Self-Similar Traffic Generation and Attacks Si-

mulation

During the initial phase of this research work, it was concluded that there were

several shortcomings for conducting the tests for real traces of traffic. On the one hand,

there was an inherent lack of control over basic, yet critical, aspects of the experimental

scenarios (e.g. the network load, the degree of self-similarity); on the other, it was noticed

that some pre-collected traces containing attacks suffered from flagrant flaws in terms of

the self-similarity properties, most certainly because that particular characteristic was

thought as being of secondary relevance for the purposes of such resources.

One of the main applications of the generators of occurrences of fBm (or fGn)

processes is the simulation of traffic in network aggregation points. This section contains

the description of a possible means of using 4SG as a network traffic generator with self-

similar characteristics. The procedure draws on the sequential generation capability of

4SG, allowing for the synthesis of a trace on a packet-by-packet and real-time basis.

188

Note that the following description is also valid for fBm-SGA, since the latter fulfils

the most critical prerequisites of the proposed procedure. The edge of 4SG is on its higher

quality for scales of type different from 2k.

5.4.1. Model Description and Formalisation

The process in which self-similarity has been proven to exist is the bit count per

time unit process, and it is where the impact of the network attacks is to be assessed.

Thus, the simulation of that particular aspect of a legitimate trace of traffic could be

directly performed via the generation of an fGn and of its posterior adaptation to fit the

specifications of the network aggregation point, in terms of average and variance. The

effect of the attacks could then be inserted by defining an additional process, which would

only take values different from 0 by the time of the intrusion, and that would actually be

summed to the shifted fGn. Nonetheless, it was decided that the simulation of the traces

via synthesis of the packet size and inter-arrival processes would improve the realism of

the model, making the insertion of malicious traffic a more straightforward task (see next

sections).

The challenge behind the approach taken was on how to generate consistent occur-

rences of the processes of the inter-arrivals and of the packet sizes, while assuring that

the underlying process of the amount of information per time unit possesses a fractal

structure, with predefined Hurst parameter. Furthermore, the procedure had to provide

the means to control other statistical characteristics of the referred series. As so, the set

of parameters, assumptions and statistical properties that were taken into account when

devising this simulator were the following:

• the intended self-similarity degree of the network trace (given by the Hurst param-

eter H);

• the available bandwidth BW at the given network point;

• the intended load L (a fraction of the total available bandwidth);

• the minimum inter-arrival time IAmin;

189

• and a known (e.g. empirical) probability distribution for the sizes of the packets

arriving to a given network aggregation point.

Accordingly to what was said, a trace consists of a set of packet sizes and of inter-

packet gap values. The processes representing those dimensions are hereinafter denoted

by {PS(t)}t∈N and {IA(t)}t∈N, respectively. Assume that each packet size is a random

number between PacketSizemin and PacketSizemax, which respects an empirical packet

size distribution. This means that no special measures are to be taken for the generation

of the packet sizes, and that these values may or may not present correlation (no self-

similarity) between them. In other words, only the inter-arrival times will somehow reflect

(or be affected by) the self-similarity phenomenon. Given the packet size distribution, one

can calculate the average packet size value E(PS). Fix a timescale ts and suppose that

the available bandwidth BW is already in bits per timescale ts. Assume also that the

IAmin parameter is expressed in bits (the explanation is easier under that assumption).

To recover the inter-arrival in time units, divide it by BW . According to this and to the

definition of traffic load, at a given moment of time, the average bandwidth used is given

by BWU = L×BW and the average number of packets that fill that bandwidth is given

by

npackets =
BWU

E(PS)
. (5.1)

As each packet is followed by an inter-arrival time, there will exist npackets inter-

arrival values. It is assumed herein that the inter-arrival times are realisations of a shifted

and scaled fGn process (because there are no negative inter-arrival times), with Hurst

parameter H. The expected value and variance of this process must fulfil certain criterion.

Since the used bandwidth is filled with the packet sizes, the unused part must be filled

with the inter-arrivals. To assure that, at least in average, the amount of traffic that

arrives to the given network point in the considered timescale is given by BWU , the

average inter-arrival value must be defined as in (5.2):

E(IA) =
BWNU

npackets
, where BWNU = BW −BWU . (5.2)

The previous condition also assures that, in average, the generated values for the inter-

190

arrival times are positive numbers, but it does not assure that all of the samples are so,

nor that the minimum inter-arrival time is seldom retrieved by the generation procedure.

This problem can be solved (and, in some way, controlled) if the variance of the process

is defined as in (5.3) or (5.4):

√
V(IA) =

E(IA)− IAmin
2

; (5.3)

√
V(IA) =

E(IA)− IAmin
3

. (5.4)

In order to understand better what expressions (5.2), (5.3) and (5.4) mean, the

reader is asked to observe Figure 5.1. The choice of the V(IA) value ((5.3) or (5.4))

provides a way to choose how many values of the generated Gaussian process are going to

be smaller than IAmin (0.1% or 2.2% of the whole population). Ideally, one would think

that this value should only be retrieved by the generation algorithm with infinitesimal

probability (except when one is simulating heavy load conditions), but empirical analy-

sis show that the IAmin is regularly measured, even under light load conditions, for it

separates the packets of the bursts sent by terminal or other multiplexing nodes.

In order to avoid inter-arrival values smaller than IAmin, the generated values smaller

than that value should be discarded and the predefined value of IAmin should be retrieved

instead. Unfortunately, this last step is the same as truncating the generated values of

the fGn when they are smaller than IAmin, i.e.

Return IAmin, if

IA(t) < IAmin. (5.5)

To avoid having a slight bias in terms of the target traffic load (and in terms of the

self-similarity degree), one might want to define a symmetrical upper bound truncation

as well, as suggested by the following reasoning:

Return E(IA) + (E(IA)− IAmin), if

IA(t) > E(IA) + (E(IA)− IAmin). (5.6)

191

Having defined the average and the variance of the inter-arrival times process

{IA(t)}t∈N, it is easy to write the law that, according to this model, confers self-similar

properties to the traffic trace (recall that, in the next equation, GH(t) denotes an fGn

process with Hurst parameter H):

IA(t) = GH(t)×
√

V(IA) + E(IA). (5.7)

Figure 5.1 provides the graphical representation of the idea behind the simulation

apparatus. It depicts where the long-range dependent Gaussian variable is to be placed

in order to assure the self-similar properties of the bit count per time unit. Please take

into account that, for the sake of simplicity (and without loss of generality), some of

the previously described concepts were relaxed to produce the illustration in the referred

figure, which, consequently, does not exactly reflect what was previously said. To be

exact, it must be said that the illustration is valid for ts = E(PS)
L

(i.e. the time scale for

which the figure is valid for is the one in which, in average, fits one packet only).

Figure 5.1: The position of the fGn in the bit count per time unit process, and the illustration

of the limits after which the value of IAmin is retrieved. (This figure is valid for ts = E(PS)
L .)

The responsibility of assuring the fractal structure of the amount of information

per time unit is laid upon the procedure for the generation of inter-arrival times, which

basically places the generation of the packet sizes in a second plane, as long as the average

value of the retrieved values is known and fixed a priori. This particular design favours the

specification of the parameters of the simulator, for it is possible to precisely adjust the

amount of the unused part of the bandwidth, thus enabling the control over the simulated

traffic load.

192

5.4.2. Implementation Details and Pictorial Proof of Self-Similarity

The network traffic generator was implemented according to the specifications in

the previous section in the object oriented programming language Java, and tested on

a desktop computer equipped with a PIV 2.4 GHz processor and 1 GB of RAM. To

generate the packet sizes, a file containing a packet size distribution of an aggregation

network point was downloaded from one of the sites of National Laboratory for Applied

Network Research (NLNAR) [173], and later read by the traffic generator. Each time a

packet size was to be returned, the probability domain was emulated by a pseudo random

number between 0 and 1 (PRR was used to this purpose), and the respective packet size

value located in the empirical distribution.

In [31], the previously described simulation model was presented as a possible appli-

cation of fBm-SGA. In there, the generation of the inter-arrival times process was done by

transforming the outputs of the algorithm according to (5.8), where fBm-SGAH(t) repre-

sents the sequence of values returned by fBm-SGA for a predetermined Hurst parameter

H:

IA(t) = fBm-SGAH(t)×
√
V(IA) + E(IA). (5.8)

Herein, the simulation of the inter-arrival times is done resorting to 4SG, due to the

already enumerated reasons.

The traffic generator was tested for several network parameters combinations (di-

verse loads and Hurst parameter values). For each scenario, the number of bits generated

was aggregated for three different time scales (0.1 s, 1 s and 10 s - see charts in Figure 5.2)

and the self-similarity degree of the resulting processes was analysed. This analysis was

similar to what was made in section 4.3.2. in all aspects, including in the specifications

of the computer were the simulations were conducted. In average, the estimated Hurst

parameter values were slightly smaller than the intended ones, and their variance was

almost 9 times bigger then the ones presented in section 4.3.2. of the referred chapter, for

the biggest time scale used. This particular behaviour was somehow expected, since the

core of the simulation apparatus is an approximate method for the synthesis of fGn, which

results in minor lacks of correlation (and thus, in a smaller degree of self-similarity).

193

To overcome this minor flaw, the dependencies of the fGn must be strengthened

by declaring an Hurst parameter value that is actually bigger than the expected one.

Table 5.1 contains some of the compensation addends that may be used to control the

self-similarity degree of the produced traces. (The values in the table were taken from a

larger set of results, which were obtained from the examination of 3000 synthetic traces.)

Table 5.1: The difference between what should be declared, and what should be expected, in

terms of the self-similarity degree of the traces generated using 4SG.

Expected Hurst Parameter Declared Hurst Compensation

Value (std. dev.) Parameter Value Addend

0.6(5.59E-04) 0.65 0.05

0.65(4.21E-04) 0.69 0.04

0.7(5.81E-04) 0.73 0.03

0.75(6.71E-04) 0.78 0.03

0.8(1.48E-03) 0.84 0.04

0.85(1.09E-03) 0.89 0.4

0.90(1.09E-03) 0.95 0.5

max: 0.92(0.00125) 0.98 0.6

The traffic load was also subjected to experimentation, since it is one of the main

input parameters of the generator. The absolute error between the intended and the

measured load was always smaller than 10−3, which is a direct consequence of how accurate

4SG is, in terms of the average and variance of the generated sequences. Because the

proposed simulation model preserves the main statistical properties of the approximate

fGn, the amount of information per time unit is well centred at the expected position.

The charts in Figure 5.2 are the graphical representation of the bit count per time

unit process, and they were obtained during the simulations to the scenario with the

following combination of network parameters: H = 0.8; BW = 1 Gbps; L = 0.4;

PacketSizemin = 360 b; PacketSizemax = 12000 b; IAmin = 96 b. As can be concluded

from careful observation of the charts, the variance of the aforementioned processes is

slowly decaying as one moves from chart a) to chart c), as a consequence of the depicted

aggregation procedure. However, contrarily to what would happen with a completely

194

random variable, the reduction of the range of occurrences is not inversely proportional

to the time scale considered, otherwise the chart in c) would be much less variable than it

is. This fact is owed to the scaling properties of self-similar processes (the general aspect

of the graphical representations of the process seems to be independent from the distance

it is observed), and thanks to Leland and Taqqu [39], it is currently known as the classical

pictorial proof of self-similarity of the network traffic (please refer to section 2.3.3. for

further details on this subject).

Figure 5.2: Classical pictorial representation of self-similarity in network traffic: the aggregation

scale increases from 0.1 s to 10 s as we move from chart a) to chart c). All traces were generated

using the 4SG with a predefined Hurst parameter equal to 0.8 and load parameter equal to 0.4.

195

The simulator does not replicate all the particularities of the traffic for a given

network aggregation point. One of the major faults of the presented model is its incapacity

to accurately simulate the phenomenon of packet trains. This fact is explained by two

main reasons: (i) the generation of the trace is being made at the point where self-

similarity is to be assured, emphasising only this objective and forgetting each one of the

individuals (remote nodes) that contribute for the generation of the trace and; (ii) the

packet sizes are modelled as realisations of a random process and do not necessarily obey

to any rule of persistence. Nevertheless, this fault is of secondary relevance in the scope of

this thesis, since the study it reports is conducted for statistics taken from a series that,

in this case, is not affected by the order of the size of the packets. If strictly required,

the fractal structure may be embedded in the sequence of packet sizes by generating a

self-similar series following the uniform distribution, and by using it to choose the values

from the empirical distribution.

5.4.3. Demonstration of the Fractal Properties of the Bit Count

per Time Unit Through VT Analysis

In the final part of the previous section, the scaling properties of the generated

traces are demonstrated by means of a pictorial proof. It is also said that the self-

similarity degree of the amount of information per time unit is slightly smaller (in average)

than the one of the generated fGn, due to minor lacks of correlation of the approximate

series. Thus, the doubt on how well the fractal structure is embedded in the generated

traces is not completely unfounded. To prove that the referred characteristic is, in fact,

preserved by the previously presented procedure, and that the uncorrelated selection of

the packet sizes does not render the referred process random, the Hurst parameter of the

bit count per time unit was calculated for different traces using the retrospective version

of VT. Several traces (with Hurst parameter varying from 0.70 to 0.95) were created,

and their VT log-log plots were subject to human observation. The compilation of the

statistical treatment for 100 simulations of traces with expected Hurst parameter equal to

0.83 (using a compensation addend of approximately 0.04) was included in Figure 5.3

for exemplification purposes. The fact that the points in the plot are so well fitted by a

line, added to the fact that the value retrieved by the formula H = 1 + slope/2 is 0.83,

196

provide that the traces generated by these means are of good quality, at least from the

self-similarity perspective.

Figure 5.3: Demonstration that the procedure described in section 5.4.1. can, in fact, be used

to generate self-similar traces. The value of the Hurst parameter for the particular trace is 0.83.

The scaling law that defines the variance/time structure of the analysed process is

printed in Figure 5.3. The justification for that lies again on the inner workings of the

adopted model, and in the procedure that was used to obtain the bit count per time

unit values. As the several packet sizes and inter-arrival values are being summed to

fulfil a fixed threshold, the scaling law of the approximate fGn is being evenly distributed

along the several occurrences of the bit count per time unit, thus equally affecting all the

aggregation blocks considered during the VT analysis.

5.4.4. Definition and Simulation of Network Intensive Attacks

Before proceeding with the description of the means used to simulate attacks, it is

pertinent to comment on the exact type of anomalies with potential of being detected by

self-similarity analysis. Since long-range dependence reflects the relations of a necessarily

large pool of samples, any attack constituted by a relatively small number of protocol data

units has little chances of being detected by the referred approach. Such fact immediately

excludes intrusions based on single malformed packets (e.g. the Land attack [174]), or

the transfer of a small amount of malicious data, resulting from the spread of malicious

197

software as virus, worms or trojan horses. On the other hand, the epidemic spread of

such menaces may be expressive enough to raise an alarm.

Malicious activities that are randomly sparse in the time domain embody a second

type of activities that should not produce, at least theoretically, any effect in the scaling

exponents defining the trace. Thus, stealth probing activities [152] (as Portsweeps or

IPsweeps) intentionally dispersed in time, are not detectable either, because the effect of

the packets that actually materialise the probe procedure gets statistically diluted in the

presence of a large enough quantity of legitimate protocol data units.

The previous remarks direct this study towards the attacks that, at some point of

their intrusion, occupy a non negligible amount of bandwidth, if only for a moment. These

attacks are here designated by network intensive attacks. Note that several types of DoS

attacks fall precisely into the indicated category, and that the previous reasoning goes to

the encounter of what was said by Allen and Marin [20] and by Li [25] about the type of

attacks they were targeting in their analysis. In [25], the designation of bandwidth attacks,

suggested by CERT in e.g. [175], is actually emphasised and utilised along the paper.

DoS attacks based on massive amounts of messages are amongst the menaces that

most preoccupies network administrators, especially the ones for which the network is

assuring a given service. More recently, new forms of performing such intrusions using

botnets (DDoS, Distributed Reflected Denial of Service (DRDoS) [176, 177]) increased

their effectiveness, being now much easier to emulate a large number of apparently legit-

imate connections. The target of such malicious activities is not always the node where

one is trying to discover them. The significance that, for example, a DDoS attack may

achieve is highly dependent on how close to the address of the victim the detector is, since

the sources of the packets are spatially distributed. On high-debit aggregation nodes, the

last type of attacks may be on the origin of intrusions with moderate expressiveness, in

terms of network load, which encapsulate situations where it is hard to assess the loss of

self-similarity.

The simulation of network intensive attacks was done via specification of the attack

Intensity (I) parameter, which basically determines the amount of packets that arrive at a

given network aggregation point, per time unit and in function of the available bandwidth.

198

The packet generation frequency is then calculated in relation to the predetermined size of

the malicious protocol data units, so that the intrusion fills up the right load. For example,

to simulate a TCP SYN flood, the size of the packets is set to 54 B and the average number

of incidences per time unit is given by I × BWNU

54×8 . Due to the fact the legitimate traffic

trace is generated in a packet-by-packet manner (as described in the previous section),

the injection of the traffic related with the malicious intent may be achieved by a direct

implementation of the procedure illustrated in Figure 5.4. The packets belonging to a

malicious attempt are orderly inserted in between the genuine ones, which may result in

delays for both types of protocol data units. In the figure, the packets belonging to an

attack (represented by black rectangles) are intentionally separated by a constant size

interval, precisely to emphasise that they are generated in a timely manner, being that an

adjustable parameter of the simulation. The equipment responsible for the aggregation of

the data is depicted as the device that accepts two streams of data and outputs a single

stream only.

Figure 5.4: Graphical representation of the procedure used to inject a network intensive attack

into self-similar traffic.

The simulation procedure is not a perfect replication of the reality, mostly because

it was built at the abstraction level required in this research work. For the sake of the

analysis, it was considered that the aggregation equipment was capable of storing several

milliseconds of data before being forced to drop packets. In other words, it was assumed

that an attack could affect the delay introduced to the legitimate packets, but not their

late processing. Furthermore, it is assumed that the traffic trace under observation is the

199

one exiting the single interface of the network aggregation system (where the sniffer is

placed), meaning that it is assumed that it is impossible to be analysing a bit count that

surpasses the maximum bandwidth of that port. (In terms of the analysis reported herein,

the scenario where the network is overloaded is equivalent to the one where the load is

maximum.) This means also that all possible scenarios are limited by the one where an

anomaly is actually so intensive that the flow under examination is almost constant bit

rate.

5.5. Analysis of the Impact of an Attack in the Self-

Similarity Degree of the Network Traffic

Now that most of the tools developed and used along this work are duly presented,

it is time to discuss the impact of an attack in the self-similarity degree of the network

traffic, and report on how the analysis was conducted. The next four subsections discuss

the results of the application of the modified Hurst parameter estimators to real (i.e.

simulated in a laboratory) and synthetic traces. A method to identify network intensive

attacks based on the behaviour of the estimates is then described. A section dedicated to

the subject of loss of self-similarity as a consequence of an anomaly may be found in the

next-to-last subsection, right before the discussion on the theoretical framework of the

results.

5.5.1. Analysis of the MIT/DARPA Traces

Before developing the self-similar traffic simulator and 4SG, the author searched for

a quick way of obtaining results using the recently implemented windowed-modified esti-

mators. At the time, the utilisation of a collection of traces from a well known experiment

conducted by the MIT/DARPA laboratory seemed like the best way of doing so. The

data sets [145] are constituted by several traffic traces captured in 1998 and in 1999, in

a simulated network with real equipment. After their creation, these data sets have been

used as a standard corpora for the evaluations of intrusion detection methods in multiple

scientific contributions, inclusively in some of the references mentioned in section 5.3.2..

200

The details of the MIT/DARPA experiment are widely discussed in the literature

and in the Internet [23, 145, 178, 179], but for the explanation included below, it suffices

to know that the traces contain several types of attack, some of which fall within the

category of network intensive attacks. The several files representing the experiment were

downloaded from [145] to the local machine, and analysed by a procedure that may be

explained as follows. First, the script processing a given trace initialises a time counter

to zero, and sums the size of the packets that occupy 1 ms, incrementing the counter

accordingly to obtain the bit count per millisecond series. These values are then fed

to the incremental and windowed-modified versions of VT and EBP and the respective

point-by-point estimations of the Hurst parameter values are plotted against the time they

were assessed. For this analysis, the author was particularly interested in the data subset

concerning the second week of experiments as, for those days, the time of occurrence of

each one of the attacks is known a priori (the data sets containing labelled attacks were

created with the purpose of providing the creators of behaviour-based intrusion detection

mechanisms with training data). During this analysis, the size of the observation window

of the local context estimators was set to 214 samples and the number of aggregation levels

was set to 9 (meaning that the estimators were looking for relations up to the time scale

of 512 ms).

The charts included in Figure 5.5 depict some of the results obtained when using the

MVT and WMVT methods. They were chosen for being the perfect graphical represen-

tation of the manifestation of the network intensive probe SATAN and of the SYN flood

Neptune attack [178]. The two particular incidences shown here were captured during the

fourth day of the second week, around 09:33 and 11:04, respectively. The plotted values

show that the local context Hurst parameter values surpass the horizontal line defined by

y = 0.8 during the attacks, while the incremental estimates are close to approximately

0.76 during the time span of the first chart and 0.79 during the time interval of the second.

Apart from the SATAN and Neptune intrusions, it was equally possible to identify

several incidences of the Mailbomb attack, some Portsweeps and IPsweeps (the manifes-

tation of the first of those three is depicted on the right side of Figure 5.6). The attacks

denominated by Smurf, Apache, Back and UDPstorm were also detected when some of

the files of the remaining weeks of the experiment were examined. Notice that all of

201

Figure 5.5: Manifestation of the intensive probe SATAN (Thursday) and of the Neptune attack

(Thursday), when observed from the self-similarity analysis perspective. Values of the Hurst

parameter were obtained using MVT and WMVT for the byte count per millisecond, being the

size of the observation window of 214 samples.

the aforementioned intrusions fall into the network intensive attacks category, since all of

them rely on a considerably large number of protocol data units to achieve their purpose.

As expected, no effect was noticed at the time of the occurrence of more modest attacks

(in terms of amount of bandwidth), as e.g. the Ping of Death, the Chrassis or the Land

attacks.

The impact of the SATAN probe or of the Mailbomb attack in the estimates of

WMEBP is depicted in Figure 5.6 (the first intrusion was captured at 12:02 of the third

day of the second week, while the second was identified at 14:25 of the same day). The

two charts were included with the intention of showing the difference between the VT and

the EBP based analysis, and also summarise the experiments conducted using MEBP and

WMEBP. During this part of the work, over 250 views of the MIT/DARPA traces were

created and carefully studied. As can be seen, for this particular collection of traces, the

curves produced by the distinct estimation methods are different (the lines concerning

EBP analysis are smoother), but the behaviour of the local context Hurst parameter

value, when facing a network intensive attack, is essentially the same for both cases: the

windowed-modified estimators seem to agree that, in such circumstances, the degree of

self-similarity increases.

202

Figure 5.6: Manifestation of the intensive probe SATAN (Wednesday) and of the Neptune

attack (Tuesday), when observed from the self-similarity analysis perspective. Values of the

Hurst parameter were obtained using MEBP and WMEBP for the byte count per millisecond,

being the size of the observation window of 214 samples.

The explicit difference between the way WMEBP and WMVT react to the intru-

sions is mainly due to three factors. Firstly, the operational model of the former estimator

is less susceptible to abrupt changes in the process under investigation, because losses of

stationarity propagate better through the variables of WMEBP. Secondly, the windowed

philosophy of WMVT is not exactly equal to the one of WMEBP. Recall that, to avoid

possible erroneous states during runtime, it was decided that the effect of a leaving point

would only be removed from the several variances at the moment the aggregation block

is completely fulfilled. This causes the method to react more suddenly, but it also implies

that the impact of the attack lasts longer. Lastly, these traces are not particularly fortu-

nate in terms of self-similarity and the network load is often too small [23]. Additionally,

the MIT/DARPA researchers utilised repetitive scripts to generate the background traffic,

which reduce the confidence on any subsequent statistical analysis. The periodicity of the

scripts can be observed if higher aggregation scales are used.

203

5.5.2. Analysis of Completely Synthetic Traces - Length of the

Attack is Smaller Than the Observation Window Size

The experiments taken over completely synthetic traces were divided according to

the most general situations that the windowed-modified estimators can face. This subsec-

tion discusses the case where the length of a network intensive attack is strictly smaller

than the size of the observation window, while the antithetical scenario is explored af-

terwards. Though the investigation took most of the parameters of the simulation to be

particularised, the conclusions included below can be extrapolated to different scenarios

as well, as long as the underlying assumption of self-similarity is guaranteed.

During this part of the research, several synthetic traces were generated, transformed

into suitable graphical representations and carefully observed. Figure 5.7 and Figure 5.8

contain the graphical representation of one of those traces, obtained when the simulation

parameters were set to emulate an aggregation point performing at 1 Gbps, receiving

approximately 10% of that as effective load, during a period of time of 30 s. The Hurst

parameter of the inter-arrivals generator was set to 0.75 (refer to section 5.5.5. for a brief

explanation of this value). Notice that a 4 s long network intensive attack was injected

when the clock ticked the 10 s mark, effectively increasing the bit count per time unit dur-

ing that period of time. As one can observe, the values of the Hurst parameter, estimated

using the MVT and WMVT were also included for scrutiny. In this particular instantia-

tion of the simulation, the observation window size was set to 213 points (approximately

8 s), and the respective estimator was looking for the relations within the last 256 ms,

using the usual aggregation scales of type {2k}k=0,1,...,8.

Figure 5.8 brings the focus to three key moments of the histogram depicted in

Figure 5.7. In there, three sliding observation windows are represented up to scale as

semi-transparent boxes, for which the respective local context Hurst parameter estimates

are emphasised as grey dots. After an initial period of instability, the estimated values of

the Hurst parameter tend to 0.75, being that the value with which the self-similar traffic

generator was initialised (accounting with the compensation). As the observation window

slides from the left to the right part of the figure, it is possible to notice that: a) as soon as

the attack starts, the estimates of WMVT increase significantly (to approximately 0.86);

204

Figure 5.7: Histogram that reflects the self-similarity analysis conducted using MVT and WMVT

for one of the many synthetic traces generated during this work. In this particular instantiation,

the legitimate traffic simulator was initialised with BW = 1 Gbps, L = 10%, I = 10% and

H = 0.75. A 4 s long attack was injected at the 10th second.

Figure 5.8: Focus on three key moments of the histogram depicted in Figure 5.7: a) the traffic

concerning the attack enters the observation window; b) the intrusion is completely inside of the

observation window; and c), the effect of the attack disappears from the estimates of WMVT.

205

b) they are bigger than the legitimate traffic self-similarity degree during approximately

4000 + 213 ≈ 12000 ms (see below for the explanation of this value); and c), the values

decrease to 0.75 once the observation window leaves the traffic concerning the attack

behind.

This behaviour can be explained as follows. When the sliding observation window

arrives to the point where the attack actually begins, the smaller scales are affected first,

slightly bending the line used to estimate the Hurst parameter, instigated by the slight

increase of the bit count per millisecond, resulting in a smooth increase of the local scope

Hurst parameter values. As soon as the observation window absorbs the attack, it remains

in an apparent higher state of self-similarity until the malicious traffic begins to exit the

estimator. Thus, the total amount of time an abnormal activity affects the local scope

Hurst parameter is expected to be approximately D + w, where D is the duration of the

attack and w is the size of the observation window. The relatively fast decrease of the

local scope Hurst parameter estimates depicted in Figure 5.8 c) reflects, once more, the

slightly different window philosophy of the implementation of WMVT. The effect of the

attack takes longer to be removed from the variables of the method than to be included.

The increase of the WMVT estimates seen in a) is thus smoother than the decrease in c).

The global context Hurst parameter value remains high even after the attack ends,

because the effect of the latter does not disappear easily from the memory of the incre-

mental estimator. With time, the numbers retrieved by the point-by-point method would

decrease to a value slightly higher than the expected one, possibly converging to it in the

infinity (assuming that no other anomalies happen in the meanwhile). These comments

enhance one of the best properties of the windowed-modified estimators: their robustness.

The behaviour of the estimates of MVT is, in this case, highly dependent of the time

frame of the attack within the experimental scenario. The incremental estimator had

only the time to process 10000 values before the arrival of the intrusion, reason by which

the method still reacted promptly to the attack. If the attack was inserted e.g. at the

22th second, then no abrupt change would be noticed.

To provide this explanation with an idea on how the Variance/Time plots change

during an anomalous state of the network traffic, it was decided to construct and include

Figure 5.9. The top chart of the figure enables one to compare the log-log plot of legitimate

206

traffic with the one where an intrusion is being analysed. The three smaller charts embody

more detailed perspectives, where it is possible to detect the small departures from the

exponential laws that define VT. As can be seen, during a moderate intensive attack,

the logarithms of the variances of the aggregated processes are still best fitted by a line,

though not as perfectly as before. The small decrease of the R2 values during the phases

depicted by b) and c) are consequence of an attack with an intensity of 100 Mbps, but

they are not sufficient to irrevocably reject linearity. During this experiment, the local

scope Hurst parameter evolved from 0.75 (Figure 5.9 a)) to 0.96 (Figure 5.9 c)). In the

intermediary phase between those extremes (Figure 5.9 b)), the value returned by WMVT

was 0.81.

Figure 5.9: Evolution of the Variance/Time plots during the continuous analysis to a trace

containing a network intensive attack (for exemplification purposes, BW = 1 Gbps, L = 50%,

I = 20% and H = 0.75): a) only legitimate traffic is being analysed; b) the attack is entering

the observation window; and c), the attack is completely inside of the observation window.

Notice that the points in the chart of Figure 5.9 c) are not so well fitted by a line

as the ones in Figure 5.9 a). This is one of the signs that self-similarity is not so well

207

embedded in the series under observation, since an attack occupying 10% of the total

bandwidth already produces a considerable shift to the average bit count per millisecond.

5.5.3. Analysis of Completely Synthetic Traces - Length of the

Attack is Bigger Than the Observation Window Size

The second type of simulated scenarios concerns the situation where the length of

the attack is bigger than the observation window size. A possible illustration of such

scenarios is included in Figure 5.10. To produce this illustration, the traffic generator was

instructed to simulate a network aggregation point performing at 1 Gbps with an initial

load of 70% and a network intensive attack at the 8th second with an intensity of 10% (or

the available bandwidth). The Hurst parameter of the legitimate trace was adjusted to

0.80 (refer to section 5.5.5. for a brief explanation of this value). All the simulations were

conducted under equal conditions for both estimation methods. However, after getting

to the conclusion that the outcomes were similar, it was decided not to repeat the same

graphical representation for the VT and for the EBP based analysis in both subsections.

This time, WMEBP and MEBP were the ones responsible for the estimates of the local

and global context Hurst parameter values. During this peculiar set of experiments, the

size of the observation window was worth half of the length of the intrusion.

Once more, the results depicted in Figure 5.10 show that, when the traffic of the

network intensive attack enters the observation window, the local context Hurst parameter

estimates increase. The same happens to the incremental ones, due to previously discussed

reasons. The main difference between the situation where the attack is shorter than the

observation window and the one under investigation in this subsection happens after that

initial transition period, as the outputs of the windowed-modified estimators return to

the predefined value of 0.80 still during the time frame of the intrusion. In Figure 5.10,

the semi-transparent box is precisely located at the point where its respective estimate is

below the aforementioned mark.

The reasons that explain the initial increase of the Hurst parameter are already

known. After the initial period, where the windowed-modified estimator is observing a

trace constituted by two distinct parts (one containing legitimate traffic only and another

208

Figure 5.10: Histogram that reflects the self-similarity analysis conducted using MEBP and

WMEBP for one of the many synthetic traces generated during this work. In this particular

instantiation, the legitimate traffic simulator was initialised with BW = 1 Gbps, L = 10%,

I = 10% and H = 0.80. A 16 s long attack was injected at the 8th second.

one containing a mixture of legitimate and malicious data units), the scope of analysis

moves to the portion containing the mixture of legitimate and malicious data units only.

Both methods (WMVT or WMEBP) are then incapable of distinguishing that portion

of the trace from a shifted version of the underlying legitimate trace. This means that

self-similarity is preserved within the time frame of the attack. If the property is lost,

such can only happen when the observation scope of the analysis includes the beginning

or the end of the attack (or both) and part of the legitimate trace.

When the attack ends, the estimates of WMVT or WMEBP increase once more,

mostly motivated by the change in the traffic load, and decrease right after that. Normal-

ity is restored as soon as the malicious traffic exits the observation window completely.

Thus, the impact in the local scope Hurst parameter is noticed, for the last time, D+w ms

after the start of the anomaly. Within that time interval, the values of the windowed-

modified estimators might come close to the values assessed prior to the beginning of the

intrusion for a maximum period of D − w ms (recall that, in this subsection, D ≥ w).

209

5.5.4. Reaction of the Windowed-Modified Estimators to High

Intensity Attacks

The network intensive attacks depicted in Figure 5.7 and in Figure 5.10 comprise

intrusions with relatively moderate intensity. Figure 5.11 contains a representation similar

to the previous ones, but for a network intensive attack that takes 3/4 of the available

bandwidth at the given node (a very high intensity attack that injects approximately 1000

packets per millisecond). This attack does not provoke congestion yet, but it forces the

moving average of the bit count per millisecond to rapidly shift to an higher value, causing

an expressive loss of stationarity, and the loss of self-similarity. The plots on the figure

where produced by initialising the simulator with BW = 1 Gbps, L = 30%, I = 75% and

H = 0.75. The size of the observation window (also schematised in the figure) was set to

213, and the WMVT method was looking the relations up to the scale of 28.

Figure 5.11: Variance/Time plot and histogram reflecting the self-similarity analysis conducted

using MVT and WMVT for a synthetic trace containing a high intensity attack. The Vari-

ance/Time plot was obtained immediately before of the sudden increase of the estimates. The

legitimate traffic simulator was initialised with BW = 1 Gbps, L = 30%, I = 75% and H = 0.75,

and a 4 s long attack was injected at the 8th second.

The reaction of the windowed-modified estimators to the sudden shift of the series

is reflected in the rapid increase of the estimates to values close or equal to 1. The

post-conditions of the procedures that assess the local scope Hurst parameter value in the

210

implementations of WMEBP and WMVT do not allow them to retrieve values bigger than

1 (nor smaller than 0), but on the left side of Figure 5.11 one may observe the ominous

impact of high intensity attacks in the Variance/Time plot. This plot was obtained

immediately before WMVT started to return values closer to 1 and, as it may be noticed

from careful observation, the points obtained using the VT method are no longer over a

line. The change of the statistical properties of the series under analysis was so quick and

significant that the original linear law of the logarithms of the variances was bended in

the higher aggregation scale considered. The largest aggregation scale was the last to be

affected by the change, which explains why all the other statistics seem to be already in a

different state than the last one. This effect could be noticed in other aggregation scales

if the log-log plots were constructed several moments before the one in Figure 5.11. The

value retrieved using the formula H = 1 − β/2 is 0.73 but, according to the value of R2

included in the chart, the estimate should no longer be termed of Hurst parameter, even

under loose terms (for more on this matter, refer to section 2.4.2. or to section 5.5.6.).

5.5.5. Detection of Network Intensive Attacks Based on Self-

Similarity Analysis

Based on the previously described analysis, an attack detector was constructed and

used to evaluate some of the most important properties that define an intrusion de-

tection technique: accuracy, capability to point out the beginning and the duration of

the anomaly, etc. This detector draws on the increase of the estimates returned by the

windowed-modified estimators implemented within the scope of this work, and not on the

loss of self-similarity, because it was noticed that the former was the main effect of any

network intensive attack.

One may notice that the traffic simulator has been set to mimic systems performing

at 1 Gbps along the previous sections. As mentioned in section 5.5.2., this was made so as

to enable the empirical analysis, but the results may be extrapolated for other workload

scenarios as well. Theoretically, self-similarity is a property that should be reflected in all

aggregated series, meaning that if the bit count per time unit is long-range dependent for

the seconds time unit, it should also be long-range dependent when aggregated for 10 s,

211

100 s, etc. This explains why modelling was performed for an abstract timescale ts in

section 5.4.1.. Nonetheless, when dealing with empirical sequences, the referred property

may not necessarily hold for all aggregation scales. Because network aggregation points

handle nowadays debits of the order of the Gbps, and partially based on the aggregation

scales used in the study [180], it was decided that the smallest aggregation scale used

herein would be one millisecond, and that the simulator would try to reproduce 1 Mbit

for that time quanta. The values assigned to the intended Hurst parameter of the traffic

simulator were also inspired by the findings in the literature, where it is shown that it is

common to find empirical traces with the self-similarity degree ranging from 0.75 to 0.85

(see, e.g. [39]).

Herein, the size of the observation window was chosen with the following two con-

straints in mind. On the one side, the referred parameter should be large enough to

enable the analysis of long-range dependencies of the series under observation. On the

other, the scope of the windowed-modified estimator should not be excessively large, at

least not to the point of seeing the responsiveness to changes being jeopardised by the law

of large numbers. By setting the referred parameter to 214 in the simulations described

in this section, it was possible to analyse the dependencies between samples separated

by more than 511 units, while supporting the calculations in at least 8 (multiplicative)

aggregations of the series. When operating below the seconds unit, 214 may not be enough

to embrace most types of network intensive attacks (the intrusions may last longer than

16 s [20, 21], and the self-similarity analysis falls into the case discussed in section 5.5.2.).

If the same observation window is applied to higher time units (e.g. 10 s or 100 s), then

the same analysis falls into the case studied in section 5.5.3.. Thus, it makes more sense

to, for example, apply the same instantiation of the windowed-modified estimators to

different time scales of an empirical bit count, than to try to adjust the size of the obser-

vation window to the type (or length) of the network intensive attack one wants to detect

(adjusting the observation window size parameter could actually narrow the application

scope of the estimator). One might even run several instantiations of the same detector

for different time scales (or to different observation window sizes) in parallel, as a result

of the low computational requirements of WMVT and WMEBP. This approach would

nevertheless require a more specific adjustment of the parameters of the detector.

212

One of the notions that simplified the development of this procedure is the one

of the continuous perspective over the local scope Hurst parameter values. The step-

by-step estimates returned by the windowed-modified estimators are herein denoted by

Hw(t). The functioning of the detector and the experimental setup can be explained as

follows. The detector was ran 50 times for each one of the 324 different combinations

of the pair traffic Load / Intensity (L, I). The L parameter ranged between 8% and

93% (inclusively), and the I parameter varied between 5% and 95% (inclusively). Each

trace was divided into different parts: an initial phase, not containing attacks, which is

used to stabilise the windowed-modified Hurst parameter estimator; a second phase, also

without attacks, which is used to calculate the average of the local scope Hurst parameter

estimates, herein denoted by E(Hw), and of their absolute deviation to the average value,

i.e. Ea(Hw) = E‖Hw − E(Hw)‖; a third phase containing a 4 s attack; and a last phase

constituted, once again, by legitimate traffic. With basis on the comments included in the

previous sections and on the graphical perspectives provided by Figure 5.7, Figure 5.10

and Figure 5.11, the method was set to raise an alarm each time the local scope Hurst

parameter estimates rose above E(Hw) + 2× Ea(Hw) during, at least, 100 ms.

During a possible status of anomaly, none of the aforementioned values is updated

by any means. The detector indicates if it has detected an anomaly or not and, in the

affirmative case, it returns the time it started, and the difference between the maximum

value retrieved by the windowed-modified estimator and the average one (Hmax
w −E(Hw)).

This difference is then normalised (divided by 1− E(Hw)), and used as a measure of the

intensity of the attack.

The 3D charts in Figure 5.12 depict precisely the average values of the maximum

(normalised) difference obtained for each one of the two estimation methods (the ones

concerning WMVT may be found on the left side of the figure, while the ones concerning

WMEBP are located on the right side). They were obtained by setting the intended Hurst

parameter of the traffic simulator to 0.80 and by initialising the size of the observation

window of both modified estimators with the value 214. Though the surfaces exhibit

several resemblances, it is noticeable that the estimates of WMEBP react faster to low

intensity attacks than WMVT. The implementation of WMVT seems to take longer

to reflect the effects of the shift caused by the attack, because the variances are not as

213

susceptible to changes in the input series as the numbers of crossings are. Though, for

each value of L, there is not a linear relation between I and (Hmax
w −E(Hw))/(1−E(Hw)),

the latter complements the idea of the statistical weight that the particular intense flow

has achieved in terms of the bandwidth. In the chart concerning the WMVT analysis,

and for higher values of bandwidth utilisation, the values of (Hmax
w −E(Hw))/(1−E(Hw))

seem to react almost linearly to the increase of the intensity, but that behaviour vanishes

as the load decreases.

Figure 5.12: Maximum (normalised) difference between estimates of the local scope Hurst pa-

rameter taken before and during a network intensive attack. The chart on the left concerns the

analysis conducted with WMVT; the chart on the right concerns the analysis conducted with

WMEBP.

The approach taken was capable of identifying approximately 76.6% of the 16700

simulated anomalies. In the detected ones, the time span between the 16 s and the 27 s

(average value of 17199 s and a standard deviation of approximately 973 ms) was pointed

out as the first time that the local Hurst parameter values surpassed the predefined

threshold, which may be considered to be the beginning of the attack. The left side of

Figure 5.13 contains the graphical representation of the moments estimated as being the

starting times of the anomalies as a function of L and I. In the depicted instantiation

of the simulation, the attack was set to start exactly at the 16384th millisecond. The

average value of the local scope Hurst parameter estimates was approximately 0.79 and

214

the average value for the absolute deviations was always smaller than 0.01, meaning that

an alarm was raised each time an estimate was bigger than 0.81 for 100 ms. The shape of

the surface suggests that the procedure described in this section is particularly accurate

in pointing out this aspect of the anomaly, since excepting the cases where the proportion

Intensity / Load is too small, the 16485 ms (= 214+101 ms) are indicated as the beginning

of the anomaly. Notice that the values represented in both charts of Figure 5.13 concern

both types of estimators (WMEBP and WMVT), since they were obtained via statistical

treatment of the entire set of results.

Figure 5.13: Graphical representation of the moments that the detector based on self-similarity

analysis indicated as being the beginning (left side of the figure) and the end (right side of the

figure) of the network intensive attacks.

The 3D surface on the right side of Figure 5.13 demonstrates that the end of the

attack is not as easy to point out as its beginning. The end of the attack was set to

be at the 20384 ms, but the detector returned values ranging between the 18600 ms and

the 44251 ms (with an average value of 24746 ms and a standard deviation of 5278 ms).

From careful analysis of the figure, it seems clear that the values tend to stabilise as the

attack intensity increases, but that trend is not so strict as for the previously discussed

aspect. The fact that the detector seems to be overestimating the end of the attacks is

mostly due to random states of congestion induced by the injection of malicious traffic,

which causes the anomaly (or its effect) to last longer. While the intensity of the attack

215

is herein defined with respect to the available bandwidth, the burstiness of the traffic

may eventually induce states of congestion when interacting with the injected data units.

According to what was said in section 5.4.4., this forces the simulator to retard all the

protocol data units, effectively pushing the end of some anomalies further into the future.

The results included in this section, however, have to be understood under the

premisses in which they where produced. In this case, the traces were synthetic, thus

bearing a strong self-similar structure and the anomalies where simulated by inserting a

considerable amount of packets into the traces. All these conditions led to a detection

rate of 76.6%. Nevertheless, it should be stressed out that any traffic flow arriving to the

network aggregation point with the aforementioned characteristics would always be tagged

as an anomaly, even when coming from a legitimate source or application. However, for

high utilisation rates, having an application behaving like a network intensive attack would

comprise a rather unusual situation, and one could even wonder if such flow comprises a

threat to the network.

5.5.6. The Loss of Self-Similarity

As stressed out in section 5.3.2., most of the references in this area draw on the loss

of the property of self-similarity to construct a detector for network intensive attacks. In

e.g. [20, 25], the loss of the referred property is often associated with estimates of Hurst

parameter that are smaller than 0.5, or larger than 1. By definition of self-similarity,

such association is not necessarily true, since it is possible to obtain values of the Hurst

parameter within those limits, independently of the process being self-similar or not. In

order to assess if the loss of the referred property is an unavoidable consequence of the

above mentioned malicious activities, two different statistical tests were implemented in

the scope of this research work. A test based on the well known Kolmogorov-Smirnov

goodness of fit test (KS test), and another one based on the coefficient of determination

(the R2 value) of the linear regression used in the VT method (for more on this subject,

refer to section 2.4.2.). The former was used to evaluate if the distribution function

of a given trace containing an attack is similar to the distribution function of several

aggregations of the series under analysis, while the latter measures the quality of the

216

estimates outputted by MVT and WMVT.

The KS test elaborates directly on the definition of self-similarity for discrete time

series, which states that the (finite dimensional) distribution of {Y (t)}t∈N should be equal

to the (finite dimensional) distributions of the aggregated series {m1−HY (m)(i)}i∈N. In

resemblance to what was done for the estimation of the Hurst parameter and for the

generation of self-similar series, the aggregation scales considered for this test were the

ones of type mk = 2k, with k = 1, 2, For each mk, the distribution of {Y (t)}t∈N is

compared to the one of {m1−H
k Y (mk)(i)}i∈N, in accordance to the guidelines of the KS test

(explained below).

The occurrence of a network intensive attack corresponds to the introduction of

a shift in the self-similar series and to a consequent change of its statistical properties.

Before the beginning of the attack, and even during the intrusion, self-similarity is kept

at a local level, but the same may not happen during the period in which the observation

windows of WMVT and WMEBP move from the part containing legitimate traffic only,

to the one containing malicious data units also. It was precisely in that period of time

that the subsequent analysis was focused on.

Several data series that mimic the time span in which the beginning of the attack

is somewhere in the middle of the observation window were simulated. After that, the

sequences of values were normalised and aggregated, being the respective distribution

functions constructed to each one of them. All the data series were 219 points long to

obtain a strict idea of the distribution functions (see plot in the right side of Figure 5.14),

and the empirical frequencies were taken by dividing the interval of occurrences into 400

equal buckets, and by counting the incidences falling in each subinterval. In order to

apply the KS tests, the largest distances Dk (with k = 1, 2, ...) between the cumulative

distribution functions of the aggregated series and the one of the initial series were taken

and compared with the critical values in [181]. When Dk was smaller than the critical

value (for the degree of significance of 0.05), the test was considered as being passed.

Simultaneously, it was asked to the class implementing MVT to return the R2 statistic

of the of the analysis of the lengthy sequences. This was made so as to obtain a more

accurate idea of what might happen when a windowed-modified estimator is analysing a

potentially smaller number of values. All the conclusions and results of this section were

217

consolidated by repeating each particular experiment 30 times.

The charts depicted in Figure 5.14 summarise the investigation concerning the KS

tests and apply to the scenario were the size of the observation window was of 8192 ms.

The KS tests were applied up to the 10th aggregation scale. The results presented in

the left side of the figure show that the resilience to shifts depends of the self-similarity

degree. Though the dependence does not seem to be explained by an explicit formula,

it is noticeable that, as the Hurst parameter increases, the larger is the shift supported

by the sequence, before the hypothesis of self-similarity can be reject. If the criteria for

loss of self-similarity was considered to be the failure of two of the KS tests implemented

herein, it would be possible to conclude that for values of the Hurst parameter between

0.75 and 0.85, a self-similar trace could handle attacks with intensity as large as the

standard deviation of the legitimate bit count per time unit process, before loosing the

self-similarity structure.

The particular case where the Hurst parameter of the generated series is 0.85 is

represented by the chart in the right side of Figure 5.14. This plot was randomly selected

from the set of results obtained when the shift was set to be 0.5 (half the standard

deviation), and the main purpose of its inclusion here is to show that such shift does

not produce a drastic impact in the several distribution functions depicted in there. The

utilised goodness of fit test signalled loss of self-similarity for the first aggregation scale

only, since it is for that scale that a larger number of samples is available (and, as such,

the test is more stricter). As stressed out in chapter 2, the last phase of almost all of the

estimators of the Hurst parameter draws on the approximation of a given set of coordinates

by a line, using regression analysis. The value of the coefficient of determination may thus

be understood as a measure of how well self-similarity is reflected in the realisations of

the process under analysis. R2 varies between 0 and 1, arguing in favour of the quality

of the approximation for values closer to the superior limit. The chart located in the

left side of Figure 5.15 shows that the presence of network intensive attacks affects the

exponential law in which the general VT method is based on. Nonetheless, if the failure

of the linear regression was defined in terms of the so called F test (refer to [80] or to

section 2.4.2. for more on this matter), then only after considerable intensities one could

say that self-similarity was lost. For reading commodity, the surface represented in the

218

Figure 5.14: Part of the results that summarise the tests made to the resilience of self-similarity.

On the left, the average number of well succeeded KS tests (out of 10) is represented as a

function of the Hurst parameter and of the shift induced to the series under analysis; on the

right, one may find the representation of the cumulative distribution functions of 10 aggregations

of a normalised self-similar series with 219 points (with an intended Hurst parameter of 0.85),

to which has been applied a shift of 0.5 units.

chart is differently coloured depending on the failure (dark blue) or non failure of the F

test (light blue). During anomalies with moderate intensity, and under the assumption

that the background traffic presents a reasonably good self-similar structure (with an

Hurst parameter of 0.85), the value of R2 (and consequently of F) is kept high, being

impossible to reject the hypothesis of existing an exponential (fractal) relation between

the process and its aggregations.

The chart on the right of Figure 5.15 was included with the purpose of showing

the behaviour of the estimates of the Hurst parameter, during the previously described

and tested scenarios. As one may observe in this figure, the success or failure of the

KS tests, or the quality of the fitting used in MVT (and in WMVT), do not seem to

directly influence the values outputted by the estimators, which tend stringently to 1,

as the shift increases. As a final remark, it should be said that the implementations of

the several methods used herein do not allow the estimators to output values out of the

range [0, 1], for coherence reasons. While by definition, the methods VT and EBP are in

219

Figure 5.15: On the right side of the figure, the minimum values of the R2 statistic are plotted

against the network load and attack intensity parameters. The plotted values of R2 concern the

linear regressions performed by the MVT method during the analyses of the simulated traces; the

surface on the left shows the relation between the expected and the estimated Hurst parameter

values, as a function of the shift induced to series with 219 points.

accordance with such post-conditions, there are specific circumstances that could induce

the methods to return values out of the range, specially in the cases where the properties

of the empirical series do not comply with the ones of self-similar processes. Nonetheless,

those states are erroneous and, as such, the author decided not to let them happen, and

assess the loss of self-similarity using other means. Under expressive lacks of stationarity,

the two estimators used within the scope of this work interpret the series under analysis

as being a shifted and scaled 0/1 process, returning estimates close to 1.

The results prove that the task of deciding that self-similarity is lost during a network

intensive attack is not straightforward. The impact on the statistical distribution itself

is highly dependable of the variability of the traffic, and the tolerance to small lacks of

stationarity increases with the Hurst parameter (at least for values smaller than 0.9).

Notice that high-debit aggregation nodes constitute scenarios particularly favourable to

the preservation of self-similarity, since all the aforementioned factors (mostly variability

and network load) tend to be larger in such points of the network. Drawing on the loss of

self-similarity for detection of intrusions in a real network environment is thus even more

difficult.

220

5.5.7. Discussion on the Theoretical Framework of the Results

From the results included in the previous sections, it is possible to conclude that (i)

the property of self-similarity is not necessarily destructed by network intensive attacks

and that (ii) the values outputted by the local scope estimators increase every time a

constant flow of traffic is injected into the network. In this section, a theoretical framework

for these facts is proposed.

As demonstrated by the rationale behind 4SG, the first order differences process of a

self-similar series may be approximated using a sum of several constant components. The

duration, amplitude and sign of which determine the fractal behaviour of the respective

process. The Hurst parameter increases from 0 to 1 as the extension and amplitude of

the constant parts increase. During periods of normal functioning of the network, the

constant components are nothing more than the aggregation of several information flows,

remotely (and randomly) generated, and directed by the forwarding systems (routers

or switches) to the point where they continuously feed the process of the quantity of

information per time unit, conferring it with a more or less persistent behaviour. During

a network intensive attack, the two most important factors of the three above mentioned

ones (duration and amplitude) are both affected positively, resulting in the reinforcement

of the (local) constant part of the analysed series.

The aforementioned effect is illustrated in Figure 5.16, where it is shown that the

insertion of an intense flow of traffic may be seen as the addition of two new symmetrical

and constant components, each with duration equal to the one of the flow. The symmetry

occurs when the flow starts. Even though the two concepts are not directly comparable

in the general sense, in this particular case, an increase of the constancy may either

strengthen or destroy self-similarity. Either way, it can never result in the decrease of its

degree. The insertion of malicious traffic results always in a loss of stationarity, but that

loss may not necessarily result in the destruction of self-similarity. It is known (for example

from [38]), that the stationarity of the processes exhibiting long-range dependencies is hard

to evaluate, since the very nature of self-similarity the local scope drifts of their statistics.

If observed from a naive perspective, those drifts may be confused with lack of stationarity

while, in fact, they are nothing more than manifestations of the bias introduced by the

221

Figure 5.16: Illustration of the effect of summing a constant component to part of a self-similar

signal. Analogy with the anomalous situation that may induce such effect in the network traffic

trace.

(self)correlations. The introduction of relatively modest (in relation to the network traffic

load) malicious traffic flows may eventually result in small and ephemeral shifts of the

bandwidth occupied, which increases the self-similarity. Incapable of assessing how well

the input series exhibits self-similarity, all that the implemented estimators can detect is,

basically, the transformation of a variable process into a more stable one, for which the

estimates of the Hurst parameter can never be smaller.

5.6. Conclusion

This chapter discussed the evolution of the self-similarity degree during intrusions

with non-negligible expression at the network traffic load level, and it described how

the investigation was conducted. Most of the results contained herein were obtained by

simulation, but supported by two different Hurst parameter estimators and by empirical

observations. The possible loss of self-similarity during the referred anomalies was tested

using two completely different statistical approaches, and all results are discussed from

the theoretical point of view.

As far as the author could assess, self-similarity analysis is not currently part of any

network security solution. On the one hand, the efficient construction of the continuous

perspective of the local scope Hurst parameter is not that common; on the other, such per-

222

spective may embody a more attractive feature for real-time network traffic management

mechanisms, where it may be applied as a measure of burstiness. The factor mentioned in

last is, actually, the one with which self-similarity has been associated to for the longest

time. Some of the literature references concerning the application to the network security

topic define the status of loss of self-similarity as being the one where the estimates of

the Hurst parameter fall outside of the interval [0.5, 1[, and base the detection of network

intensive attacks on that assumption. The analysis described in those references is often

based in a single Hurst parameter estimator, which is either applied to the entire data

series or to non-overlapping intervals.

The intermediate part of the chapter was dedicated to the presentation of the means

used to generate synthetic traffic traces and the (herein denominated) network intensive

attacks. While the analysis of pre-collected traces may be sufficient to tackle the general

problem of the thesis, the detailed observation of the evolution of the self-similarity degree

during a network intensive attack can only be attained in a fully controlled scenario. The

synthesis of the traces is mostly focused on the simulation of the unused part of the

available bandwidth at a given network aggregation point. The proposal draws on the

sequential generation capability of 4SG to enable the creation of the traces in a packet-by-

packet manner, which suits well the purposes of this work, easing the task of simulating

attacks as well. To enable the usage of an empirical packet size distribution, the inter-

arrival times are modelled as occurrences of a shifted and scaled fGn, which confers

the self-similarity property to the synthetic trace. The modelling and discussion of the

results were oriented towards the possibility to generalise the conclusions taken from the

simulations.

The four modified estimators were first applied to the traces of the MIT/DARPA

set containing labelled attacks. Regardless of the evident flaws in terms of the load and

self-similarity structure of those traces, several intrusions resulted in the increase of the

estimates of the Hurst parameter, providing for a first impression of what the behaviour of

the self-similarity degree could be. The very specific perspective given by the windowed-

modified estimators delimit the two scenarios such procedures may face. For the case in

which the size of the observation window is smaller than the length of the attack, the

estimates of the local scope Hurst parameter are larger than the ones of the legitimate

223

trace while the time span of the attack is inside the observation window. In the opposite

case, the values returned by the windowed-modified estimators increase as the traffic

concerning the attack enters their processing scope, but they decrease to values close to

the ones of the legitimate trace as soon as the observation window is completely absorbed

by the mixture constituted by malicious and legitimate traffic. As soon as the attack

ends, there is another increase of the estimates, which return to normal levels when the

traffic concerning the attack leaves the observation window completely.

Based on the results, a method for the detection of intensive flows of data that

draws on self-similarity analysis was implemented. Though simple, the detector is fast

and adaptable to the network conditions. Due to the nature of the analysis itself, the

approach is unsuitable of looking into the contents of the packets and decide about their

validity, but the implementations of the estimators proposed herein are capable of raising

useful alerts, that may be used to trigger other in depth investigation procedures. As

the computer-based simulations were made as if being done online, they provide for an

immediate idea of the computational performance of monitoring traffic using the modified

estimators. The simulations were run in a Pentium IV 2.8 GHz computer with 504 MB

of RAM, and the results of the generation and analysis of traces with 30 s were delivered

in less than 1 s. Because the time unit was the millisecond, and because the apparatus

involved the generation of the legitimate trace and the injection of the attacks, it may

be concluded that it would be possible to process the byte count at a granularity smaller

than the tenth of millisecond using a dedicated monitoring system.

It was equally demonstrated that, in the highly dynamic and demanding network

environment, it may be difficult to conclude that the presence of a network intensive

attack results inevitably in the loss of self-similarity. It was concluded that the complete

destruction of such property depends not only of the self-similarity degree of the traffic

by the time of the intrusion, but also on the expressiveness of the loss of stationarity

which, by its turn, depends of the ratio between the intensity of the attack and the

amount of bandwidth occupied by the legitimate traffic. Independently of the loss or

preservation of the property, the values returned by the utilised instantiations of WMVT

and WMEBP increase in the presence of a network intensive attack, always signalling an

apparent increment of the self-similarity degree.

224

Such behaviour may be summarily explained as follows. During normal operation,

the several individual flows arriving to the aggregation point contribute equally to an

highly dynamic process of the bit count per time unit. Depending of the time span from

which the process is observed, it may be said that the series is constituted by two different

type of components: a constant and a variable one. The occurrence of an intensive attack

increments the constant component for some moments, inherently increasing the (self-

)similarity between the values fed to the windowed-modified estimator. With the advent

of bandwidth demanding services and faster transmission technologies, the scenario where

network intensive attacks actually provoke loss of self-similarity may potentially become

less common. According to the results in this chapter, the bandwidth occupied by the

malicious data units would have to be as high as 2.5 Gbps (∼312500 SYN packets per

second), in a 10 Gbps network point with 50% of effective bandwidth utilisation, so as to

produce the above mentioned effect.

As shown in this chapter, the behaviour of the Hurst parameter during network

intensive attacks and the tools developed along this research work can be used to construct

a detector for such kind of intrusions. Nonetheless, this type of analysis is constrained

by several factors. First of all, it relies on the assumption that the bit count per time

unit of the legitimate traffic is (and will be) asymptotically self-similar, at least in an

approximate sense. Such may not hold under light load conditions or in points where the

statistical characteristics of the aforementioned process are changed by specific control

mechanisms. Secondly, the application scope of such detector is limited to points with

high level of networking, thus embodying a possible solution for NIDSs only. Lastly,

it should be mentioned that any particularly intense flow (even a legitimate one) will

produce the same kind of effect that network intensive attacks do, being impossible to

distinguish them just by self-similarity analysis. Normal traffic flows are not expected

to achieve the same order of magnitude that intentional DoS or DDoS attacks do, and

should be treated as threats otherwise.

Amongst the best advantages of the presented approach is the fact that it concretises

a TCD mechanism, being thus completely independent of the contents of the protocol data

units. It is also protocol agnostic and operates at the highest layer of abstraction one could

define for the network stack. The continuous perspective over the evolution of the local

225

Hurst parameter values is new, mostly because the proposed modified estimators are very

efficient in terms of computational resources.

The massive adoption of the computer as a working tool, the proliferation of novel

telematic applications and the ease to connect to the Internet, reinforce one of the factors

that makes the network traffic self-similar: the number of renewal processes. The evolution

of the services will dictate to which extent the property studied herein will be reflected in

the network traffic. By now, the common practice of using multiple web based applications

simultaneously (e.g. tabbed web browsing, mail) along with VoIP, IPTV and file sharing

software has result in the increase of the number and heterogeneity of independent flows

near the terminal machines, inherently reinforcing the referred property.

226

Chapter 6

Final Conclusions and Future Work

This chapter assembles the most important conclusions taken from the research work

this thesis represents. It also presents some topics / problems the author would like to

address in the future. Part of those topics were identified as potential subjects of interest

at least in one of the several areas related with this work, others result from the natural

development of the ideas discussed herein.

6.1. Main Conclusions

This thesis describes a research work in the area of traffic monitoring and statis-

tical analysis. Its main purpose was to study the behaviour of the statistic known as

Hurst parameter during network attacks, so as to evaluate to what extent that knowl-

edge can be used to detect network intensive attacks. The four intermediate chapters

that constitute the body of this thesis explain with detail all the phases of the work and

constitute, simultaneously, one of the most systematic and complete studies conducted

in the context of the self-similarity analysis of the network traffic. The scientific contri-

butions of this thesis span from the area of statistical analysis to the ones of intrusion

detection, computer-based simulation, traffic monitoring, and algorithm development and

optimization.

During the course of the work, several modifications to estimators of the self-

similarity degree were proposed and tested. The incremental and windowed versions

of VT and EBP are algorithms with O(n) complexity and relatively scarce memory re-

quirements. The algorithms may be seen as excellent real-time network monitoring tools

227

and, even though that specific usage was the main motivation behind their development,

their application scope is not confined to that area, as further elaborated below.

The adaptation of the Hurst parameter estimators to windowed calculation pro-

cedures encompasses some disadvantages, mostly related with the temporary instability

caused by the incremental construction of the aggregated blocks, but it also results in

some advantages. The windowed estimators enable one to adjust the trade-off between

the sensitivity to ephemeral changes of the self-similarity degree and the statistical signif-

icance of the estimates. They are also more resilient to momentary losses of stationarity

because, contrarily to the point-by-point or retrospective estimators, their operational

model enables the complete readjustment of the statistics on which they are based on

during runtime. This fact comes in favour of their application in the online analysis of

empirical data series, which rarely possess the characteristics of a normalised stochastic

process (e.g. real network traffic traces).

Motivated by the need to test the modified estimators and simulate online traffic

conditions, two new methods to approximate fGn and fBm processes exhibiting self-similar

behaviour were proposed. One of them (4SG) is presented as being amongst the most

efficient algorithms of its class of precision. Its O(n) computational complexity is hard to

surpass, since it requires only an average of four sums, two multiplications and two calls

to a GRNG per point generated. On a Pentium IV processor running at 1.61 GHz, it is

able to produce over 1300 points per millisecond and it does not require more than the

space for storing 127 floating point values (approximately 1 KB of memory) to generate

a data series with 2128 ≈ 3.4× 1038 points.

Unlike other approximate methods for the generation of self-similar sequences, the

low memory prerequisites of the two proposals are related with the strategy adopted

for the construction of the approximated fGn per se, and not with any type of truncation

mechanism that reduces the extension of the dependencies of the points of the fGn process.

4SG stores only the immutable parts of the series, and regenerates regularly the ones

for which the life cycle ends, while fBm-SGA elaborates on a probabilistic technique,

generating future points from strategically selected points of the past.

The tests to the quality of 4SG show that the method is worthy of trust for simu-

228

lations built on top of self-similarity related models. It generates points on demand, and

the performance of the algorithm is not degraded as the number of outputted values in-

creases. Thus, the algorithm embodies a specially attractive solution for the reproduction

of situations where the analysis is made as the points become available (online conditions),

or for the fast generation of arbitrarily long sequences of data. Due to the low memory

usage and efficiency, 4SG is perfect for the simulation of traffic with the self-similarity

structure. In the opinion of the author of this thesis, 4SG is one of the best outcomes of

this research work.

Included in this thesis is also the proposal of a new means to generate pseudo

random numbers. The algorithm referred to as PRR is one of the embodiments of a

family of generators, whose development is inspired on the numbers theory and on the

codification of the fBm-SGA as an array of GRNGs. It was used as the primitive of the

self-similar sequences generators, whose operation depends strictly of the quality of the

underlying source of randomness. PRR is simple to understand and implement, and also

highly portable. Amongst its best features lies its fairly good computational efficiency and

the possibility to improve the quality of the outputs without impacting its performance.

The drawback is that there is an inversely proportional trade-off between the referred

aspect and the requisites of memory. The implementation of the PRNG used within the

scope of this thesis passed all the tests of randomness to which it was subdued to, and

its period was assessed as being equal to 260. PRR is capable of producing a sequence

of approximately 11 × 106 high quality pseudo random numbers in about 1 second on a

Pentium IV 2.4 GHz processor, using 4140 B of memory.

The network traffic generator developed along the research work is suitable for the

synthesis of packet-by-packet traces, meaning that it is able to simultaneously output

occurrences of the packet size and inter-arrival times processes. The simulator is presented

as a direct application of fBm-SGA or of 4SG, from which it inherits their sequential

generation capabilities and computational performance. As defined, the method can be

used to generate long traces exhibiting the property of self-similarity, without imposing

a severe burden to the machine running the simulation software. Just to give a practical

idea, the implementation of the simulator used in the course of this work was able to

output network traffic at a data rate higher than 8 Gbps, and it is capable of producing

229

a 100 GB trace with less than 340 B of memory. In spite of its strict application scope,

the generator can be used in situations were some of the characteristics of the aggregated

traffic can be neglected in favour of the self-similar properties of the trace, namely in

the assessment of the impact of persistence in the utilisation of resources, during longer

periods of time and under controllable load conditions.

The description in section 5.4.1. comprises the modelling of important statistical

properties and network parameters, but it does not take into account all the characteristics

of the traffic in a given aggregation point, since that level of detail is out of the scope of

this thesis. The presented model does not include the formalisation of the contents of the

protocol data units, nor hints the means to generate them. The synthesised traces are

hollow, in terms of payload, and the produced series may be seen as the most classical

way to represent data communications (packet sizes and inter-arrival times). As further

elaborated below, the reproduction of other aspects of the traffic requires further research,

and implies the increment of the complexity of the model. Nonetheless, as the produced

trace is statistically correct and conceptually acquiescent, it is ideal to create background

traffic for network aggregation points simulators. The generation of the traces in a packet-

by-packet and sequential manner mimics perfectly the online data capture procedure. The

information provided by the traces is enough to construct the data structures arriving to

the lower end of the data link layer of the network card of the aggregation device, easing

the inclusion of data units designed for the purpose of testing the emulated scenario.

The complete development of a simulator of network traffic traces, with long-range

dependent properties, was one of the biggest challenges of this work, but from it resulted

a different insight of the self-similarity theory. The scheme behind 4SG was of special

relevance, since it was used as the basis for the theoretical justification of the results

obtained.

According to the scheme used in 4SG, a self-similar process may be approximated

by the weighed sum of several components, whose (time) duration and statistical weight

depend of the Hurst parameter. The occurrence of some types of attack corresponds to

the injection of a new constant component, which can only result in the increase of the

persistence of the series under analysis, or in the destruction of the referred property.

Both cases where analysed in this thesis.

230

More than with any other common statistics, the Hurst parameter estimation deals

with a necessarily large pool of samples, since the latter compresses the information about

the scaling properties of the sequence being processed. As such, it is not affected by spo-

radic, diluted or statistically insignificant variations from normality. In terms of network

level intrusions, this means that attacks based on single data units (e.g. malformed IP

packets) or intentionally diluted in the time domain (e.g. stealth probes) will not be

detected by means of self-similarity analysis. As the analysis is made in the dark, host

level intrusions (e.g. malicious code, virus, trojans, spyware, etc.) are not expected to

produce any effect in the Hurst parameter values either. The only intrusions that may

affect the statistic are the ones whose operational model falls into the category of network

intensive attacks, as is the case of DoSs (and DDoSs) attacks based in massive quantities

of service requests.

One of the major novelties of this work concerns the continuous perspective of the

local scope Hurst parameter values given by the point-by-point and windowed estimators.

The results of the analysis conducted with such methods, for traces containing network

intensive attacks, show that the latter impact the estimates in three different manners,

depending mostly on the intensity and duration of the anomaly:

1. If the occurrence of an attack results in an expressive loss of stationarity, the imple-

mentations of the windowed estimators are completely worthless because, in such

case, the method is erroneously led to the conclusion that the sequence under in-

vestigation is merely a shifted and scaled version of an 0/1 process. The windowed

estimators return values near to 1 in such situations. The loss of stationarity results,

in that case, in an irrefutable loss of self-similarity.

2. If the temporal span of the attack is smaller than the size of the observation window

of the local scope Hurst parameter estimator, and if the intensity of the attack does

not incur in an expressive loss of stationarity, the Hurst parameter value returned by

the referred estimator increases while the attack endures, decreasing to the normal

degree after the traffic concerning the attack has completely left the observation

window.

3. If the temporal span of the attack is bigger than the size of the observation window

231

of the local scope Hurst parameter estimator, and if the intensity of the attack

does not result in an expressive loss of stationarity, then the estimates of the Hurst

parameter increase only during the transitory phase where the traffic concerning the

attack is entering or leaving the observation window.

During the phase where the windowed estimator is observing the mixture constituted

by the sum of legitimate and illegitimate traffic, the Hurst parameter value decreases

to the value assessed prior to the attack. This happens because, as soon as the

attack is completely absorbed by the observation window, the estimator updates the

entire set of statistics it is based on, to the ones of the shifted series, which are

approximately equal to the ones of the original series. In such a case, the windowed

estimator cannot distinguish the shifted part of the process under analysis from the

legitimate process itself.

The impact in the global scope estimates is mostly dependent of the quantity of data

previously processed by the method. For small quantities, the behaviour of the values of

the Hurst parameter is similar to the one of the windowed estimates, while for the opposite

case, the reaction may be almost null. Moreover, the effect of any ephemeral modification

of the self-similarity degree takes longer to disappear from an incremental estimator, than

from its reciprocal windowed version. Under certain restrictions, the values returned by

the point-by-point estimators may then be used as baseline comparison for the previously

mentioned ones.

It was proven that the resilience of a given process to the complete loss of the self-

similarity structure increases with the Hurst parameter. Moreover, loss of self-similarity

depends on the ratio between load and intensity of the attack, because the higher the

load is, the more prominent the attack needs to be so as to produce enough damage to

the legitimate trace. Thus, high-debit aggregation nodes concretise scenarios particularly

favourable to the preservation of that property and, as the networks speed and processing

power increases, the more favourable the circumstances tend to be.

Based on the results, one may conclude that the self-similarity analysis can be

used to detect anomalies whose nature may be related with network intensive attacks.

For that, a technique that elaborates on the continuous monitoring of the values of the

232

Hurst parameter, detecting abnormal variations of the estimates during predefined periods

of time, may be used. Using the size of the observation window as an input variable

of the detector, it is possible to point out the beginning and approximate duration of

any particularly lengthy and intense flow of traffic. As suggested by the discussion in

chapter 3, it would be actually possible to apply the estimators to the byte count per

tenth of millisecond using a 2.8 GHz processor and less than 4 KB of memory. Per se,

these numbers are enough to justify the implementation of these real-time indicators of

the self-similarity degree of the traffic, if only for the perspective they provide. Because

of the metrics on which this type of analysis is based on, a method that draws on the

self-similarity degree estimation can be placed immediately after the most basic network

information collectors, and used to raise alerts about potentially harmful data flows or to

trigger further investigation procedures (e.g. DPI techniques).

Regardless of the promissory results, in the increasingly complex area of informa-

tion networks, the type of analysis investigated herein cannot be seen as a sole nor as

an extraordinary solution for the problem of intrusion detection. The application scope

of any method based in self-similarity analysis lies in the intersection of the action areas

of NIDSs and traffic characterisation in the dark mechanisms, being thus limited. Addi-

tionally, rather intense data flows produce the same kind of impact in the estimates of

the Hurst parameter that network intensive attacks do, rendering impossible to decide

about the legitimacy of the traffic only based on that metric. Preprocessing of the em-

pirical input series is required in network points where transfers of large amounts of data

(e.g. due to activities of backup) are known to exist. Finally, it has to be taken into

account that the assumptions behind this type of detection are rather strong, since it is

necessary to presume that the traffic under analysis exhibits (and will continue to exhibit)

the self-similarity property. Such assumption may not hold true e.g. under erroneous or

congestion states of the network, light load conditions or in points where control mech-

anisms uniformise the way data is transmitted. Along this work, it became obvious to

the author that the self-similarity degree of the traffic is better defined if understood as

one of the indicators of the health of the network, at a given aggregation point. Under

such terms, the point-by-point and windowed estimators comprise efficient tools for the

real-time observation of the evolution of that statistic, enabling administrators to manage

the network while taking that factor into account also.

233

6.2. Directions for Future Work

The author is particularly receptive to all the possibilities to apply some of the

concepts and implement some of the mechanisms presented herein in a real network traffic

monitoring equipment. He believes that the empirical observation of the behaviour of

these mechanisms in a real network environment will enable one to optimise them in

a practical and useful manner. It is also planned to continue the line of research of

chapter 5 with the analysis of different traces of traffic (pre-collected or in real-time).

The observation of the online reaction of the windowed-modified estimators to attacks in

the wild would certainly add an entirely new perspective to this investigation.

Future Use of the Modified Hurst Parameter Estimators

It is of the opinion of the author that the future of the modified Hurst parameter

estimators is more promissory in the area of real-time traffic monitoring and analysis,

than in the network security field. This belief is based on the conclusions included herein,

and on the review of the literature for those particular fields. When compared with the

incremental estimators, the windowed modified version of the procedures embody a more

attractive solution for any kind of system operating in a real-time basis. Thus, the last type

of estimators has more chances to find applications in the future, either in the networking

area, or in many other areas of knowledge (medicine, hydrology, weather prediction, etc.).

Within the area of the information networks, the possible repercussions of assessing

the Hurst parameter within a window of values in real-time are still to be fully examined,

specially in terms of the impact it may have on queue management and (consequently)

on QoS improvements. Recall that the degree of self-similarity may be understood as

a measure of the burstyness of the traffic: the higher the Hurst parameter value is, the

higher is the probability of having problems with buffer overflow. Hence, the research

of this particular topic should address the feasibility of assessing the Hurst parameter

for different types of flow separately (divided by priority or classes), and of using that

information to allocate more memory and computational resources to the traffic with

higher level of burstyness. Online estimation of the Hurst parameter opens the possibility

to create proactive provisioning mechanisms for network elements.

234

Future Use of the Self-Similar Sequences Generators

The most prominent advantages of the generator entitled fBm-SGA were on the

basis of an invention report (Method for On-line Simulation of Traffic Conditions on Net-

work Aggregation Points [182]), which addresses the problem of anticipating the network

behaviour, in terms of amount of traffic. Because the fBm-SGA is sequential and requires

low computational resources, it was transformed into an online network traffic simulator,

that receives the real trace of traffic and the associated Hurst parameter value as inputs,

and rapidly returns one (or several) paths as a prediction of what might happen in the

following moments.

Some of the schematics that were used to explain the idea in the referred document

are included in Figure 6.1. The use case represented in the bottom part of the figure

should be understood as one of the possible embodiments of the idea, as it could be easily

generalized to other applications requiring parallel simulation of self-similar processes.

While the report was specific on how to adapt the internal data representations of fBm-

SGA to an incoming set of values (e.g. the network trace), the interpretation of the

retrieved values and the actions to be taken upon that interpretation were not yet defined,

being that a potential topic of future research. Meanwhile, stimulated by this possible

application and aiming for the resolution of some of the disadvantages of fBm-SGA, the

author has already designed the lines that improve further the quality of the generator,

without damaging its computational efficiency. Such improvements are yet to be formally

described, but they were already tested.

As a future improvement for 4SG, the author would like to mention the possibility

to generate series of values with multi-fractal (or multi-scaling) structure, which can

be carried out by introducing a slight modification to the means used to calculate the

weights of the contributions (see section 4.4.). This modification affects only the way the

several aggregation blocks scale individually, leaving intact the core of the algorithm. The

scope of application of a multi-fractal sequences generator is obviously larger, and may

be of particular relevance in e.g. the financial [183] or the physiological signal research

areas [184].

The author also plans to describe how the philosophy behind 4SG can be adapted

235

Figure 6.1: The schematics of the concept machine of the network online simulator. The top

of the figure illustrates the inner workings of the machine, while the bottom part presents a

possible use case scenario.

to generate realisations of a Gaussian variate from uniforms. In spite of the variety of

GRNGs proposed in the literature (see e.g. [142]), it seems worth to explore the fact that

4SG requires only 1 call to a PRNG per point generated, and that the respective GRNG

would actually inherit its superb performance. The novel algorithm would be at least 4

236

times faster than the Polar method, whose implementation was discussed in section 4.5.3..

Additionally, the statistical properties of the produced sequences (as the average and the

variance) are expected to be very stable.

The Future of the Prime Remainder Revolution

It was mentioned that PRR was developed for simulation purposes, reason by which

its cryptographic application was not considered nor evaluated. The worth of the algo-

rithm as a cryptographic primitive will be the subject of future research work.

Another topic that deserves attention is the investigation of the impact of considering

a bigger Mersenne prime (for instance 261− 1), in terms of performance of the algorithm.

At this point, it would be logical to expect that such a change would render PRR almost

twice as fast as its actual implementation, in machines capable of natively supporting 64

bit long operations, while increasing its period to 261 × 259 = 2120. The author is equally

interested in submitting the algorithm to other batteries of tests, namely to the recently

updated TestU01: A C library for empirical testing of random number generators [120,

185].

The Future of the Network Traffic Simulator

The network traffic simulator presented in chapter 5 was build strictly with the

purposes of this thesis in mind. As so, its structural blocks are mostly related with the

traffic load of a given network aggregation point, and with the self-similarity properties

of the trace produced. Two possible future directions for the simulator include (i) the

modelling of other aspects of the network traffic, as for example the dynamism of higher

layer protocols (IP, TCP, User Datagram Protocol (UDP), VoIP or P2P file exchange

protocols, just to name a few), and (ii) the inclusion of more complex schemes, that unify

different models depending on the aggregation scale considered (see section 2.3.4.). The

hypothesis to integrate the traffic generator (or of some of its underlying algorithms and

theory) into already developed and functional simulators is not excluded either.

The emulation of the messages of higher layer protocols is important for the area

237

of QoS, principally the simulation of the most recent services running on the Internet:

VoIP, IPTV, P2P file sharing, etc. As the means described herein apply to the network

aggregation point only, their usefulness is written in terms of the analysis of the effect

the said types of traffic have on the network aggregation point, and of the analysis of the

delays one particular flow suffers when passing through one of those nodes. The research

effort may be significantly reduced by considering only two distinct flows of traffic, one

coming from the source, and the other already aggregated at the intermediary node. By

these means, it is possible to concentrate on a particular protocol, avoiding the burden

of having to simulate too many sources or services. Nevertheless, the validity of this

approach has to be further investigated before proceeding.

Network Traces with Attacks Data Base

The subject of intrusion detection gathers as much interest from the academic com-

munity, as from the industry (telecommunication products sellers) and Service Providers

(SPs). Despite that, it is rather difficult to find up-to-date traces of traffic containing

real attacks captured in a controlled environment. The traces at MIT/DARPA [179] date

from 1998 and 1999, and are still used to test new candidates to intrusions detection

mechanisms. Because those traces are becoming old and do not precisely reflect all the

characteristics of aggregated traffic [23], some [20] even try to emulate the attacks by

injecting packets into known traces.

A project aiming for the creation of new data sets containing traces of traffic with

attacks is thus of relevance, and it would be welcomed in the research community of the

network security area. The details of such an endeavour are still to be determined, but

the usefulness of its outputs are depend on whether or not the following guidelines are

met.

Availability and Anonymity. The data resulting from this project would have to be

available for others to use. This means that the traces have to be made anonymous prior

to be stored online (preferred) or in other specific format. The collected data should

be saved in standard or well documented file formats (e.g. tcpdump, tsh), to enhance

portability.

238

Correctness and Temporal Appropriateness. The main objectives of collecting

new traces is to make them reflect the dynamics of real traffic of current networks, as well

as to include some of the most recent forms of attacking them. If simulated, the traces

or the attacks must meticulously meet the characteristics (to be subject of research) of

the network they are trying to reproduce. These characteristics include aspects related

with self-similarity (in the case of aggregation points), network load, types of application,

etc. Given the nature of these experiments, their validity is limited to the temporal span

in which they were conducted. Hence, one must not be overly concerned in constructing

future proof traces, since the evolution of the attacks, networks and counter-measures is

hard to predict.

Controlled and Structured. In order to be really useful, the traces should be cate-

gorised and the attacks labelled. The occurrence of a given attack should be discreetly

regulated, so as to imitate an uncontrolled attacking source. All the information con-

cerning the traces and the attacks considered relevant, should also be attached to the

data sets. This information should include several statistical measures (e.g. length and

number of packets of the trace, average load, self-similarity degree), the topology and

the specifications of the (simulated) network in which the traces were obtained, and the

details of the attacks it includes (type, severity, and time of occurrence, attacking source

and destination, etc.).

Other Lines of Research

One of the most prominent topics of the area of network security is the one of DPI

mechanisms. While TCD techniques may embody a good first line of defence, it is on

DPIs that systems vendors and buyers trust the most [11, 149, 186]. As previously said,

the integration of the particular set of monitoring mechanisms described herein, in real

network systems, is something that deserves to be explored. Furthermore, the cooperation

between the windowed Hurst parameter estimators and the DPI module is also worth of

the effort. The definition of that cooperation and how the different modules can interact

to improve their performance may embody a particularly defying task.

Because the trend for security systems is to go deeper and deeper into the packets

239

contents, which may be on the basis of discussions regarding the privacy topic, the future

of the research in this area should tackle this tendency, and explore efficient ways of

pointing out a malicious activity (network attack, virus, worm, trojan horse, etc.) while

analysing potentially huge amounts of data. The persons conducting research in this

particular field should also keep in mind that there is an actual need for simplified (yet

efficient) IDSs. Most of the times, it is requested to the network elements to perform

simple tasks of security, which are not their main functionality and, as so, the resources

allocated to that part of the system should be minimum. Additionally, over complicated

mechanisms require often large amounts of memory and high computational power, which

render the devices (or the software solution per se) more expensive.

For a network administrator, all the menaces to the integrity of the network or

of its components have to be handled with extreme caution, for their severity may be

misleading. Nevertheless, the attacks based on apparently legitimate connections, that

act like normal for undetermined periods of time, until they reach the critical attacking

point, constitute a good topic of research, specially when non-spoofed DDoS attacks are

becoming more common (for that matter, refer to [187]).

240

Bibliography

[1] J. B. Postel, “RFC 791: Internet Protocol,” September 1981, obsoletes

RFC0760. See also STD0005. Status: STANDARD. [Online]. Available:

ftp://ftp.internic.net/rfc/rfc760.txt,ftp://ftp.internic.net/rfc/rfc791.txt,ftp://ftp.

math.utah.edu/pub/rfc/rfc760.txt,ftp://ftp.math.utah.edu/pub/rfc/rfc791.txt

[2] ——, “RFC 793: Transmission control protocol,” 1981, status: STANDARD.

[Online]. Available: ftp://ftp.internic.net/rfc/rfc793.txt,ftp://ftp.math.utah.edu/

pub/rfc/rfc793.txt

[3] Federal Networking Council (FNC), “Definition of “Internet”,” October 1995,

accessed July 26, 2008. [Online]. Available: http://www.nitrd.gov/fnc/Internet res.

html

[4] B. M. Leiner, V. G. Cerf, D. D. Clark, R. E. Kahn, L. Kleinrock, D. C. Lynch, J. B.

Postel, L. G. Roberts, and S. S. Wolff, “A Brief History of the Internet,” CoRR,

vol. cs.NI/9901011, 1999, a Brief History of the Internet, version 3.32, Last revised

10 Dec 2003.

[5] S. Gibson, “DRDoS Distributed Reflection Denial of Service,” Gibson Research

Corporation, Tech. Rep., 2002. [Online]. Available: http://www.grc.com/dos/

drdos.htm

[6] CERT R© Coordination Center, “Computer Emergency Response Center,” July

2008, accessed 18 July, 2008. [Online]. Available: http://www.cert.org/

[7] Jupitermedia Corporation, “Intrusion Detection System Definition,” December

2002, accessed March 23, 2008. [Online]. Available: http://wi-fiplanet.webopedia.

com/TERM/I/intrusion detection system.html

241

ftp://ftp.internic.net/rfc/rfc760.txt, ftp://ftp.internic.net/rfc/rfc791.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc760.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc791.txt
ftp://ftp.internic.net/rfc/rfc760.txt, ftp://ftp.internic.net/rfc/rfc791.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc760.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc791.txt
ftp://ftp.internic.net/rfc/rfc793.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc793.txt
ftp://ftp.internic.net/rfc/rfc793.txt, ftp://ftp.math.utah.edu/pub/rfc/rfc793.txt
http://www.nitrd.gov/fnc/Internet_res.html
http://www.nitrd.gov/fnc/Internet_res.html
http://www.grc.com/dos/drdos.htm
http://www.grc.com/dos/drdos.htm
http://www.cert.org/
http://wi-fiplanet.webopedia.com/TERM/I/intrusion_detection_system.html
http://wi-fiplanet.webopedia.com/TERM/I/intrusion_detection_system.html

[8] A. Kanaoka and E. Okamoto, “Multivariate Statistical Analysis of Network Traf-

fic for Intrusion Detection,” in Proceedings of the 14th International Workshop on

Database and Expert Systems Applications. Washington, DC, USA: IEEE Compu-

ter Society, 2003, p. 472.

[9] R. Bace and P. Mell, “NIST Special Publication on Intrusion Detection

Systems,” National Institute of Standards and Technology, Tech. Rep., 2004.

[Online]. Available: http://www.21cfrpart11.com/files/library/reg guid docs/nist

intrusiondetectionsys.pdf

[10] Information Technology Department, Harvard College, “Glossary - Computer

Security Terminology,” May 2007. [Online]. Available: http://hms.harvard.edu/

hmsit/pg.asp?pn=security glossary.

[11] R. Grigonis, “Securing Carrier Networks,” January 2009, accessed March 18, 2009.

[Online]. Available: http://www.tmcnet.com/voip/0109/securing-carrier-networks.

htm

[12] F. Yu, “High Speed Deep Packet Inspection With Hardware Support,” Ph.D. dis-

sertation, Berkeley, CA, USA, 2006, adviser-Katz, Randy H.

[13] J. McDonough, “Moving Standards to 100 GbE and Beyond,” IEEE Communica-

tions Magazine, vol. 45, no. 11, pp. 6–9, November 2007.

[14] IEEE P802.3ba Task Force, “IEEE P802.3ba 40 Gb/s and 100 Gb/s

Ethernet Task Force,” July 2008, accessed July 26, 2008. [Online]. Available:

http://www.ieee802.org/3/ba/index.html

[15] T. Karagiannis, K. Papagiannaki, and M. Faloutsos, “BLINC: Multilevel Traffic

Classification in the Dark,” in SIGCOMM ’05: Proceedings of the 2005 Conference

on Applications, Technologies, Architectures, and Protocols for Computer Commu-

nications, vol. 35, no. 4. New York, NY, USA: ACM Press, 2005, pp. 229–240.

[16] I. Norros, “Studies on a Model for Connectionless Traffic, Based on Fractional Brow-

nian Motion,” COST24TD(92)041, 1992.

[17] W. E. Leland, W. Willinger, M. S. Taqqu, and D. V. Wilson, “On the Self-Similar

Nature of Ethernet Traffic,” in Proceedings of the Conference on Communications

242

http://www.21cfrpart11.com/files/library/reg_guid_docs/nist_intrusiondetectionsys.pdf
http://www.21cfrpart11.com/files/library/reg_guid_docs/nist_intrusiondetectionsys.pdf
http://hms.harvard.edu/hmsit/pg.asp?pn=security_glossary.
http://hms.harvard.edu/hmsit/pg.asp?pn=security_glossary.
http://www.tmcnet.com/voip/0109/securing-carrier-networks.htm
http://www.tmcnet.com/voip/0109/securing-carrier-networks.htm
http://www.ieee802.org/3/ba/index.html

Architectures, Protocols and Applications, vol. 25, no. 1. New York, NY, USA:

ACM, September 1993, pp. 183–193.

[18] M. E. Crovella and A. Bestavros, “Self-Similarity in World Wide Web Traffic: Evi-

dence and Possible Causes,” IEEE /ACM Transactions on Networking, vol. 5, no. 6,

pp. 835–846, 1997.

[19] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-Similarity Through

High-Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level,”

IEEE/ACM Transactions on Networking, vol. 5, no. 1, pp. 71–86, 1997.

[20] W. H. Allen and G. A. Marin, “The LoSS Technique for Detecting New Denial of

Service Attacks,” in SoutheastCon, Florida Institute of Technology. IEEE, March

2004, pp. 302–309.

[21] M. Y. Idris, A. H. Abdullah, and M. A. Maarof, “Iterative Window Size Estimation

on Self Similarity Measurement for Network Traffic Anomaly Detection,” Inter-

national Journal of Computing & Information Sciences, vol. 4, no. 4, pp. 88–91,

August 2005.

[22] D. Nash and D. Ragsdale, “Simulation of Self-Similarity in Network Utilization

Patterns as a Precursor to Automated Testing of Intrusion Detection Systems,”

IEEE Transactions on Systems, Man and Cybernetics, Part A, vol. 31, no. 4, pp.

327–331, July 2001.

[23] W. H. Allen and G. A. Marin, “On the Self-similarity of Synthetic Traffic for the

Evaluation of Intrusion Detection Systems,” in Proceedings of the Symposium on

Applications and the Internet. Washington, DC, USA: IEEE Computer Society,

2003, pp. 242–248.

[24] Y. Hua and C.-L. Wu, “Intrusion Detection Based on Artificial Immune System

With Self-Similar Traffic,” in Proceedings of the International Conference on Ma-

chine Learning and Cybernetics, vol. 4, November 2003, pp. 2437–2441.

[25] M. Li, “Change Trend of Averaged Hurst Parameter of Traffic Under DDOS Flood

Attacks,” Computers & Security, vol. 25, no. 3, pp. 213–220, 2006.

243

[26] M. F. Rohani, M. A. Maarof, A. Selamat, and H. Kettani, “Uncovering Anomaly

Traffic Based on Loss of Self-Similarity Behavior Using Second Order Statistical

Model,” International Journal of Computer Science and Network Security, vol. 7,

no. 9, September 2007.

[27] W. Willinger, “On Internet Traffic Dynamics and Internet Topology II - Internet

Model Validation,” January 2004, accessed March 5, 2008. [Online]. Available:

http://www.ima.umn.edu/talks/workshops/1-7-9.2004/willinger/willinger1.2.pdf

[28] L. Bernaille, R. Teixeira, I. Akodkenou, A. Soule, and K. Salamatian, “Traffic Clas-

sification on the Fly,” SIGCOMM Computer Communications Review, vol. 36, no. 2,

pp. 23–26, April 2006.

[29] P. R. M. Inácio, M. M. Freire, M. Pereira, and P. P. Monteiro, “Analysis of the

Impact of Intensive Attacks on the Self-Similarity Degree of the Network Traffic,”

in Proceedings of The 2nd. International Conference on Emerging Security Infor-

mation, Systems and Technologies, Cap Esterel, France, 2008, pp. 107–113.

[30] ——, “A Evolução do Parâmetro de Hurst e a Destruição da Auto-Semelhança

Durante um Ataque de Rede Intenso,” in Proceedings of Segurança Informática

nas Organizações, Paulo Simões e Edmundo Monteiro, Ed., Coimbra, Portugal,

November 2008, pp. 63–74.

[31] ——, “Fast Synthesis of Persistent Fractional Brownian Motion,” ACM Transac-

tions on Modelling and Computer Simulation, 2009, accepted for publication with

minor changes.

[32] ——, “The Design and Evaluation of the Simple Self-Similar Sequences Generator,”

Elsevier Information Sciences, 2009, accepted for publication with minor changes.

[33] ——, “Remainders Revolution Pseudo Random Number Generator,” ACM Journal

of Experimental Algorithmics, 2009, submitted for publication.

[34] F. Harmantzis and D. Hatzinakos, “Heavy Network Traffic Modeling and Simula-

tion Using Stable FARIMA Processes,” in Proceedings of The 19th International

Teletraffic Congress, Beijing, China, September 2005, pp. 393–413.

244

http://www.ima.umn.edu/talks/workshops/1-7-9.2004/willinger/willinger1.2.pdf

[35] J. Liu, Y. Shu, L. Zhang, F. Xue, and O. T. Yang, “Traffic Modeling Based on

FARIMA Models,” in Proceedings of the IEEE Canadian Conference on Electrical

and Computer Engineering, vol. 1, Edmonton, Alta., Canada, 1999, pp. 162–167.

[36] D. Cox, In Statistics: An Appraisal. Iowa State Statistical Library: The Iowa State

University Press, 1984, ch. Long-Range Dependence: a Review, pp. 55–74.

[37] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-Range Dependence: Ten Years

of Internet Traffic Modeling,” IEEE Internet Computing, vol. 8, no. 5, pp. 57–64,

2004.

[38] T. Dieker, “Simulation of Fractional Brownian Motion,” Master’s thesis, University

of Twente, P.O. Box 94079, 1090 GB Amsterdam, The Netherlands, 2004. [Online].

Available: http://www.proba.ucc.ie/∼td3/fbm/thesis.pdf.

[39] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson, “On the Self-Similar

Nature of Ethernet Traffic (Extended Version),” IEEE/ACM Transactions on Net-

working, vol. 2, no. 1, pp. 1–15, February 1994.

[40] W. Sun, S. Rachev, F. Fabozzi, and P. Kalev, “Fractals in Trade Duration: Captur-

ing Long-Range Dependence and Heavy Tailedness in Modeling Trade Duration,”

Annals of Finance, vol. 4, no. 2, pp. 217–241, March 2008.

[41] G. Samorodnitsky, “Long Memory and Self-Similar Processes,” Annales de la faculté

des sciences de Toulouse, vol. 6, no. 1, pp. 107–123, 2006.

[42] C. M. Grinstead and J. L. Snell, Introduction to Probability. American Mathe-

matical Society; (July 1, 1997), 1997, vol. 2 Revised edition, ch. Random Walks, p.

510.

[43] B. B. Mandelbrot and J. W. V. Ness, “Fractional Brownian Motions, Fractional

Noises and Applications,” SIAM Review, vol. 10, no. 4, pp. 422–437, 1968.

[44] V. Paxson, “Fast, Approximate Synthesis of Fractional Gaussian Noise for Gener-

ating Self-Similar Network Traffic,” ACM SIGCOMM Computer Communications

Review, vol. 27, no. 5, pp. 5–18, 1997.

245

http://www.proba.ucc.ie/~td3/fbm/thesis.pdf.

[45] V. Paxson and S. Floyd, “Wide Area Traffic: the Failure of Poisson Modeling,”

IEEE/ACM Transactions on Networking, vol. 3, no. 3, pp. 226–244, 1995.

[46] K. G. Coffman and A. Odlyzko, “The size and growth rate of the internet,” Tech.

Rep. 99-11, 21, 1999. [Online]. Available: http://www.dtc.umn.edu/∼odlyzko/doc/

internet.size.pdf

[47] A. M. Odlyzko, “Internet Growth: Myth and Reality, Use and Abuse,” Journal of

Computer Resource Management, no. 102, pp. 23–27, Spring 2001.

[48] M. S. Taqqu, W. Willinger, and R. Sherman, “Proof of a Fundamental Result in Self-

similar Traffic Modeling,” SIGCOMM Computer Communication Review, vol. 27,

no. 2, pp. 5–23, April 1997.

[49] B. A. Cipra, “Oh, What a Tangled Web We´ve Woven. . . .” SIAM News, vol. 33,

no. 2, 1999.

[50] H. J. Fowler and W. E. Leland, “Local Area Network Traffic Characteristics, With

Implications for Broadband Network Congestion Management,” IEEE Journal of

Selected Areas in Communications, vol. 9, no. 7, pp. 1139–1149, 1991.

[51] A. Erramilli, O. Narayan, and W. Willinger, “Experimental Queueing Analysis With

Long-Range Dependent Packet Traffic,” IEEE/ACM Transactions on Networking,

vol. 4, no. 2, pp. 209–223, April 1996.

[52] P. R. Morin, “The Impact of Self-Similarity on Network Perfor-

mance Analysis,” Computer Science 95.495, Carleton University, Tech.

Rep., December 1995. [Online]. Available: http://coblitz.codeen.org:

3125/citeseer.ist.psu.edu/cache/papers/cs/6423/http:zSzzSzfermat.eup.udl.

eszSz∼cesarzSzTFCzSzRobert SallazSzpaper2.pdf/morin95impact.pdf

[53] K. Park, G. Kim, and M. Crovella, “On the Effect of Traffic Self-Similarity on

Network Performance,” in Proceedings of Winter Simulation Conference, 1997, pp.

989–996.

[54] D. A. Rolls, G. Michailidis, and F. Hernández-Campos, “Queueing Analysis of Net-

work Traffic: Methodology and Visualization Tools,” Computer Networks, vol. 48,

no. 3, pp. 447–473, 2005.

246

http://www.dtc.umn.edu/~odlyzko/doc/internet.size.pdf
http://www.dtc.umn.edu/~odlyzko/doc/internet.size.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/6423/http:zSzzSzfermat.eup.udl.eszSz~cesarzSzTFCzSzRobert_SallazSzpaper2.pdf/morin95impact.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/6423/http:zSzzSzfermat.eup.udl.eszSz~cesarzSzTFCzSzRobert_SallazSzpaper2.pdf/morin95impact.pdf
http://coblitz.codeen.org:3125/citeseer.ist.psu.edu/cache/papers/cs/6423/http:zSzzSzfermat.eup.udl.eszSz~cesarzSzTFCzSzRobert_SallazSzpaper2.pdf/morin95impact.pdf

[55] J. Cao, W. Cleveland, D. Lin, and D. Sun, “Internet Traffic Tends to Poisson

and Independent as the Load Increases,” Bell Labs, Tech. Rep., 2001. [Online].

Available: http://www.stat.purdue.edu/∼wsc/papers/lrd2poisson.pdf

[56] N. Wisitpongphan and J. Peha, “Effect of TCP on Self-Similarity of Network Traf-

fic,” in Proceedings of the 12th International Conference on Computer Communica-

tions and Networks, October 2003, pp. 370–373.

[57] A. Veres and M. Boda, “The Chaotic Nature of TCP Congestion Control,” in Pro-

ceedings of the 19th Annual Joint Conference of the IEEE Computer and Commu-

nications Societies, vol. 3, March 2000, pp. 1715–1723.

[58] O. Rose, “Estimation of the Hurst Parameter of Long-Range Dependent Time Se-

ries,” Research Report, vol. 137, 1996.

[59] R. G. Clegg, “A Practical Guide to Measuring the Hurst Parameter,” Science and

Technology, vol. 7, pp. 3–14, 2006.

[60] K. M. Rezaul and V. Grout, “An overview of long-range dependent network traffic

engineering and analysis: characteristics, simulation, modelling and control,” in Val-

ueTools ’07: Proceedings of the 2nd international conference on Performance evalu-

ation methodologies and tools. ICST, Brussels, Belgium, Belgium: ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering),

2007, pp. 1–10.

[61] M. S. Taqqu, V. Teverovsky, and W. Willinger, “Estimators for Long-Range De-

pendence: An Empirical Study,” Fractals, vol. 3, pp. 785–798, 1995.

[62] J. Strecker, “Fractional Brownian Motion Simulation: Observing Fractal Statis-

tics in the Wild and Raising Them in Captivity,” Master’s thesis, The College of

Wooster, April 2004.

[63] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A Nonstationary Pois-

son View of Internet Traffic,” Twenty-third Annual Joint Conference of the IEEE

Computer and Communications Societies, vol. 3, pp. 1558–1569, March 2004.

[64] W. Willinger, M. Taqqu, and A. Erramilli, Stochastic Networks: Theory and Ap-

plications, ser. Royal Statistical Society Lecture Note Series. Oxford University

247

http://www.stat.purdue.edu/~wsc/papers/lrd2poisson.pdf

Press, September 1996, no. 4, ch. A bibliographical guide to self-similar traffic and

performance modeling for modern high-speed networks, pp. 339–366.

[65] T. Karagiannis and M. Faloutsos, “SELFIS: A Tool For Self-Similarity and Long-

Range Dependence Analysis,” in Proceedings of the 1st Workshop on Fractals and

Self-Similarity in Data Mining: Issues and Approaches (in KDD), Edmonton,

Canada, July 2002, pp. 81 – 93.

[66] T. Karagiannis, M. Faloutsos, and M. Molle, “A User-Friendly Self-Similarity Anal-

ysis Tool,” SIGCOMM Computer Communication Review, vol. 33, no. 3, pp. 81–93,

2003.

[67] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Gold-

berger, “Mosaic Organization of DNA Nucleotides,” Physical Review E (Statistical

Physics, Plasmas, Fluids, and Related Interdisciplinary Topics), vol. 49, no. 2, pp.

1685–1689, February 1994.

[68] P. Abry and D. Veitch, “Wavelet analysis of long-range-dependent traffic,” IEEE

Transactions on Information Theory, vol. 44, no. 1, pp. 2–15, 1998.

[69] O. Jones and Y. Shen, “Estimating the Hurst Index of a Self-Similar Process via the

Crossing Tree,” IEEE Signal Processing Letters, vol. 11, no. 4, pp. 416–419, 2004.

[70] H. Kettani and J.A.Gubner, “A Novel Approach to the Estimation of the Long-

Range Dependence Parameter,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 53, no. 6, pp. 463–467, June 2006.

[71] J. Sutcliffe, “Obituary Harold Edwin Hurst: 1 January 1880-7 December 1978,”

pp. 16–20, December 1979, accessed January 12, 2007. [Online]. Available:

http://www.cig.ensmp.fr/∼iahs/hsj/240/hysj 24 04 0539.pdf

[72] H. E. Hurst, “Long-Term Storage Capacity of Reservoirs,” Transactions of the

American Society of Civil Engineers, vol. 116, pp. 770–799, 1951.

[73] G. Sakalauskiene, “The Hurst Phenomenon in Hydrology,” Environmental research,

engineering and management, vol. 25, no. 3, pp. 16–20, 2003.

248

http://www.cig.ensmp.fr/~iahs/hsj/240/hysj_24_04_0539.pdf

[74] A. W. Lo, “Long-Term Memory in Stock Market Prices,” Econometrica, vol. 59,

no. 5, pp. 1279–313, September 1991.

[75] A. A. Anis and E. H. Lloyd, “The Expected Value of the Adjusted Rescaled Hurst

Range of Independent Normal Summands,” Biometrika, vol. 63, no. 1, pp. 111–116,

April 1976, biometrika Trust.

[76] W. Feller, “The Asymptotic Distribution of the Range of Sums of Independent

Random Variables,” The Annals of Mathematical Statistics, vol. 22, no. 3, pp. 427–

432, 1951.

[77] T. Dieker and M. Mandjes, “On Spectral Simulation of Fractional Brownian Mo-

tion,” Probability in the Engineering and Information Sciences, vol. 17, no. 3, pp.

417–434, 2003.

[78] H. Zhang, Y. Shu, and O. Yang, “Estimation of Hurst Parameter by Variance-Time

Plots,” in Proceedings of the IEEE Pacific Rim Conference on Communications,

Computers and Signal Processing, vol. 2, August 1997, pp. 883–886.

[79] E. W. Weisstein, “Variance,” 2008, accessed April 12, 2008. [Online]. Available:

http://mathworld.wolfram.com/Variance.html

[80] M. P. Allen, Understanding Regression Analysis, ser. Humanities, Social Sciences

and Law. Springer US, November 2007, ch. The coefficient of determination in

multiple regression, pp. 91–95, free Preview.

[81] N. Christou, “The True R2 and the Truth About R2,” UCLA Department of Statis-

tics, UCLA Center for the Teaching of Statistics, University of California, Los An-

geles, California, USA, Tech. Rep., 2005.

[82] M. Trovero, “Long Range Dependence: a Light Tale for the Practitioner,”

August 2003, statistics students seminar at UNC. Accessed December 11,

2007. [Online]. Available: http://www.stat.unc.edu/students/statlunch/2003fall/

trovero 10 08 03 screen.pdf

[83] O. Jones and Y. Shen, Fractals and Engineering: New Trends in Theory and Ap-

plications, J. Levy-Vehel and E. Lutton ed. Springer London, December 2005,

249

http://mathworld.wolfram.com/Variance.html
http://www.stat.unc.edu/students/statlunch/2003fall/trovero_10_08_03_screen.pdf
http://www.stat.unc.edu/students/statlunch/2003fall/trovero_10_08_03_screen.pdf

ch. A non-parametric test for self-similarity and stationarity in network traffic, pp.

219–234.

[84] ——, “Matlab Code for Estimating the Hurst Index H of a Self-Similar Process

- Function get hits,” 2005, accessed February 15, 2008. [Online]. Available:

http://www.ms.unimelb.edu.au/∼odj/EBPHest/get hits.m

[85] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, “Quantification of

Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time

Series,” Chaos, vol. 5, no. 1, pp. 82–87, March 1995.

[86] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov,

R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley,

“PhysioNet, the Research Resource for Complex Physiologic Signals - Fractal

Mechanisms in Neural Control: Human Heartbeat and Gait Dynamics in Health

and Disease,” March 2003, accessed January 23, 2008. [Online]. Available:

http://www.physionet.org/tutorials/fmnc/

[87] A. Heckert and D. J. J. Filliben, Dataplot Reference Manual. National Institute

of Standards and Technology, 1976, vol. 1: Commands, ch. 2. Graphics Commands

- PERIODOGRAM. [Online]. Available: http://www.itl.nist.gov/div898/software/

dataplot.html/refman1/ch2/periodog.pdf

[88] M. Taqqu, “Local Whittle,” acessed July 19, 2007. [Online]. Available:

http://math.bu.edu/people/murad/methods/locwhitt/

[89] M. Roughan, D. Veitch, and P. Abry, “Real-Time Estimation of the Parameters of

Long-Range Dependence,” IEEE/ACM Transactions on Networking, vol. 8, no. 4,

pp. 467–478, 2000.

[90] S. G. Mallat, “A Theory for Multiresolution Signal Decomposition: The Wavelet

Representation,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

vol. 11, no. 7, pp. 674–693, 1989.

[91] D. Veitch and P. Abry, “A wavelet based joint estimator of the parameters of long-

range dependence,” IEEE Transactions on Information Theory, vol. 45, no. 3, pp.

878–897, 1999.

250

http://www.ms.unimelb.edu.au/~odj/EBPHest/get_hits.m
http://www.physionet.org/tutorials/fmnc/
http://www.itl.nist.gov/div898/software/dataplot.html/refman1/ch2/periodog.pdf
http://www.itl.nist.gov/div898/software/dataplot.html/refman1/ch2/periodog.pdf
http://math.bu.edu/people/murad/methods/locwhitt/

[92] D. N. Veitch, M. Roughan, and P. Abry, “Real-Time Estimation of Long

Range Dependent Parameters,” Patent PCT/AU1999/000 077, October, 1999,

WO/1999/040703.

[93] T. Higuchi, “Approach to an Irregular Time Series on the Basis of the Fractal

Theory,” Physica D Nonlinear Phenomena, vol. 31, no. 2, pp. 277–283, June 1988.

[94] K. M. Rezaul and V. Grout, “Exploring the Reliability and Robustness of HEAF(2)

for Quantifying the Intensity of Long-Range Dependent Network Traffic,” Interna-

tional Jornal of Computer Science and Network Security, vol. 7, no. 2, pp. 221–229,

February 2007.

[95] S. Stoev, M. S. Taqqu, C. Park, G. Michailidis, and J. Marron, “LASS: a Tool for

the Local Analysis of Self-Similarity,” Computational Statistics & Data Analysis,

vol. 50, no. 9, pp. 2447–2471, May 2006.

[96] M. Bartolozzi, C. Mellen, T. D. Matteo, and T. Aste, “Multi-Sscale Correlations in

Different Futures Markets,” The European Physical Journal B - Condensed Matter

and Complex Systems, vol. 58, no. 2, pp. 207–220, July 2007, in collection: Physics

and Astronomy.

[97] T. Hagiwara, H. Doi, H. Tode, and H. Ikeda, “High-Speed Calculation Method of

the Hurst Parameter Based on Real Traffic,” in Proceedings of the 25th Annual

IEEE Conference on Local Computer Networks. Washington, DC, USA: IEEE

Computer Society, 2000, p. 662.

[98] Sun Microsystems, Inc., “Primitive Data Types (The JAVA Tutorials>Learning

the Java Language>Language Basics),” February 2008, acessed February 19, 2008.

[Online]. Available: http://java.sun.com/docs/books/tutorial/java/nutsandbolts/

datatypes.html

[99] N. C. Kenkel and D. J. Walker, “Fractals in the Biological Sciences,” Coenoses,

vol. 11, pp. 77–100, 1996.

[100] B. B. Mandelbrot, The Fractal Geometry of Nature. San Francisco: W. H. Freeman

Company, August 1982, no. 1.

251

http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html
http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

[101] R. L. Oldershaw, “Nature Adores Self-Similarity,” April 2002. [Online]. Available:

http://www.amherst.edu/∼rloldershaw/nature.html.

[102] R. Lathrop and D. L. Peterson, “Identifying Structural Self -Similarity in Moun-

tainous Landscapes,” Landscape Ecology, vol. 6, no. 4, pp. 233–238, 1992.

[103] M. Kallache, H. W. Rust, and J. Kropp, “Trend Assessment: Applications for

Hydrology and Climate Research,” Nonlinear Processes in Geophysics, vol. 12, no. 2,

pp. 201–210, 2005.

[104] J. R. M. Hosking, “Fractional Differencing,” Biometrika, vol. 68, no. 1, pp. 165–176,

April 1981.

[105] ——, “Modeling Persistence In Hydrological Time Series Using Fractional Differ-

encing,” Water Resources Research, vol. 20, no. 12, pp. 1898–1908, 1984.

[106] Y.-Q. Lu, D. W. Petr, and V. Frost, “Characterization and Modeling

of Long-Range Dependent Telecommunication Traffic,” Telecommunications and

Information Sciences Laboratory, Tech. Rep., August 1994, department of Electrical

Engineering and Computer Science, University of Kansas. [Online]. Available:

http://www.ittc.ku.edu/publications/documents/Lu1994 tr-tisl-10230-04.pdf

[107] T. Dieker, “Master’s Thesis Ton Dieker,” September 2004, acessed February 20,

2008. [Online]. Available: http://www.proba.ucc.ie/∼td3/fbm/

[108] G. Kramer and G. Pesavento, “Ethernet Passive Optical Network (EPON): Building

a Next-Generation Optical Access Network,” IEEE Communications Magazine, vol.

Topics in Lightwave, pp. 62–73, February 2002.

[109] G. Horn, A. Kvalbein, J. Blomsk, and E. Nilsen, “An Empirical Comparison of

Generators for Self Similar Simulated Traffic,” Performance Evaluation, vol. 64,

no. 2, pp. 162–190, 2007.

[110] A. Erramilli, “Chaotic Maps as Models of Packet Traffic,” in Proceedings of ITC

14, The Fundamental Role of Tele-traffic in the Evolution of Telecommunications

Networks, J. Labetoulle and J. Roberts, Eds. Antibes Juan-Les-Pins, France:

Elsevier Science Publishers B.V. (North-Holland), June 6-10 1994, pp. 329–338.

252

http://www.amherst.edu/~rloldershaw/nature.html.
http://www.ittc.ku.edu/publications/documents/Lu1994_tr-tisl-10230-04.pdf
http://www.proba.ucc.ie/~td3/fbm/

[111] I. Norros, P. Mannersalo, and J. L. Wang, “Simulation of Fractional Brownian

Motion With Conditionalized Random Midpoint Displacement,” in Proceedings of

Advances in Performance Analysis, 1999, pp. 77–101.

[112] H.-D. J. Jeong, D. Mcnickle, and K. Pawlikowski, “Fast Self-Similar Teletraffic

Generation Based on FGN and Wavelets,” in Proceedings of the IEEE International

Conference on Networks, September - October 1999, pp. 75–82.

[113] S. Rambaldi and O. Pinazza, “An Accurate Fractional Brownian Motion Genera-

tor,” Physica A Statistical Mechanics and its Applications, vol. 208, pp. 21–30, July

1994.

[114] N. Enriquez, “A simple Construction of the Fractional Brownian Motion,” Stochastic

Processes and their Applications, vol. 109, pp. 203–223, February 2004.

[115] M. Caglar, “Simulation of Fractional Brownian Motion With Micropulses,” Ad-

vances in Performance Analysis, vol. 3, pp. 43–69, 2000.

[116] D. Ostry, “Synthesis of Accurate Fractional Gaussian Noise by Filtering,” IEEE

Transactions on Information Theory, vol. 52, no. 4, pp. 1609–1623, April 2006.

[117] C. M. Jarque and A. K. Bera, “Efficient Tests for Normality, Homoscedasticity and

Serial Independence of Regression Residuals,” Economics Letters, vol. 6, no. 3, pp.

255–259, 1980.

[118] E. W. Weisstein, “Gabriel’s Staircase,” 2008, acessed April 26, 2008. [Online].

Available: http://mathworld.wolfram.com/GabrielsStaircase.html

[119] M. Matsumoto and T. Nishimura, “Mersenne Twister: A 623-Dimensionally

Equidistributed Uniform Pseudo-Random Number Generator,” ACM Transactions

on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3–30, 1998.

[120] P. L’Ecuyer and R. Simard, “TestU01: A C Library for Empirical Testing of Random

Number Generators,” ACM Transactions on Mathematical Software, vol. 33, no. 4,

p. 22, August 2007.

[121] A. Zúquete, “An Efficient High Quality Random Number Generator for Multi-

Programmed Systems,” Journal of Computer Security, vol. 13, no. 2, pp. 243–263,

2005.

253

http://mathworld.wolfram.com/GabrielsStaircase.html

[122] id QUANTIQUE, “id QUANTIQUE - Quantum Random Number Generator

(RNG),” July 2007, acessed July 19, 2007. [Online]. Available: http:

//www.idquantique.com/products/quantis.htm

[123] M. Haahr, “RANDOM.ORG - Introduction to Randomness and Random Numbers,”

July 2007, accessed July 18, 2007. [Online]. Available: http://www.random.org/

[124] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in For-

tran 77: The Art of Scientific Computing., C. Univ, Ed. Press, Cambridge, 1992.

[125] J. von Neumann, “Various Techniques used in Connection With Random Digits,” in

John von Neumann, Collected Works, A. H. Taub, Ed. Oxford: Pergamon Press,

Oxford, 1951, vol. 5, pp. 768–770.

[126] “Vulnerability Analysis Tools for Cryptographic Keys,” accessed July 20, 2007.

[Online]. Available: http://www.cs.hku.hk/cisc/projects/va/index.htm

[127] A. Orhon and J. E. Magen, “Dissonant Numbers,” 12 2006, acessed

October 27, 2007. [Online]. Available: http://yonkeltron.com/code/randomtest/

dissonant-numbers-handout.pdf

[128] P. L’Ecuyer, “Uniform Random Number Generation,” Annals of Operations Re-

search, vol. 53, no. 1, pp. 77–120, 1994.

[129] S. Luke, “MersenneTwisterFast.java,” The GNU Scientific Library - a free numerical

library licensed under the GNU GPL, October 2004, accessed June 5, 2007. [Online].

Available: http://cs.gmu.edu/∼sean/research/mersenne/MersenneTwisterFast.java

[130] P. Chan, R. Lee, and D. Kramer, The Java Class Libraries: java.io, java.lang,

java.math, java.net, java.text, java.util, 2nd ed., 1999, vol. 1.

[131] Sun Microsystems, Inc., “Random (Java 2 Platform SE 5.0),” 2007, accessed July

27, 2007. [Online]. Available: http://java.sun.com/j2se/1.5.0/docs/api/java/util/

Random.html

[132] N. Beebe, “Nelson Beebe’s Java Notes,” March 2004, accessed July 20, 2007.

[Online]. Available: http://www.math.utah.edu/∼beebe/java/

254

http://www.idquantique.com/products/quantis.htm
http://www.idquantique.com/products/quantis.htm
http://www.random.org/
http://www.cs.hku.hk/cisc/projects/va/index.htm
http://yonkeltron.com/code/randomtest/dissonant-numbers-handout.pdf
http://yonkeltron.com/code/randomtest/dissonant-numbers-handout.pdf
http://cs.gmu.edu/~sean/research/mersenne/MersenneTwisterFast.java
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Random.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Random.html
http://www.math.utah.edu/~beebe/java/

[133] D. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algo-

rithms. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA, Novem-

ber 1997.

[134] J. Walker, “ENT - A Pseudorandom Number Sequence Test Program,” October

1998, accessed July 26, 2007. [Online]. Available: http://www.fourmilab.ch/

random/

[135] P. Hellekalek, “Random Number Generators - the pLab Project - Tests,” The GNU

Scientific Library - a free numerical library licensed under the GNU GPL, 2006,

accessed July 27, 2007. [Online]. Available: http://random.mat.sbg.ac.at/tests/

[136] QUT’s Information Security Institute (ISI), “QUT — ISI — Crypt-X,”

The GNU Scientific Library - a free numerical library licensed under

the GNU GPL, May 2006, accessed July 20, 2007. [Online]. Available:

http://www.isi.qut.edu.au/resources/cryptx/

[137] G. Marsaglia, “Diehard Battery of Tests of Randomness v0.2 Beta,” 1997, accessed

July 21, 2007. [Online]. Available: http://i.cs.hku.hk/∼diehard/cdrom/

[138] A. Hidayat, “D.C.T.W.Y.C.D.T: Modulus With Mersenne Prime,” February 2007,

accessed July 28, 2007. [Online]. Available: http://www.cs.hku.hk/cisc/projects/

va/index.htm

[139] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes in C,

2nd ed. Cambridge, UK: Cambridge University Press, 1992.

[140] P.-H. Lee, Y. Chen, S.-C. Pei, and Y.-Y. Chen, “Evidence of the Correlation Between

Positive Lyapunov Exponents and Good Chaotic Random Number Sequences,”

Computer Physics Communications, vol. 160, no. 3, pp. 187–203, July 2004.

[141] G. Marsaglia and W. Tsang, “Some Difficult-to-Pass Tests of Randomness,” Journal

of Statistical Software, vol. 7, no. 3, pp. 1–8, 2002.

[142] D. B. Thomas, W. Luk, P. H. Leong, and J. D. Villasenor, “Gaussian Random

Number Generators,” ACM Computing Surveys, vol. 39, no. 4, p. 11, 2007.

255

http://www.fourmilab.ch/random/
http://www.fourmilab.ch/random/
http://random.mat.sbg.ac.at/tests/
http://www.isi.qut.edu.au/resources/cryptx/
http://i.cs.hku.hk/~diehard/cdrom/
http://www.cs.hku.hk/cisc/projects/va/index.htm
http://www.cs.hku.hk/cisc/projects/va/index.htm

[143] J. R. Bell, “Algorithm 334: Normal Random Deviates,” Communications of the

ACM, vol. 11, no. 7, p. 498, 1968.

[144] E. F. C. Junior, “Generating Gaussian Random Numbers,” acessed January 09,

2008. [Online]. Available: http://www.taygeta.com/random/gaussian.html

[145] Lincoln Laboratory, Massachusetts Institute of Technology, “MIT Lincoln

Laboratory - 1999 DARPA Intrusion Detection Evaluation Training Data

Week 2,” 2001, accessed February 15, 2008. [Online]. Available: http:

//www.ll.mit.edu/IST/ideval/data/1999/training/week2/index.html

[146] T. Espiner, “The Worst IT Security Incidents of 2007,” November 2007, accessed

July 26, 2008. [Online]. Available: http://resources.zdnet.co.uk/articles/features/

0,1000002000,39290745,00.htm

[147] Application Intrusion Detection Using Language Library Calls. Los Alamitos, CA.:

IEEE Computer Society Press, December 2001.

[148] G. Jian, L. Da-Xin, and C. Bin-Ge, “An Induction Learning Approach for Building

Intrusion Detection Models Using Genetic Algorithms,” Fifth World Congress on

Intelligent Control and Automation, vol. 5, pp. 4339–4342, June 2004.

[149] Allot Communications, “Digging Deeper into Deep Packet Inspection,”

White paper, April 2007, accessed May 21, 2008. [Online]. Avail-

able: http://www.getadvanced.net/learning/whitepapers/networkmanagement/

Deep%%20Packet%20Inspection White Paper.pdf

[150] S. Farraposo, P. Owezarski, and E. Monteiro, “A Multi-Scale Tomographic Algo-

rithm for Detecting and Classifying Traffic Anomalies,” in Proceedings of the IEEE

International Conference on Communications, Glasgow - UK, 24 to 28 June 2007,

pp. 363–370.

[151] ——, “NADA - Network Anomaly Detection Algorithm,” in Proceedings of the

18th IFIP IEEE International Workshop on Distributed Systems Operations and

Management, San Jose - USA, 29 to 31 October 2007, pp. 191–194.

256

http://www.taygeta.com/random/gaussian.html
http://www.ll.mit.edu/IST/ideval/data/1999/training/week2/index.html
http://www.ll.mit.edu/IST/ideval/data/1999/training/week2/index.html
http://resources.zdnet.co.uk/articles/features/0,1000002000,39290745,00.htm
http://resources.zdnet.co.uk/articles/features/0,1000002000,39290745,00.htm
http://www.getadvanced.net/learning/whitepapers/networkmanagement/Deep% %20Packet%20Inspection_White_Paper.pdf
http://www.getadvanced.net/learning/whitepapers/networkmanagement/Deep% %20Packet%20Inspection_White_Paper.pdf

[152] R. Lippmann, J. W. Haines, D. J. Fried, J. Korba, and K. Das, “The 1999 DARPA

Off-Line Intrusion Detection Evaluation,” Computer Networks, vol. 34, no. 4, pp.

579–595, 2000.

[153] K. Scarfone and P. Mell, “Guide to Intrusion Detection and Prevention

Systems (IDSP),” National Institute of Standards and Technology, Tech.

Rep., February 2007, special Publication 800-94. [Online]. Available: http:

//csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf

[154] Computer Network Defence Ltd., “Network IDSs,” August 2008, accessed

October 5, 2008. [Online]. Available: http://www.networkintrusion.co.uk/index.

php/component/mtree/IDS-and-IPS/Network-IDS.html

[155] Cisco Systems, Inc., “Cisco Intrusion Prevention System - Products &

Services - Cisco Systems,” 2008, accessed July 7, 2008. [Online]. Available:

http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html

[156] ——, “Cisco IPS Advanced Integration Module for Cisco 1841, 2800 and 3800 ISR

[Cisco Intrusion Prevention System] - Cisco Systems (Data Sheet),” 2008, accessed

July 7, 2008. [Online]. Available: http://www.cisco.com/en/US/prod/collateral/

routers/ps5853/ps5875/product data sheet0900aecd806c4e2a.pdf

[157] Allot Communications Ltd., “Allot Communications Ltd. - Products: NetEnforcer,”

2008, accessed July 8, 2008. [Online]. Available: http://www.allot.com/index.php?

option=com content&task=view&id=45&Itemid=88888966

[158] NIKSUN, “NIKSUN NetDetector (Data Sheet),” NIKSUN, 1100 Cornwall Road,

Monmouth Junction, NJ 08852 U.S.A., Tech. Rep., 2007. [Online]. Available:

www.insacorp.com/Documents/niksun-datasheet-netdetector.pdf

[159] SecurityMetrics, “SecurityMetrics Appliance (Data Sheet),” SecurityMetrics, Vic-

tory House, 400 Pavillion Drive, Northampton Business Park, Northampton, NN4

7PA, Tech. Rep., 2008.

[160] ——, “Integrated Vulnerability Assessment - Intrusion Detection and Prevention

- A Technical White Paper - Introduction, Implementation and Technology,”

SecurityMetrics, Victory House, 400 Pavillion Drive, Northampton Business

257

http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://csrc.nist.gov/publications/nistpubs/800-94/SP800-94.pdf
http://www.networkintrusion.co.uk/index.php/component/mtree/IDS-and-IPS/Network-IDS.html
http://www.networkintrusion.co.uk/index.php/component/mtree/IDS-and-IPS/Network-IDS.html
http://www.cisco.com/en/US/products/sw/secursw/ps2113/index.html
http://www.cisco.com/en/US/prod/collateral/routers/ps5853/ps5875/product_data_sheet0900aecd806c4e2a.pdf
http://www.cisco.com/en/US/prod/collateral/routers/ps5853/ps5875/product_data_sheet0900aecd806c4e2a.pdf
http://www.allot.com/index.php?option=com_content&task=view&id=45&Itemid=88888966
http://www.allot.com/index.php?option=com_content&task=view&id=45&Itemid=88888966
www.insacorp.com/Documents/niksun-datasheet-netdetector.pdf

Park, Northampton, NN4 7PA, White Paper, 2008. [Online]. Available:

http://www.securitymetrics.com/securitymetricsappliance.adp

[161] Check Point Software Technologies Ltd., “Stateful Inspection Technology

- The industry Standard for Enterprise-Class Network Security Solutions,”

Check Point Software Technologies Ltd., 3A Jabotinsky Street, 24th Floor

Ramat Gan 52520, Israel, White Paper, August 2005. [Online]. Available:

http://www.checkpoint.com/products/downloads/Stateful Inspection.pdf

[162] ——, “IPS-1 - Robust and Accurate Intrusion Prevention (Data Sheet),”

Check Point Software Technologies Ltd., 3A Jabotinsky Street, 24th Floor

Ramat Gan 52520, Israel, Tech. Rep., May 2008. [Online]. Available:

http://www.checkpoint.com/products/downloads/ips-1 datasheet.pdf

[163] Juniper Networks, Inc., “Juniper Networks IDP 75/250/800/8200 (Data Sheet),”

uniper Networks, Inc. , 1194 North Mathilda Avenue, Sunnyvale, California

94089-1206 U.S.A., Tech. Rep., 2008. [Online]. Available: http://www.juniper.net/

products and services/intrusion prevention solutions/index.html

[164] Enterasys Networks, Inc., “Enterasys Dragon R© 10 Gigabit Intrusion Detection and

Prevention System (Data Sheet),” 2008, accessed July 3, 2008. [Online]. Available:

http://www.enterasys.com/company/literature/dragon-10gIDS-ds.pdf

[165] ——, “Dragon Named IDS Product of the Year by Information Security

Magazine,” April 2006, accessed June 17, 2008. [Online]. Available: http:

//www.enterasys.com/company/press-release-item.aspx?id=667

[166] ——, “Enterasys - Company - News - Press Releases,” December 2004, accessed

October 19, 2005. [Online]. Available: http://secure.enterasys.com/corporate/pr/

releases/2004/dec/12-15.html

[167] Lawerence Berkeley National Laboratory, “Bro Intrusion Detection System - Bro

Overview,” 2007, accessed July 8, 2008. [Online]. Available: http://bro-ids.org/

[168] Sourcefire, “Snort - the De Facto Standard for Iintrusion Detection/Prevention,”

2008, accessed February 24, 2008. [Online]. Available: http://www.snort.org/

258

http://www.securitymetrics.com/securitymetricsappliance.adp
http://www.checkpoint.com/products/downloads/Stateful_Inspection.pdf
http://www.checkpoint.com/products/downloads/ips-1_datasheet.pdf
http://www.juniper.net/products_and_services/intrusion_prevention_solutions/index.html
http://www.juniper.net/products_and_services/intrusion_prevention_solutions/index.html
http://www.enterasys.com/company/literature/dragon-10gIDS-ds.pdf
http://www.enterasys.com/company/press-release-item.aspx?id=667
http://www.enterasys.com/company/press-release-item.aspx?id=667
http://secure.enterasys.com/corporate/pr/releases/2004/dec/12-15.html
http://secure.enterasys.com/corporate/pr/releases/2004/dec/12-15.html
http://bro-ids.org/
http://www.snort.org/

[169] H. Hu, W. Guo, B. Zhang, and X. Chen, “A Method of Security Measurement of

the Network Data Transmission,” in Proceedings of the 19th IEEE International

Parallel and Distributed Processing Symposium, April 2005, p. 8.

[170] J. Caberera, B. Ravichandran, and R. Mehra, “Statistical Traffic Modeling for Net-

work Intrusion Detection,” in Proceedings of the 8th International Symposium on

Modeling, Analysis and Simulation of Computer and Telecommunication Systems,

San Francisco, California, USA, 2000, pp. 466–473.

[171] W. Schleifer and M. Mannle, “Online Error Detection Through Observation of Traf-

fic Self-Similarity,” IEEE Proceedings Communications, vol. 148, no. 1, pp. 38–42,

February 2001.

[172] C. S. Sastry, S. Rawat, A. K. Pujari, and V. P. Gulati, “Network Traffic Analy-

sis Using Singular Value Decomposition and Multiscale Transforms,” Information

Sciences, vol. 177, no. 23, pp. 5275–5291, 2007.

[173] NLANR, “NLANR - National Laboratory for Applied Network Research -

Internet measurement, Internet analysis,” 2005, accessed March 29, 2008. [Online].

Available: http://moat.nlanr.net/

[174] CERT Coordination Center, “CERT R© Advisory CA-1997-28 IP Denial-

of-Service Attacks,” 2008, accessed March 30, 2008. [Online]. Available:

http://www.cert.org/advisories/CA-1997-28.html

[175] F. Gong, “Deciphering Detection Techniques: Part III Denial of Service Detection,”

McAfee Network Security Technologies Group, White Paper, January 2003.

[Online]. Available: www.mcafee.com/us/local content/white papers/wp ddt dos.

pdf

[176] B. Todd, “Distributed Denial of Service Attacks,” February 2000, accessed

March 30, 2008. [Online]. Available: http://www.linuxsecurity.com/resource files/

intrusion detection/ddos-whitepaper.html

[177] V. Paxson, “An Analysis of Using Reflectors for Distributed Denial-of-Service At-

tacks,” ACM Computer Communications Review, vol. 31, no. 3, 2001.

259

http://moat.nlanr.net/
http://www.cert.org/advisories/CA-1997-28.html
www.mcafee.com/us/local_content/white_papers/wp_ddt_dos.pdf
www.mcafee.com/us/local_content/white_papers/wp_ddt_dos.pdf
http://www.linuxsecurity.com/resource_files/intrusion_detection/ddos-whitepaper.html
http://www.linuxsecurity.com/resource_files/intrusion_detection/ddos-whitepaper.html

[178] Lincoln Laboratory, Massachusetts Institute of Technology, “MIT Lincoln

Laboratory - Intrusion Detection Attacks Database,” 2001, accessed February 15,

2008. [Online]. Available: http://www.ll.mit.edu/IST/ideval/docs/1999/attackDB.

html

[179] ——, “MIT Lincoln Laboratory: Information Systems Technology - DARPA Intru-

sion Detection Evaluation,” 2001, accessed February 15, 2008. [Online]. Available:

http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/index.html

[180] W. Willinger and V. Paxson, “Where mathematics meets the internet,” Notices of

the American Mathematical Society, vol. 45, no. 8, pp. 961–970, 1998.

[181] Paul Wessel, “Critical Values for the Two-sample Kolmogorov-Smirnov Test

(2-sided),” accessed August 27, 2008. [Online]. Available: www.soest.hawaii.edu/

wessel/courses/gg313/Critical KS.pdf

[182] P. R. M. Inácio, M. M. Freire, M. Pereira, and P. P. Monteiro, “Method for on-

line simulation of traffic conditions on network aggregation points,” Nokia Siemens

Networks S.A., Rua Irmãos Siemens, no. 1, Amadora, Invention Report, June 2007.

[183] B. Mandelbrot, A. Fisher, and L. Calvet, “A Multifractal Model of Asset Returns,”

Cowles Foundation, Yale University, Cowles Foundation Discussion Papers 1164,

September 1997.

[184] N. Scafetta, R. E. Moon, and B. J. West, “Fractal Response of Physiological Sig-

nals to Stress Conditions, Environmental Changes, and Neurodegenerative Giseases:

Essays and Commentaries,” Complexity, vol. 12, no. 5, pp. 12–17, 2007.

[185] P. L’Ecuyer and R. Simard, “Empirical Testing of Random Number Generators,”

April 2007, acessed May 10, 2008. [Online]. Available: http://www.iro.umontreal.

ca/∼simardr/testu01/tu01.html

[186] eSoft, “Modern Network Security: The Migration to Deep Packet Inspection,”

White paper, 2006, accessed March 29, 2008. [Online]. Available: http:

//www.esoft.com/pdf/whitepaper/DPI white paper.pdf

260

http://www.ll.mit.edu/IST/ideval/docs/1999/attackDB.html
http://www.ll.mit.edu/IST/ideval/docs/1999/attackDB.html
http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/index.html
www.soest.hawaii.edu/wessel/courses/gg313/Critical_KS.pdf
www.soest.hawaii.edu/wessel/courses/gg313/Critical_KS.pdf
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.iro.umontreal.ca/~simardr/testu01/tu01.html
http://www.esoft.com/pdf/whitepaper/DPI_white_paper.pdf
http://www.esoft.com/pdf/whitepaper/DPI_white_paper.pdf

[187] P. R. M. Inácio, J. J. V. Gomes, M. M. Freire, M. Pereira, and P. P. Monteiro,

“Zombie Identification Port,” in Proceedings of the Third International Conference

on Internet Monitoring and Protection, Bucharest, Romania., 2008.

261

	Acknowledgements
	Foreword
	Abstract
	Resumo
	Keywords
	Contents
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	Extended Abstract in Portuguese
	Introduction
	Thesis Focus and Scope
	Problem Definition and Objectives
	Thesis Organisation
	Main Contributions for the Advance of the Scientific Knowledge

	Self-Similarity and Hurst Parameter Estimation
	Introduction
	Self-Similarity, Hurst Parameter, Walks, Motions and Noise
	Self-similarity and Hurst parameter
	First Order Differences Process
	Random Walk
	Brownian Motion
	Fractional Brownian Motion
	Fractional Gaussian Noise
	Normalised Fractional Brownian Motion

	Self-Similarity in Network Traffic
	Network Aggregation Point
	The Origin of Self-Similarity
	The Face of Self-Similarity
	The Consequences of Self-Similarity

	Hurst Parameter Estimation
	Rescaled Range Statistics
	Variance Time
	Absolute Moments Time
	Embedded Branching Process
	Detrended Fluctuation Analysis
	Periodogram
	Whittle Estimator
	Wavelets-Based Estimator
	Higuchi Method
	Hurst Exponent by Autocorrelation Function

	Conclusion

	Fast and Windowed Estimation of the Hurst Parameter
	Introduction
	Point-by-Point Estimators
	Modified Embedded Branching Process
	Modified Variance Time
	Modified Absolute Moments Time

	Windowed Estimators
	Windowed Modified Embedded Branching Process
	Windowed Modified Variance Time
	Windowed Modified Absolute Moments Time

	Critical Analysis and Comparison
	Computational Complexity and Memory Requirements
	Data (In)sufficiency
	Comparison Between Modified and Retrospective Hurst Parameter Estimators
	Comparison Between Locally and Globally Estimated Hurst Parameter Values
	Comparison Between Windowed-Modified and Windowed-Retrospective Estimation

	Conclusion

	Efficient Generation of Self-Similar Sequences
	Introduction
	Overview to the State of the Art in Terms of fractional Brownian motion Generators
	Exact methods
	Approximate methods
	Desirable Features of Self-Similar Sequences Generators

	Fast and Sequential Generation of Persistent Fractional Brownian Motion
	Fractional Brownian Motion Sequential Generation Algorithm
	Quality Assessment via Hurst Parameter Estimation
	Computational Performance and Memory Requirements of fBm-SGA
	Usefulness of fBm-SGA Within the Scope of the Thesis

	The Simple Self-Similar Sequences Generator
	The 4SG Algorithm
	Quality Assessment via Hurst Parameter Estimation
	Computational Performance and Memory Requirements of 4SG
	Usefulness of 4SG Within the Scope of the Thesis

	The Source of Randomness: Prime Remainder Revolution Pseudo Random Number Generator
	The Prime Remainder Revolution Pseudo Random Number Generator
	Analysis of the Pseudo Random Number Generator
	The Generation of Normally Distributed Numbers

	Conclusion

	Traffic Simulation and Study of the Impact of Network Intensive Attacks
	Introduction
	Application Scope of an Intrusion Detection Method based on Self-Similarity Analysis
	Information Sources
	Analysis Approach
	Response Type
	Analysis Timing

	Overview of Open Source and Commercial NIDSs, and Critical Analysis of the Related Works
	Overview of Open Source and Commercial NIDSs
	Critical Analysis of the Related Works

	Self-Similar Traffic Generation and Attacks Simulation
	Model Description and Formalisation
	Implementation Details and Pictorial Proof of Self-Similarity
	Demonstration of the Fractal Properties of the Bit Count per Time Unit Through VT Analysis
	Definition and Simulation of Network Intensive Attacks

	Analysis of the Impact of an Attack in the Self-Similarity Degree of the Network Traffic
	Analysis of the MIT/DARPA Traces
	Analysis of Completely Synthetic Traces - Length of the Attack is Smaller Than the Observation Window Size
	Analysis of Completely Synthetic Traces - Length of the Attack is Bigger Than the Observation Window Size
	Reaction of the Windowed-Modified Estimators to High Intensity Attacks
	Detection of Network Intensive Attacks Based on Self-Similarity Analysis
	The Loss of Self-Similarity
	Discussion on the Theoretical Framework of the Results

	Conclusion

	Final Conclusions and Future Work
	Main Conclusions
	Directions for Future Work

