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Static Algorithm Allocation With Duplication in
Robotic Network Cloud Systems

1

2

Saeid Alirezazadeh and Luís A. Alexandre3

Abstract—Robotic networks can be used to accomplish tasks that4
exceed the capacity of a single robot. In a robotic network, robots5
can work together to accomplish a common task. Cloud robotics6
allows robots to benefit from the massive storage and computing7
power of the cloud. Previous studies mainly focus on minimizing8
the cost of resource retrieval by robots by knowing the resource9
allocation in advance. Duplicating algorithms on multiple nodes10
can reduce the total time required to execute a task. We address11
the question of which algorithms should be duplicated and where12
the duplicates should be placed to improve overall performance. We13
have developed a procedure to answer wherein a robotic network14
cloud system should algorithms be executed and whether they15
should be duplicated to achieve optimal performance in terms of16
overall task execution time for all robots. Our proposed duplication17
procedure is optimal in the sense that the number of duplicated18
algorithms is minimal, while the result provides minimal overall19
completion time for all robots.20

Index Terms—Human-robot collaboration, job completion time,21
monitoring, quality metric, task scheduling.22

I. INTRODUCTION23

THE use of robots is rapidly increasing in various areas24

of human life, e.g., domestic [1], [2], [3], industrial and25

manufacturing [4], [5], [6], military [7], [8], [9], and others [10],26

[11].27

To overcome the limitations of a single robot’s capabilities,28

one can use multiple robots working together to complete a task.29

For example, lifting a heavy object may exceed the capacity of30

a single robot. Such a system of cooperative robots is called a31

robotic network.32

The capacity of a robotic network is higher than that of a33

single robot, but the collective capacity of all robots limits the34

capacity of the robotic network [12]. Increasing the number of35
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robots to increase the capacity could be the first solution to this 36

limitation. However, increasing the number of robots increases 37

the complexity of the model and the cost of the system. On the 38

other hand, most of the tasks related to human-robot interaction, 39

such as object, face, and speech recognition, are computationally 40

intensive. Cloud robotics is a way to overcome the computa- 41

tional and capacity limitations of robots. It uses the Internet 42

and cloud infrastructure to assign computations and share Big 43

Data in real-time [13]. To achieve the optimal performance of 44

cloud-based robotic systems, we need to solve the allocation 45

problem. This is the problem that deals with deciding whether a 46

newly arrived task should be uploaded to the cloud, executed on 47

one of the robots (edge computing [14]), or processed on a server 48

(fog computing [15]). The execution of tasks by a cloud robotic 49

system is made possible by executing, collecting, and combining 50

the results of several elementary tasks called algorithms. Before 51

a robot executes a task, all the algorithms required for the task 52

should be available and assigned to at least one of the processing 53

units of the system. When a robot is assigned a task, the robot 54

requests the outputs of the algorithms corresponding to the task. 55

Our goal is to determine where the algorithms should be assigned 56

to such that, regardless of which robot is performing the task, it 57

retrieves all the required outputs of the algorithms in the shortest 58

possible time. 59

The article is organized as follows. Section II reviews re- 60

lated work on task allocation and scheduling in robotic net- 61

work cloud systems. Section III introduces some basic concepts 62

that are central to this article. This is followed in Section 63

IV by two procedures for identifying duplication algorithms. 64

Section V describes the experimental methodology and dis- 65

cusses the results of the experiments1. And finally, Section VI 66

draws some conclusions and points out future lines of work. 67

II. RELATED WORK 68

Let a robotic network cloud system be capable of performing 69

a finite set of tasks, T . Suppose that {A1, . . . , Am} is the set of 70

all algorithms necessary to execute all tasks in T . Consider the 71

case where the system is currently executing a subset of tasks, 72

say T1, when a new set of tasks, T2, arrives. As we can see in 73

Fig. 1, there are two types of task allocation: 74
� We refer to this sort of task allocation as static task alloca- 75

tion if we allocate the set of all algorithms in an effort to 76

find the system’s optimal performance. 77

1The code is available at https://github.com/SaeidZadeh/AlgorithmDupli
cation.
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Fig. 1. Task allocation problem studied in literature. Algorithm i is represented by Ai. We used dashed arrow to show that the result in [32] cannot be extracted
from the result of [31]. The dashed rectangle is used to show where our proposed stands, which is infact a procedure to be applied on the class of static allocation
for multi-robots and optimizing the time.

� We refer to this sort of task allocation as dynamic task allo-78

cation if we look for the best performance by dynamically79

allocating the newly received work at various time steps.80

[17] considered time window constraints for all tasks and81

proposed a load balancing procedure for cloud robotic systems;82

and [16] used a geometric approach to find an optimal task83

allocation by translating the allocation problem to a subspace of84

a hyperspace; [19] proposed Tercio, a centralized task allocation85

method that minimizes latency and physical proximity to tasks;86

[21] proposed aprocedure that considers the characteristics of87

cloud robotic architecture for optimal task assignment; [27]88

used evolutionary operators to find optimal task allocation; [26]89

studied resource sharing and presented a strategy to manage90

resources in near real-time; and [33] developed a scheduling91

technique to decrease response and makespan times and enhance92

resource effectiveness. Reinforcement learning is the foundation93

of the scheduling technique. They applied Bayes’ theorem, the94

total task length of virtual machines at each time step is treated95

as independent, and the Q-values are estimated.96

As shown in Fig. 1, the problems we address in this article97

focus on the static allocation problem. For more details on other98

works on dynamic task allocation mentioned in Fig. 1, see [32].99

From the set of all algorithms, we can define a directed acyclic100

graph (DAG) whose vertices are the algorithms, and each edge101

(Ai, Aj) means that to execute Aj , the result of Ai is required.102

The graph of all algorithms shows the execution flows of all103

algorithms to accomplish a task.104

In dynamic task allocation, we need to decide which task105

to assign to a node of the cloud robotic system after a set of106

tasks enters the system. When a task is assigned to a node, that107

node can ask other nodes to perform the necessary algorithms108

to accomplish the task. Occasionally, it is better to run these 109

algorithms on nodes other than the one to which the task has 110

been assigned in order to reduce memory usage and the time 111

required to perform the task. 112

If the goal is to complete all possible tasks that the system can 113

handle once, the most important aspect of a cloud robotic system 114

will be the static task allocation. The goal of static allocation is to 115

find the best way to distribute all algorithms required to execute 116

all tasks in a way that minimizes the cost of task execution. The 117

question of how to optimally distribute all algorithms among 118

nodes is solved by static allocation. It achieves this by ensuring 119

that the node to which the task is assigned optimally collects all 120

the required data. In static task allocation, we reduce the cost of 121

each task, regardless of where it is assigned. Static task allocation 122

is as crucial as dynamic task allocation. It also demonstrates how 123

to get cloud robotic systems to perform each task in the best 124

possible way. 125

An algorithm assigned to multiple processors is called a du- 126

plicated algorithm. Because algorithms are interdependent, the 127

output of a duplicated algorithm is more readily available to other 128

processors to which its successor algorithms are assigned to. The 129

following example is used to better explain the importance of 130

algorithm duplication. 131

Example II.1. Let the architecture of the cloud robotic be as 132

shown in Fig. 2. Suppose we have a task that requires only the 133

output of a single algorithm. Given the output of the algorithm, 134

the task can be performed by any of the edge nodes. Assume 135

that the algorithm can be executed on each of the edge nodes, 136

the fog node, and the cloud node with an average execution 137

time of 3, 0.5, and 0.1 seconds, respectively. If we do not 138

consider the duplication of algorithms, since we do not know 139
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Fig. 2. Architecture of the robotic network cloud system with an average
communication time between directed nodes of 1 seconds. Ei’s are edge nodes
for i = 1, 2, 3, F is the fog, and C is the cloud. The values on the edges are the
average communication time.

which of the edge nodes initiates the request to perform the140

task, the optimal performance of the system can be achieved141

by static algorithm allocation [30]. The result is the allocation142

of the algorithm to the fog node, where the average completion143

time of the task by the edge nodes E1, E2, and E3 is 4.5, 2.5,144

and 2.5 seconds, respectively. If we are allowed to duplicate145

the algorithm, duplicating the algorithm on the edge node E1146

reduces the average task completion time by the edge node E1147

to 3 seconds. Thus, the optimal solution with minimum overal148

time to complete the task is to allocate the algorithm to the fog149

node F and duplicate it once on the edge node E1.150

The works [32] and [31] deal with static allocation but do151

not consider duplication of algorithms, which can improve op-152

timal performance. To improve performance, [34] proposed a153

procedure for algorithm allocation with possible duplication.154

They provide a result that contains necessary (but not sufficient)155

conditions for task duplicability. They found that for a graph of156

all algorithms, duplicating an algorithm improves performance157

if the number of children of that algorithm or the number of chil-158

dren of at least one of its descendants is greater than or equal to 2.159

Their results reduce the space of algorithms whose duplications160

can improve performance. However, it is not specified exactly161

which algorithms need to be duplicated.162

Our main goal is to define a procedure to find out which163

algorithms should be duplicated and where to allocate their164

duplicates to improve the performance of the system. We have165

proposed a recursive algorithm to determine which algorithms166

need to be duplicated, and where they should be allocated to, to167

improve the overall completion time.168

III. PRELIMINARIES169

Before descrbing the procedure we recall several concepts170

from [30] that will be used to describe the main procedure.171

Definition III.1. We construct a directed acyclic graph G =172

(V,
−→
E ) which helps us formulate a general model. The directed173

acyclic graph G = (V,
−→
E ) is defined by the set of algorithms174

V = {A1, . . . , Am} as the set of vertices of the graph G and
−→
E175

is a subset of the ordered pairs of elements of V176

−→
E = {(Ai, Aj) | Aj uses the result of Ai}.

Definition III.2. For a directed graphG = (V,
−→
E ) and v ∈ V ,177

define:178
� the number of elements of

−→
E in which v is the first179

component is called the out-degree of v180

OutDegree(v) = |{w ∈ V | (v, w) ∈ −→
E }|.

Fig. 3. Graph with downward edges. We add the virtual vertices 0 and 1 to
the graph which creates a semi-lattice. Note that the li’s for i = 1, . . . ,m are
not necessarily equal.

� the number of elements of
−→
E in which v is the second 181

component is called the in-degree of v 182

InDegree(v) = |{w ∈ V | (w, v) ∈ −→
E }|.

Remark 1. Some of the vertices of the directed graph in 183

Definition III.1 must have in-degree 0, and some others must 184

have out-degree 0. 185

By Remark 1, the graph can be represented by making sure 186

that all of its edges point downward. The graph’s vertices are 187

displayed in various layers. All of the vertices in the first layer 188

have in-degree zero. The second layer is made up of all the 189

vertices with only edges in the graph G connecting them to the 190

previous layer’s vertices. And the following layer is made up of 191

all the vertices with only edges in the graphG connecting them to 192

the vertices of layers prior. As seen in Fig. 3, it is obvious that the 193

last layer consists of all the vertices with an out-degree of zero. 194

It is possible to think of the built-in graph with downward edges 195

as a union of its connected components. In addition, add virtual 196

vertices 0 and 1 to each of the connected graph components, 197

with vertex 1 at the top of the first layer and edges drawn to 198

all of the first layer’s vertices, and the vertex 0 is at the bottom 199

of the last layer and edges are drawn to it from all vertices of 200

the last layer. This procedure turns the graph into a union of 201

semi-lattices, SL(G). We slightly abuse the notation by using 202

the symbols 0 and 1 to represent all the virtual vertices of all 203

connected components of the graph. For more details, see [32]. 204

Before discussing the procedure, we will modify the opti- 205

mization problem so that its solution provides a solution to the 206

static algorithm allocation. We follow a similar notation to the 207

problem formulation in [31]: 208
� tsti is the time at which algorithm i was started (start time); 209
� tresi is the time when the execution of algorithm i finished 210

(response time); 211
� Vn is the set of nodes in the cloud robotics architecture, 212

including all nodes in the edge, nodes in the cloud (and 213

nodes in the fog, but this is not assumed in [31]); 214
� xik indicates whether node k inVn is assigned an algorithm 215

i; 216
� the set of nodes E, F , and C subsets of Vn are used to 217

indicate the set of edge nodes, fog nodes, or cloud nodes, 218

respectively; 219
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� Vt is the set of all algorithms in the graph of dependency220

of algorithms with additional virtual nodes;221
� Zik is an indicator that an algorithm i can be assigned to222

a node k in Vn that can hold prior information about the223

places where algorithms need to be executed;224
� predi is the set of algorithms that must be executed before225

algorithm i is executed (the set of all algorithms in the226

graph for which algorithm i is their successor);227
� (k, l) ∈ Ep indicates that nodes k and l are neighbors in228

the cloud robotics architecture, and Ep is the set of all229

neighbors;230
� Sji is the size of the intermediate data obtained from algo-231

rithm j that needs to be transmitted to the node executing232

algorithm i to be used as input for i;233
� yij equals 1 if the task i ∈ Vt is to be executed after j ∈ Vt,234

and 0 otherwise;235
� Rik is the runtime of algorithm i on node k.236

The problem is to minimize the time between the initial237

request of the edge node e and the return of the last algorithm238

indexed by m (the algorithm 0) to the edge node e (minimizing239

tresm (= tresm (e))), under the condition that each algorithm can240

only be executed by exactly one of the nodes, i.e.,241

∑
k∈Vn

xik = 1 , ∀i ∈ Vt.

The prior knowledge of where to run the algorithms can be242

specified as follows:243

xik ≤ Zik, ∀i ∈ Vt, k ∈ Vn∑
k∈Vn

Zik ≤ |E|+ |F |+ |C|, ∀i ∈ Vt∑
k∈Vn

Zik ≥ 1, ∀i ∈ Vt

Zik ∈ {0, 1}, ∀i ∈ Vt, k ∈ Vn

where Zik, takes values 0 and 1, is an indicator of whether an244

algorithm i can be assigned to a set of nodes to which k belongs245

and cannot be assigned to the remaining nodes. Note that we246

assume that tstm(e) = 0 for all e ∈ E, which means that the whole247

process of time minimization starts at time 0.248

The time at which the algorithm i is started is the sum of the249

following times:250
� the time to execute the set of all immediate predecessors251

of algorithm i252

T1,i = max
j∈predi

⎧⎨
⎩tresj

⎛
⎝∑

p∈Vn

xjpp

⎞
⎠
⎫⎬
⎭ ;

� the time taken to send intermediate data, used as input by253

algorithm i from the nodes generating these inputs to the254

node executing i255

T k
2,i =

∑
j∈predi

TransmissionTimek(Sji),

where TransmissionTimek(Sji) is the average time to256

transmitSji data to nodek. From now on, we denote bySi,j257

all the additional information that needs to be transmitted to258

i in addition to the information obtained from the previous259

step to be used as input.260

Consequently 261

tsti = T1,i +
∑
k∈Vn

xikT
k
2,i.

The time of termination of the algorithm i is the sum of the 262

following times: 263
� the time at which algorithm i is started, tsti ; 264
� the runtime of algorithm i on node k; 265
� the average time to transmit the output data of algorithm 266

i to the requested node p (the size of the output data of 267

algorithm i is denoted by OutputSizei). 268

Consequently 269

tresi (p) = tsti +
∑
k∈Vn

xikRik +K,

where K is the average transmission time required by node p to 270

obtain the required inputs of size OutputSizei 271

K = TransmissionTimep(OutputSizei).

The preceding considerations imply the following formulation 272

for minimizing time 273

min : tresm =

√√√√ |E|∑
e=1

(tresm (e))2

s.t. :
∑
k∈Vn

xik = 1

xik ≤ Zik, ∀i ∈ Vt, k ∈ Vn

1 ≤
∑
k∈Vn

Zik ≤ |E|+ |C|+ |F |, ∀i ∈ Vt

tsti = T1,i +
∑
k∈Vn

xikT
k
2,i, ∀i ∈ Vt

T1,i = max
j∈predi

⎧⎨
⎩tresj

⎛
⎝∑

p∈Vn

xjpp

⎞
⎠
⎫⎬
⎭ , ∀i ∈ Vt

T k
2,i =

∑
j∈predi

TransmissionTimek(Sji),

∀i ∈ Vt, k ∈ Vn

tsti ≥ max
j∈Vt

⎧⎨
⎩

∑
k∈Vn

xikxjkyij ×
⎛
⎝tresj

⎛
⎝∑

p∈Vn

xjpp

⎞
⎠
⎞
⎠
⎫⎬
⎭,

∀i ∈ Vt

tresi (p) = tsti +
∑
k∈Vn

xikRik

+ TransmissionTimep(OutputSizei), ∀i ∈ Vt (1)

xik, yij , Zik ∈ {0, 1},
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where tresj (e) is the response time of algorithm j when274

initiated by the edge node e. In this formulation, when a request275

for an algorithm A is sent by a node, the necessary algorithms276

B1, . . . , Bq for executing algorithm A are requested from the277

nodes to which they are assigned, and then278
� if the necessary conditions for the execution of algorithm279

Bi are satisfied, then algorithm Bi is executed, and its280

results are returned to the node that requested it;281
� if the necessary conditions for the execution of algorithm282

Bi are not satisfied, then an iteration is performed in a283

similar way (requests for necessary algorithms are sent284

from the node to which algorithm Bi is assigned and on285

which it cannot be executed to the nodes to which the286

necessary algorithms for the execution of Bi are assigned).287

Remark 2. In the optimization problem 1, an edge node288

requests the execution of an algorithm, and after the algorithm’s289

corresponding node completes the request, the output is sent290

back to the original edge node. We suppose that every edge291

node can issue requests for any algorithm to be executed. When292

the initial edge node is altered, the response time of the final293

algorithm varies as a result of the architecture and neighborhood294

relationships between the nodes. The overall amount of time it295

takes for each edge node to obtain the final algorithm m result296

must be kept as low as possible. We must take into account the297

fact that each edge node has the ability to transmit requests for298

algorithms in order to determine how to distribute algorithms299

among nodes in a way that maximizes system performance as300

a whole. The virtual algorithm 0 is the final algorithm, thus in301

order to reduce the time, we suppose that each edge node sends302

a request for it. Depending on how the algorithms are distributed303

among the edge nodes, the final algorithm’s response time varies304

in R
+. In E-dimensional space, RE , the optimal allocation can305

be determined by minimizing the difference between the final306

algorithm’s response times and the allocation of the algorithms307

for all the edge nodes, i.e., by minimizing308
√√√√ |E|∑

r=1

(tresm (e))2.

One of the most appropriate methods to find an optimal solu-309

tion to the problem 1 is to use the branch-and-bound method [35],310

which is described in [31].311

IV. PROCEDURES IDENTIFYING ALGORITHMS FOR312

DUPLICATION313

We propose two procedures for identifying which algorithms314

should be duplicated. The first is based on combinatorial graph315

theory, i.e., algorithms of the same class2 are duplicated and316

assigned to other nodes based on some constraints that ensure317

that duplication improves performance. The second proposal is318

a variation of the first procedure, where we solve optimization319

problems where the main objective is the overall time in which320

an edge node receives all the outputs of all the algorithms, and321

this is done for each edge node.322

2Algorithms assigned to the same node in terms of the optimal solution
without duplication.

A. Combinatorial Graph Theory 323

Assume that the set of all algorithms A = {A1, . . . , An}, the 324

graph of all algorithms,G, and its respective semi-latticeSL(G) 325

are known, and the robotic network cloud system is of a given 326

architecture with edge nodes {E1, . . . , Em}. For more details, 327

see [32]. 328

By the result 1 proposed for static algorithm allocation, we 329

can find a solution to the allocation problem without algorithm 330

duplication that minimizes 331

tresn =

√√√√
m∑
i=1

(tresn (Ei))2,

where tresn (Ei) is the response time3 for the node Ei. We then 332

find the set of all execution flows, ExecutionFlows(G). Note that 333

the value of tresn (Ei) is equal to the maximum overall time of the 334

elements of the set ExecutionFlows(G). We call the execution 335

flow(s) with the maximum overall time for edge node Ei, the 336

critical path(s) for edge node Ei. Also, note that duplicating 337

a single algorithm can only improve tresn (Ei) if and only if it 338

improves the overall time of the critical path ofEi or reduces the 339

number of critical paths in case there are more than one critical 340

paths. Finally, note that we can improve tresn if and only if we 341

improve at least one of tresn (Ei), i = 1, . . . ,m. 342

Suppose that, for a given SL(G) and the architecture of the 343

robotic network cloud system, we have obtained the optimal 344

solution for the algorithm allocation. 345

An elementary step, denoted by ElementaryEi
(Aj), is to 346

duplicate the algorithm Aj in a critical path of the edge node 347

Ei so that it improves the value of tresn (Ei). Moreover, we 348

define the stop step of the edge node Ei as follows: for any 349

algorithm Aj in the critical path of Ei, the elementary step 350

ElementaryEi
(Aj) does not exist, i.e., the edge node Ei is in the 351

stop step if the execution time of the task initiated by Ei cannot 352

be improved. Note that if we are in the stop step of the edge 353

node Ei, duplicating any algorithm that improves tresn (Ek) for 354

Ek �= Ri does not change tresn (Ei), i.e., tresn (Ei) is preserved by 355

any duplication of any algorithm. In this case, tresn (Ei) reaches 356

its minimum possible value. 357

The goal is to execute elementary steps until all edge nodes 358

reach their stop step. 359

Note that algorithms in a critical path are serial, and the 360

ElementaryEi
(Aj) can be made if and only if the minimum 361

value of the sum of the following values: 362
� the communication time from the nodes where the imme- 363

diate ancestors of algorithm Aj , are assigned to the new 364

node to which we want to assign the copy of Aj ; 365
� the communication time from the new node to which we 366

want to assign the copy of Aj , to the nodes executing the 367

immediate successor algorithms of Aj ; 368
� the average execution time of algorithm Aj , on the new 369

node we want to assign a copy of Aj ; 370

3The response time of the node Ei means that we start at time 0 and find
the time in which the execution of the algorithm 0 completes is equal to
the maximum time required by the edge node Ei to obtain all outputs of all
algorithms.
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Fig. 4. Overview of an elementary step.

is less than the minimum value of the sum of the following371

values:372
� the communication time from the nodes where the imme-373

diate ancestors of algorithm Aj are assigned, to the node374

executing algorithm Aj ;375
� the communication time from the new node of algorithm376

Aj , to the nodes that are its immediate successors;377
� the average execution time of algorithm Aj , on the node378

on which it is assigned.379

The elementary step for the edge node Ei and algorithm Aj ,380

ElementaryEi
(Aj), is shown in Fig. 4: Assume that a critical381

path of edge node Ei is given as a sequence of algorithms382

{. . . , Aj1 , Aj , Aj2 , . . .}.
The elementary step is duplicating algorithm Aj to a new node383

such that the following holds384

Ct1 + Ct2 + Ext > min{NCt1 +NCt2 +NExt},
where385

Ct1 = CommunicationTime(Current(Aj1), Current(Aj)),

Ct2 = CommunicationTime(Current(Aj), Current(Aj2)),

NCt1=CommunicationTime(Current(Aj1),NewNode(Aj)),

NCt2=CommunicationTime(NewNode(Aj),Current(Aj2)),

Ext = ExecutionTimeAj
(Current(Aj)),

and386

NExt = ExecutionTimeAj
(NewNode(Aj)).

The level of improvement, which represents the saved overall387

time with this node addition, can be calculated as follows:388

LevelofImproment(Ei, Aj , NewNode(Aj))

= Ct1 + Ct2 + Ext−min{NCt1 +NCt2 +NExt}. (2)

We will find the algorithm and the location of its duplication such389

that it maximizes the term (2) within all algorithms duplicated390

on a new node. Thus, duplicating this algorithm yields the most391

significant improvement in the value of tresn (Ei) compared to392

other algorithms and their duplications.393

Let Ei ∈ E be the edge node requesting the outputs of all394

algorithms, Aj ∈ Vt be an algorithm on a critical path, and395

Current(Aj) be the node currently assigned to algorithm Aj . 396

The main objective becomes 397

max : LevelofImproment(Ei, Aj , X)
s.t. : X ∈ Vn

Vn is the set of nodes in the cloud robotics architecture.
(3)

In the optimization (3), we will find the values of 398

LevelofImproment for all nodes. 399
� It will be negative when the overall time of the critical path 400

is increased. 401
� It will be positive if the overall time of the critical path is 402

decreased. 403
� It will be 0 if the overall time of the critical path does not 404

change. 405

The latter is the case when the algorithm is assigned to the 406

same node to which it is initially assigned to. Thus, the stop step 407

is when the maximum value of LevelofImproment within all 408

X is equal to 0. So duplicating algorithms to other nodes will not 409

improve the value of LevelofImproment and the maximum 410

value of LevelofImproment for all nodes will be 0. 411

Note that algorithms in a critical path assigned to the same 412

node should be duplicated simultaneously on the same node due 413

to communication time. In other words, algorithms assigned 414

to the same node will be considered as a single algorithm, 415

and an elementary step will be applied to all of them simul- 416

taneously. For example, suppose that the sequence of algo- 417

rithms {A1, A2, A3, A4, A5, A6} is a critical path and algo- 418

rithms {A1, A3, A4, A6} are assigned to the same node N1 and 419

algorithms {A2, A5} are assigned to a different node N2. Then, 420

duplicating A1 to node N3 leads to duplicating {A3, A4, A6} to 421

the same node N3. 422

The procedure for improving tresn by duplicating algorithms is 423

as follows: First, the solution of the optimal algorithm allocation 424

problem is found without duplication. Then, for an edge node 425

Ei in {E1, . . . , Rm}, find the set of all critical paths 426

Critical(Ei) = {A1(Ei), . . . ,Ak(Ei)},

where Al(Ei) is the sequence of algorithms on the l-th critical 427

path of the edge node Ei. From the first to the last non-trivial 428

algorithm Aj in Al(Ei), for l = 1, . . . , k, apply the elementary 429

step ElementaryEi
(Aj) if possible and duplicate the algorithm 430

Aj on a new node so that the value of 431

LevelofImproment(Ei, Aj , NewNode(Aj))

is maximal. Then update the set of all critical paths for all edge 432

nodes and restart the process until the edge node Ei reaches 433

the stop step. Then move to the next edge Ei+1 and perform 434

the same process until all edge nodes reach their stop steps. The 435

pseudocode of the whole procedure is presented in Procedure 1. 436

This process is finite because applying an elementary process 437

reduces the number of critical paths or the overall time to execute 438

the critical path. Since the number of critical paths is finite (in 439

the interval [1,m]), the overall time to execute the critical path 440
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Procedure 1. Optimal Algorithm Allocation With Duplica-
tion Using Elementary Steps.

Input: Graph of algorithms, Architecture, and M is the
optimal algorithm allocation minimizing time, [30]

Output: Optimal algorithm allocation with duplication.
1: for Ei ∈ E do
2: CriticalPaths is the set of all critical paths of the

edge node Ei.
3: do
4: Any_Duplicated = FALSE � A variable used to

identify whether an algorithm is duplicated or not.
5: for CriticalPatht ∈ CriticalPaths do
6: for Aj ∈ CriticalPathI do
7: Aj = Class(Aj , CriticalPatht) � Algorithms

in CriticalPathI assigned to the same node as
Aj is assigned to.

8: W = [].
9: for X ∈ Vn do

10: W = W ⊕ LevelofImproment(Ei,Aj , X)
� Concatenates
LevelofImproment(Ei,Aj , X) one by one
preserving its location.

11: k = arg max(W )
12: if Wk > 0 then
13: Apply ElementaryEi

(Aj) � Duplicate all
the algorithms in Aj to the node k ∈ Vn.

14: M = M ∪ {(Aj , k)}
15: Any_Duplicated = TRUE � The value

changes to TRUE because an algorithm is
duplicated.

16: Update CriticalPaths of the edge node Ei.
17: while Any_Duplicated == TRUE
18: return M � Optimal algorithm allocation with

duplication minimizing time.

is finite4, the preceding procedure can only be applied finitely441

many times.442

Maximizing the term LevelofImproment reduces the num-443

ber of duplications necessary for the algorithm Aj to improve444

the value of tresn (Ei).445

We show how the procedure works with a simple example.446

Given the graph of all algorithms, the architecture of the robotic447

network cloud system with communication instability, and the448

average execution time of each algorithm on each processing449

node, all in Fig. 5. In this figure, the task can be requested by450

E1, E2, and E3 and all the algorithms, except virtual algorithms451

0 and 1, can be requested by any nodes.452

Now we describe how the proposed procedure works. First,453

note that the optimal solution for the overall time of the system454

can be obtained by assigning all the tasks to the fog, where the455

overall times required by the edge nodes to obtain all the outputs456

4The overall time of the critical path is in the interval (0, InitialT ime),
where

InitialT ime = tresn (Ei)

is the initial value of tresn (Ei) before applying the first elementary step.

Fig. 5. Graph of all algorithms, architecture of the robotic network cloud sys-
tem with communication instabilities, εi for i = 1, 2, 3, 4 are random variables
following the folded normal distribution with mean 0 and variance 1, and the
average execution time of each algorithm on each node. Ei’s are edge nodes for
i = 1, 2, 3, F is the fog, and C is the cloud.

TABLE I
THE AVERAGE RESPONSE TIME IN THE CLOUD SYSTEM’S NODES, AFTER

APPLYING THE PROPOSED DUPLICATION PROCEDURE

of all the algorithms are 15.26, 11.02, and 11.52 seconds 457

for E1, E2, and E3, respectively. This values are obtained by 458

solving static algorithm allocation without duplication, [30]. 459

Applying the proposed procedure implies that E2 and E3 are in 460

the stop steps (because duplication cannot improve the minimum 461

time). Since all algorithms are assigned to the same node, they 462

should be duplicated to the same node. If we assign a copy 463

all algorithms to E1, E2, E3 and the cloud, we get a value of 464

3.26, −3.05, −10.73, and −0.99 for LevelofImproment 465

respectively. The largest improvement occurs in the case where 466

all the algorithms are duplicated on the edge node E1, and then 467

the edge node E1 is in the stop step. 468

The results for duplication are shown in Table I. It shows that 469

all algorithms should be allocated to the edge nodeE1 and the fog 470

node F to achieve the lowest task completion time, regardless 471

of which node is to perform the task. 472

Now, according to the procedure proposed by [34], the fol- 473

lowing duplication can improve performance. 474
� duplicating Data to the nodes that A1, A2, and A3 are 475

allocated to; 476
� duplicating A3 to the nodes that A5 and A6 are allocated 477

to. 478

Since all algorithms are assigned to the fog node, no dupli- 479

cation is performed. The results of algorithm duplication using 480

the [34] procedure are shown in Table II. 481
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TABLE II
THE AVERAGE RESPONSE TIME IN THE NODES OF THE CLOUD SYSTEM AFTER

APPLYING THE [34] DUPLICATION PROCEDURE

TABLE III
THE AVERAGE EXECUTION TIME OF EACH ALGORITHM ON EACH

PROCESSING NODE

The results obtained in Tables I and II show that duplication482

procedures reduce the average response time of edge nodes.483

The edge node E1 can respond at least four seconds faster484

when duplication is applied than in the case without considering485

duplication or using the procedure proposed by [34].486

Currently, we know the solution of optimal allocation without487

duplication from [30]. Now, if the robot Ei starts to perform the488

task (the algorithms in the graph of all algorithms should be489

executed), then a critical path for the node Ei can be evaluated.490

Now we consider the algorithms on the critical path that belong491

to the same class (algorithms assigned to the same node), and492

duplicate them to other nodes to find out whether it reduces493

the overall time of the critical path or not. If there is some494

reduction, the duplication is performed. In this example, the495

optimal algorithm allocation without duplication is to allocate496

all algorithms to the fog F . Let us now consider the critical497

paths A1A4A5A7 and A2A4A5A7. Note that by construction,498

the response time is equal to the time to complete the critical499

paths, [30]. Also note that all algorithms are currently assigned500

to the fog node F . For E2 and E3, duplicating algorithms does501

not reduce the overall time. But for E1, when all algorithms502

are duplicated on E1, the time to complete the critical paths is503

reduced from 15.26 to 12 seconds. The critical paths remain504

critical, but their overall time decreases.505

In this example, we compared the average response time of506

all the algorithms to all the edge nodes for the three cases where:507

(1) algorithm allocation is without duplication, (2) the procedure508

in [34], and (3) using our procedure. The final result shows that509

applying the duplication procedure using [34] does not change510

the performance and the result is the same as considering the511

algorithm allocation without duplication.512

The following example is intended to show how the proce-513

dure works with a more complex example. The graph of all514

algorithms, and the architecture of the robotic network cloud515

system are the same as in Fig. 5. The average execution time of516

each algorithm on each processing node is shown in Table III.517

Note that the optimal solution for the overall time of the518

system is to assign algorithms A1 and A3 to the edge node519

E1, algorithms A2 and A7 to the cloud node C, and all the520

other algorithms to the fog node F . Using the static algorithm521

TABLE IV
THE AVERAGE RESPONSE TIME IN THE CLOUD SYSTEM’S NODES, AFTER

APPLYING THE PROPOSED DUPLICATION PROCEDURE

allocation without duplication, [30], the overall times required 522

for the edge nodes to obtain all the outputs of all the algorithms 523

are obtained as 36.94, 32.18, and 33.80 seconds for E1, E2, 524

and E3, respectively. 525

The application of the proposed procedure implies thatE1 and 526

E2 are in the stop steps (because duplication cannot improve 527

the minimum time). But for E3, if we assign E2, E3, the fog 528

and the cloud a copy of the algorithms A1 and A3, the values 529

for LevelofImproment will be respectively −31.22, 0.14, 530

−13.40, and−11.71. The greatest improvement occurs when 531

algorithms A1 and A3 are duplicated on the edge node E3 and 532

then the edge node E3 is in the stop step. 533

The results for duplication are shown in Table IV. It shows 534

that A1 and A3 should be allocated to the edge nodes E1 and 535

E3, A2 and A7 should be allocated to the cloud node, and all 536

the other algorithms should be allocated to the fog node F to 537

achieve the lowest task completion time, regardless of which 538

node is to perform the task. 539

B. Mstep Procedure 540

We can modify the previous procedure to use smaller steps. 541

Instead of reducing critical path time, this modification is done 542

by duplicating a single procedure reducing the overall time for 543

each edge node. Note that if instead of 544

tresn =

√√√√
m∑
i=1

(tresn (Ei))2

in the optimization problem (1), we minimize tresn (E1) with the 545

same constraints in the optimization problem (1), we find the 546

optimal algorithm allocation solution that minimizes the overall 547

time of the critical path of the edge node E1. In this case, an 548

elementary step applied to any algorithm will not reduce the 549

overall time of any critical path of the edge node E1, because 550

the existence of an elementary step contradicts the fact that the 551

algorithm allocation is minimal. Because otherwise, instead of 552

the originally assigned node, we could choose the new node to 553

which an algorithm duplication is assigned with the elementary 554

step. This means that the edge nodeE1 is in the stop step. For the 555

edge nodesEi, i = 2, . . . ,m, instead of applying the elementary 556

steps, we could now find the optimal algorithm allocation for 557

each and every one of them independently. In this way, we 558

have the optimal algorithm allocation independently for all the 559

edge nodes. The optimal algorithm allocation is the union of the 560

solutions of all the edge nodes. 561

In [30] it is shown that the solution of the static allocation 562

without duplication can be obtained in polynomial time. Since 563
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Procedure 2. Optimal Algorithm Allocation Mstep Proce-
dure

1: Graph of algorithms, G and Architecture
Archi.(E,F,C)

2: M = ∅
3: for Ei ∈ E do
4: M = M ∪ Solve(G; Archi.(E,F,C) | Objective =

min tresn (E1)) � Optimal algorithm allocation
minimizing time, [30], by substituting the main
objective with tresn (E1).

5:
6: return M � Optimal algorithm allocation with

duplication minimizing time.

the Mstep procedure performs the static allocation without du-564

plication for each edge node,5 it can also be found in polynomial565

time.566

The pseudocode of the whole procedure is presented in Pro-567

cedure 2.568

V. EXPERIMENTS569

The experiments are performed on a HP Laptop 15-dw2xxx570

with Intel Core i5 10th generation with processor Intel(R)571

Core(TM) i5-1035G1 CPU @ 1.19 GHz, RAM 16.0 GB, 64-bit572

operating system, and we used RStudio Version 1.4.1103 Â©573

2009-2021, PBC and the R version 4.0.3 (2020-10-10) copyright574

Â© 2020.575

Forn robots,n = 1, . . . , 20, the architecture hasn+ 2 nodes,576

an edge (communication) from the cloud to the fog node, and577

from the fog to at least one of then robot nodes. To generate a ran-578

dom graph, we used Erdos-Renyi random graph generators, [36].579

Since the architecture must correspond to a connected graph, we580

need at least n− 1 randomly placed edges between nodes. After581

each placement, we need to check whether the generated graph582

is connected or not (the number of edges of the architecture583

is randomly chosen from the set
{
n− 1, . . . , n(n−1)

2

}
), see584

Fig. 7. Once the generated graph is connected, we generate585

random delays from the folded normal distribution on the edges586

with parameters (μ = 0, σ = 1). For the graph of algorithms, we587

generate a random directed acyclic graph by randomly choosing588

the number of nodesN from {5, . . . , 20}with the constraint that589

the expected number of edges connected to the nodes is equal590

to N
3 , see Fig. 6. The average execution time of each algorithm591

by all nodes are randomly chosen from the interval [0,5].592

For the generated graph of algorithms and architecture, we593

solve the optimization problem (1) which gives us the optimal594

algorithm allocation without duplication (WoD), then apply the595

result of [34] which gives us the algorithm allocation with du-596

plication, and finally apply our proposed Mstep procedure. The597

solutions of these procedures provide the values of the average598

5The overall execution time of the Mstep procedure is equal to the average
execution time of the static allocation without duplication multiplied by the
number of edge nodes.

Fig. 6. Example of a randomly generated task using 10 algorithms.

Fig. 7. Example of a randomly generated architecture with 5 robots. The values
on the edge represent the average communication time between different nodes.

overall times required to transmit all outputs of all algorithms to 599

all robots, and then we compute the distance to the origin of all 600

of these values. For the randomly generated architecture, due to 601

the communication delays, we apply all procedures 10 times to 602

solve the algorithm allocation, and we take the average of the 603

results obtained by each procedure as the corresponding results 604

of this architecture. 605

Recall that two graphs are isomorphic if and only if there is 606

a bijection between vertices that preserves the connectivity of 607

the edges. For more details on graph isomorphism, see [37]. To 608
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Fig. 8. Comparing the average overall times to transmit all outputs of all
algorithms to all robots for a randomly generated graph of algorithms and
randomly generated architectures with n = 1, . . . , 20 robots. The bars are 99%
confidence interval.

show that our procedure improves performance independently609

of the architecture, we randomly choose n non-isomorphic610

architectures.611

Note that for the case n = 1, there is only one possible valid612

architecture that we need to consider. Forn = 2, there are 4 valid613

architectures, two of which are isomorphisms. We have tested614

graph isomorphisms to avoid repeating the graph. For simplicity,615

in the case where the architecture has n robots, we considered616

and generated n random non-isomorphic graphs. The results are617

shown in Fig. 8. It shows that our proposed procedure (Mstep)618

outperforms both [34] and WoD in minimizing the average619

completion time of all algorithms when the task is performed620

by any of the robots. It shows that our Mstep procedure reduces621

the response time. The values of the results are given in Table V.622

Note that once the system finds the solution to duplicate algo-623

rithms, it will use that solution to complete tasks as long as the624

problem does not change. Therefore, even a small improvement625

in task completion times will add up, which means that the626

number of completed tasks in a system using our duplication627

using Mstep procedure will be larger than the same system using628

the other procedures.629

VI. SCALABILITY ANALYSIS630

For a given architecture, like other procedures searching for631

the longest path in a graph, our procedure’s time complexity is632

in NP.633

We conducted an experiment where we randomly produced634

the graph of all algorithms and randomly built the architecture635

for a particular number of nodes to assess the scalability of636

our procedure and compare it with [34] and static allocation637

TABLE V
THE AVERAGE OVERALL TIMES FOR TRANSMITTING ALL OUTPUTS OF ALL

ALGORITHMS TO ALL ROBOTS FOR A RANDOMLY GENERATED GRAPH OF

ALGORITHMS AND RANDOMLY GENERATED ARCHITECTURES WITH

n = 1, . . . , 20 ROBOTS. sd IS THE STANDARD DEVIATION OF

VALUES OBTAINED FOR RANDOMLY GENERATED GRAPHS

Fig. 9. The average execution time (in seconds) of procedures [34], in blue, and
ours as functions of number of processing units and number of algorithms, in red.
The planes are the fits obtained by the linear regressions with the R2 = 0.9788
for [34], the R2 = 0.9725 for ours.

without duplication. For each of the ten randomly generated 638

architectures, the number of algorithms is determined, and ten 639

algorithm graphs are generated at random for each architecture. 640

In Fig. 9, we show the average amount of time it takes to solve 10 641

graphs of algorithms. The graph illustrates a linear relationship 642

between the average time and the number of algorithms to 643

allocate as well as a linear relationship between the average 644

time and the number of nodes. All axes are in logarithmic scale. 645

Hence the time complexity of our procedure is polynomial. 646
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VII. CONCLUSION647

Duplication of algorithms can improve the performance of648

robotic network cloud systems. We proposed two procedures649

for static algorithm allocation for robotic network cloud sys-650

tems that determine which algorithms should be duplicated651

and where they should be allocated to. The advantages of our652

procedures over the procedure in [34] are that they only consider653

communication times for duplication, not nodes with different654

execution times, and that their procedure includes necessary (but655

not sufficient) conditions for task duplicability. However, since656

the conditions in [34] are not sufficient, there may be some al-657

gorithms whose duplication can improve the performance of the658

system which are not used in that work, but our procedures work659

for any architecture and provide the nodes to which duplicated660

algorithms should be assigned to.661

Static allocation with duplication (Mstep) must be performed662

only once, while for all other procedures, static allocation with-663

out duplication must be performed at least once. In our Mstep664

procedure, static allocation without duplication needs to be665

solved multiple times (depending on the number of robots),666

which may cause delays in the start time of the actual task667

performance by the robots. However, since our Mstep procedure668

reduces the response time, as shown by the experimental results669

in Fig. 8, the system completes more tasks in the long run than670

using other procedures.671

We conducted experiments with random architectures and672

algorithms and compared our results with those proposed in [34]673

and confirmed the improvements in our proposal.674
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