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Abstract

We investigate the performance of MLPs with four risk function-
als: the classical mean square error (MSE), the cross-entropy (CE), a
generalized exponential risk (EXP), and the Shannon entropy of the
classifier’s output error (HS). The performance is compared with an
SVM with RBF kernel in terms of average balanced and unbalanced
error rates, and their generalization, on practical classification tasks.
For this purpose we carried out experiments on 35 public real-world
datasets.

A battery of statistical tests applied to the experimental results
showed no significant difference among the classifiers in terms of unbal-
anced error rates. However, in terms of balanced error rates SVM-RBF
performed significantly worse than MLP-CE and MLP-EXP. Regard-
ing generalization, SVM-RBF and MLP-EXP scored as the classifica-
tion methods with significantly better generalization, both in terms of
balanced and unbalanced error rates.

1 Introduction

Support Vector Machines were proposed by Vapnik (see namely the 1999 sem-
inal monograph [20]) as a classifier type endowed with optimal generalization
ability, given the constraint on the norm of the weight vector and consequent
constraint on the Vapnik-Chervonenkis dimension. In a 2004 work, Collobert
and Bengio [5] elucidated the links between SVMs and MLPs. After showing
that under simple conditions a perceptron is equivalent to an SVM, they have
also shown that the early stopping rule used in stochastic gradient descent
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training of MLPs is a regularization method that constraints the norm of the
weight vector, and therefore improves its generalization ability.

In the present work we present experimental evidence on the compared
classification performance of SVMs and MLPs, in real world datasets. We
use four different types of MLPs characterized by using different empirical
risks

R̂L(X) =
∑
t∈T

P (t)
∑
x∈X

L(t, y(x)) , (1)

where X denotes the input set, t and y(x) represent the desired output and
the classifier output, respectively, P (t) are the priors, and L(·) is a loss
function (also known as error function). For instance, the square error loss
L(t, y(x)) = (t(x)−y(x))2 is a popular choice in machine learning algorithms;
for this choice of loss function, R̂L(X) = R̂MSE(X) = is the well-known Mean
Square Error (MSE) risk.

Traditionally, the role played by different risk functionals in classifier per-
formance has been somewhat overlooked. There has been a persistent belief
that the choice of loss function is more a computational issue than an in-
fluencing factor in classifier performance [4, 20]. This way of thinking has
been shown by Rosasco and co-workers [14] to be incorrect for the loss func-
tions used by support vector machines. These authors have namely shown
that the choice of loss function influences the convergence rate of the empir-
ical risk towards the true (theoretical) risk. In what concerns classifiers, our
main concern is their probability of error, not the minimum risk. To this
respect one must note that a minimum of the risk does not necessarily imply
a minimum of the probability of error [10, 12]. The work of Silva et al., [19]
also presents an example clearly showing that different risk functionals may
behave quite differently in what concerns the attainment of the minimum
probability of error allowed by the classifier architecture.

The paper is organized as follows: section 2 presents the SVM and risk
functionals used in our experiments with MLPs; section 3 presents the datasets;
section 4 describes the experimental settings, performance measures, and
statistical methods used to draw inferences from the experiments; section 5
presents the results which are finally discussed in the concluding section 6.
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2 Classifiers

2.1 SVM

Since its introduction, SVMs have been increasingly used as the standard
classifier for classification problems given their asymptotical convergence
properties.

Among the SVMs with general purpose kernels (such as linear kernel,
polynomial kernel, etc.), the SVM with an RBF (Radial Basis Function)
kernel is widely used in many different applications due to its excelent per-
formance and to the fact that it has only two parameters to be adjusted, thus
reducing the time to develop a usable classifier.

In this paper we used the SVM-RBF classifier, with inputs normalized in
the [−1, 1] interval and the following kernel

K(xi, xj) = exp(−γ||xi − xj||2), γ > 0

where xi and xj are data points and γ is a parameter inversely proportional
to the kernel bandwidth. Hence, the two free parameters to be set are C > 0
that corresponds to the penalty error parameter and γ.

2.2 Risk Functionals

Four different risk functionals were used by the MLPs in the experiments.
Besides the classic Mean Square Error (MSE) and Cross-Entropy (CE) risks,
we used two other ones, recently developed by the authors. One of the risks
is the information-theoretic Shannon’s entropy of the error (HS), which uses
a Parzen window estimate of the error probability density function (PDF).
Details on this procedure can be found in [19]. HS was studied both theoret-
ically and experimentally by Silva et al. [17, 19]. The second unconventional
risk is the generalized exponential (EXP) risk. This is in fact a sort of meta-
risk capable of emulating a whole series of risk functionals (MSE included).
It was described and studied in Silva et al. [18]. The following list presents
the formulas of the empirical risks (R̂L), which are directly plugged in the
gradient descent formulas of MLP training:

1. Mean square error (MSE):

R̂MSE(X) =
∑
t∈T

P (t)
∑
x∈Xt

(t− y(x))2
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2. Cross-entropy (CE):

R̂CE(X) =
∑
t∈T

P (t)
∑
x∈Xt

(t ln y(x) + (1− t) ln(1− y(x)))

3. Generalized exponential (EXP):

R̂CE(X) =
∑
t∈T

P (t)
∑
x∈Xt

(τet−y(x))
2)/τ

4. Shannon’s entropy of the error (HS):

R̂HS(x) = − 1

n

n∑
i=1

ln
n∑
j=1

Kh(xi − xj) . (2)

3 Datasets

The SVM and MLP classification algorithms were applied to 35 public real-
world datasets presented in Table 1, which are quite diverse in terms of
number of instances, features, and classes. They are from the well-known
UCI repository [1], except the following ones: Cloud5f which is the same as
the Cloud dataset from the statlib archive, after removing a single nominal
feature; Olive is from [8]; Pb12 is from [11]; Telugu is from [13]. The LRS100f
dataset is the same as the Low Resolution Spectrometer dataset from [1]
after removal of its single nominal feature (from the original 101 features).
We removed classes omL, imL and imS from the E-coli dataset because of
their unreasonably low number of instances (respectively, 5, 2, 2).

Previous works using the Breast dataset (see, e.g., the work cited in [1])
have shown that its fad, mas, and gla classes have a large overlap and cannot
be discriminated in any reasonable way; this led us to merge them and set
up the Breast4 dataset, specially aimed at a more reliable detection of the
relevant carcinoma (car) class. A similar reason led us to set up the E-coli4
dataset by merging classes im and imU of E-coli.
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4 Experiments

4.1 Experimental Settings

The SVM implementation used the libSVM [3] library. In order to determine
adequate SVM parameters a joint search of the best C (C > 0 is the SVM
regularization parameter) and γ (the inverse bandwidth parameter of the
RBF kernel K(xi,xj) = exp(−γ‖xi − xj‖2)) was performed in a grid with
log2C in {−2,−1, 0, 1, 2} and log2 γ in {−10,−9, . . . ,−1, 0}. This search
was performed with stratified 2-fold CV with one repetition.

All MLPs had the same architecture, namely with one-hidden layer and,
for each dataset, a fixed number of hidden nodes. The MLPs were all trained
with the well-known back-propagation algorithmic procedure (based on gra-
dient descent), the only available training procedure for the HS and EXP
risk functionals. The four MLP algorithms, each plugging into the back-
propagation procedure the gradient formulas of the risk functionals, were
implemented in MATLAB. In order to determine an adequate number of
hidden neurons, nh, to be used for each dataset, several preliminary exper-
iments were performed with the MSE risk. For this purpose, we repeated
10 times (for each dataset) an error rate evaluation using stratified ten-fold
cross-validation (CV10), or two-fold cross-validation (CV2) for datasets with
less than 50 instances per class. We also took into account the well-known
rule of thumb nh = w/P̂e (based on a formula given in [2]), where w is the
number of weights and P̂e is the expected error rate. Once the MLP archi-
tecture was defined we proceeded to the selection of the number of epochs of
MLP training (early stopping rule) as well as the choice of specific algorithm
parameters, namely the value of the bandwidth h in the Parzen window es-
timation of the error PDF needed for HS, and the τ parameter of the EXP
risk. This parameter selection task was based on series of 10 experiments for
each algorithm and dataset.

In all experiments the input data was normalized with zero mean and
unit variance.

4.2 Performance Measures

For each dataset, 20 repetitions of the cross-validation procedure (CV10 or
CV2 for datasets with less than 50 instances per class) were carried out.
Each of the i = 1, . . . , 20 repetitions provided average training (design) set
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and test set classification matrices (also known as confusion matrices), from
which the respective error rates were computed. Since the error rates are
estimates of probability of error they are denoted, respectively, P̂ed(i) and
P̂et(i).

For each classification matrix the balanced error rates (BER), defined
as P̂b =

∑c
k=1 P̂e(k), where the P̂e(k) represent error rates for each of the c

classes, were also computed. BER is considered to be more appropriate as a
performance index for unbalanced datasets, since it assumes equal priors. As
for the error rates, training (design) set and test set estimates were computed
for the BER quantities: P̂bd(i) and P̂bt(i).

From the 20, P̂ed(i), P̂et(i), P̂bd(i) and P̂bt(i), the following performance
measures were computed:

1. Sample means, denoted as P̄ed, P̄et, P̄bd and P̄bt, using the bar as sam-

ple mean operator. (In rigor, P̄ed is
¯̂
P ed, and likewise for the other

quantities; we use P̄ed for notational simplicity reasons.)

2. Sample standard deviations, denoted as sPed, sPet, sPbd, and sPbt.

3. The pooled means: P̄e = (P̄ed + P̄et)/2, P̄b = (P̄bd + P̄bt)/2.

4. The pooled standard deviations: sPe = (sP 2
ed/2 + sP 2

et/2)1/2, sPb =
(sP 2

bd/2 + sP 2
bt/2)1/2.

5. The generalization measures: De = P̄et − P̄ed, Db = P̄bt − P̄bd.

We will focus our attention on performance measures 3, 4, and 5.
The pooled mean P̄e is a better estimate of the true probability of error

of the classifier than either the average training set error, P̄ed, or the average
test set error, P̄et. As a matter of fact, the true probability of error, Pe, would
only be computable (in principle) if one knew the data distributions. An ar-
bitrarily close estimate of Pe would also be determinable, if one disposed of
an arbitrarily large number of data instances, n, profiting from the conver-
gence of the empirical error to the true error with n → ∞. For consistent
learning algorithms as the ones we use, it is a known fact that P̄ed converges
from below to Pe with n→∞ (the training set estimate is optimistic on av-
erage), and P̄et converges from above (the test set estimate is pessimistic on
average). Figure 1 illustrates this asymptotic property of the average error
rates for the Ozone dataset and the SVM and CE classifiers (see also [20]),
by plotting the P̄ed and P̄et values with the standard deviations obtained in
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20 CV10 experiments for a grid of n values in [50, 1800] with increments of 50
instances (learning curves). This convergence property justifies the use of P̄e
as a more reliable estimate (see e.g. [15]). Similar considerations apply to the
use of the P̄b performance measure. For a given dataset, in order to assess
the statistical significance of P̄e (P̄b) for the various classification methods
one needs the information conveyed by sPe (sPb).

The concept of classifier generalization implies empirical risk estimates of
the probability of error that are close to its true value. The use of De and
Db as generalization measures is then appropriate (see also [21]).

4.3 Statistical Methods

The performance measures obtained for the six risk functionals were sta-
tistically evaluated following recommendations in [6, 9, 22, 16], by namely
applying the following multiple comparison tests:

1. The Friedman test: The Friedman test is the non-parametric equivalent
of the two-way Anova. It is clearly adequate to multiple comparison of
scores depending on two influencing factors; in our case, these are the
classifier method and the dataset. The Friedman test is recommended
by several authors in applications such as ours (see, namely, [9]). When
the test produces a statistically significant result (we will always set
the significance level at p = 0.05), one may then proceed to apply post-
hoc tests, namely the Dunn-Sidak test for multiple comparison and
the Finner test for comparison of a chosen reference method against
any of the other ones. The Finner test for post-hoc comparisons of a
proposed method against another was analyzed in [9] and found to be
more powerful than competing tests.

2. The multiple sign test: This test is described in [9] and is specially
suited to the comparison of each method against a fixed one, in a mul-
tiple comparison context. It doesn’t need any previous application of
another test, as the post-hoc tests mentioned above do.

3. Counts of wins and losses: This is a traditional and simple multiple
comparison method. For each method, the number of datasets where it
produces the best (win) and worst (loss) results is computed. For the
P̂e, P̂b, De and Db scores, ”best” means smallest. One then proceeds
to apply an adequate statistical method to the wins and losses; in the
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following we apply the chi-square test of goodness of fit to the uniform
distribution (the null hypothesis is that there are no differences among
the methods). Note that in all statistical methods described so far the
information of the standard deviation has not been used. This means,
for ”counts of wins and losses” as it is traditionally used, that for in-
stance a method with error rate 10.00% will win over another method
with error rate 10.01% even if the pooled standard deviation is 1%, or
whatever value for that matter. This is clearly inadequate. We apply,
however, a variant of ”counts of wins and losses”that takes this informa-
tion into account: for each dataset, instead of determining the absolute
winning and losing methods, we determine the statistically significant
winning and losing methods. For this purpose, we apply the one-way
Anova test to each dataset and the post-hoc Tukey’s least significant
difference criterion if the test produces a significant p; otherwise, the
more strict Tukey’s honestly significant difference criterion is used [22].
Note that it is known that the results of the one-way Anova change very
little by moderate violations of the assumption of normal distribution
and equal variance especially for not too small sample size, as in our
case (the sample size is 20; see e.g., [7]).

We now present two examples of the ”counts of wins and losses” method.
Consider the error rate scores (percentages) with the corresponding standard
deviations inside parentheses presented in Table 2 (they correspond to the
third dataset of Table 4). In this case the absolute win is CE (smallest
error rate) and the absolute loss is MSE. The one-way Anova, however, finds
no significant difference among the methods. This clearly seems a more
reasonable conclusion, taking into account the standard deviations.

The second example is in Table 3 (second dataset of Table 4). The ab-
solute win is HS and the absolute loss is SVM. The one-way Anova finds
the methods significantly different. The post-hoc test assigns the methods
to three groups: the wining group EXP, HS, the losing group SVM, and the
intermediary group MSE, CE. Again, this seems a more reasonable decision.

Besides the above multiple comparison tests we also applied the Wilcoxon
paired rank-sum test for comparisons of pairs of algorithms.
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5 Results

5.1 Error Rates

Table 4 presents the values of P̂e (sP̂e) for all algorithms and datasets, with
the statistically significant wins and losses (as always, at p = 0.05).

The Friedman test did not detect significant differences (p = 0.11) of the
scores for the 35 datasets. The mean ranks of the five methods (following
from now on Table 4 order) are: 3.23, 3.21, 2.57, 2.64, and 3.34.

The multiple sign test did not detect any significant difference from SVM
considered as the reference algorithm, versus any of the MLPs, in the context
of multiple comparison. Table 6 shows the computations. The critical value
of the sum of minuses at p = 0.05 is 10; since all sums of minuses are above
the critical value (10), the test does not reject the null hypothesis of equality
of the methods. The same conclusion was arrived at in the paired comparison
context with the Wilcoxon test.

The counts of significant wins and losses are 7, 5, 10, 11, 8 and 9, 8, 6, 5,
8, respectively, with the chi-square p well above 0.05: p = 0.595 for the wins
and p = 0.827 for the losses. In 16 datasets the algorithms are tied.

5.2 Balanced Error Rates

Table 5 presents the values of P̂b (sP̂b) for all algorithms and datasets, with
the statistically significant wins and losses.

The Friedman test found significant differences of the P̂b scores for the
35 datasets (p = 0.01). The mean ranks of the five methods are: 3.54,
3.41, 2.45, 2.60, and 2.99. Although the post-hoc Finner test didn’t find a
significant difference of SVM compared against every other method (taking
into account the multiple comparison setting), the post-hoc Dunn-Sidak test
found the SVM score significantly worse than the CE score (see Figure 2).

The multiple sign test did not detect a significant difference of SVM com-
pared against every other method (taking into account the multiple compar-
ison setting). The counts of significant wins and losses are 7, 9, 14, 16, 12
(p = 0.332) and 14, 6, 5, 3, 5 (p = 0.026), with SVM scoring significantly
more losses. In 12 datasets the algorithms are tied.

In the paired comparison context, the Wilcoxon test found SVM perform-
ing significantly worse than CE and EXP and with no significant difference
from MSE and HS.
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5.3 Error Rate Generalization

The Friedman test found a significant difference (p = 0.003) of the De scores
for the 35 datasets. The mean ranks for the five methods are: 2.09, 3.16,
3.24, 3.09, and 3.43. The post-hoc Finner test found SVM responsible of this
difference; SVM having significantly better generalization than any of the
other algorithms. The Dunn-Sidak test only found a significant difference
with respect to MSE, CE, and HS, i.e., according to the Dunn-Sidak test
SVM doesn’t generalize significantly better than EXP. On the other hand,
the multiple sign test found that SVM doesn’t generalize significantly better
than HS.

The counts of significant wins and losses are 15, 4, 3, 2, 1 (p ≈ 0) and 3,
8, 8, 11, 13 (p = 0.156). SVM scored, therefore, significantly more wins.

In the paired comparison context, the Wilcoxon test also confirmed SVM
as generalizing significantly better than any of the other competitors.

5.4 Balanced Error Rate Generalization

The Friedman test found a significant difference (p = 0.035) of the Db scores
for the 35 datasets. The mean ranks for the five methods are: 2.29, 3.16,
3.14, 3.00, and 3.41. The post-hoc Finner test found SVM responsible of
this difference; SVM having significantly better generalization than any of
the other algorithms. The Dunn-Sidak test only found a significantly better
generalization of SVM with respect to HS. On the other hand, the multiple
sign test only found a significantly better generalization of SVM with respect
to CE.

The counts of significant wins and losses are 10, 5, 3, 3, 2 (p = 0.062) and
4, 7, 8, 10, 9 (p = 0.594). SVM scored, therefore, significantly more wins.

In the paired comparison context, the Wilcoxon test did not find SVM
generalizing significantly better than any of the other competitors.

6 Conclusions

Regarding the error performance P̂e, the Friedman test did not detect any
significant difference among the algorithms. The Friedman test, however,
”sees” the performance score table as a whole; by summing the ranks along
the columns (algorithms) it is in some way gauging an average tendency.
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Therefore, what the Friedman test results say of our experiments is that ”on
average” there is not a marked difference among the classifiers in terms of P̂e.

The multiple sign test, where an algorithm is compared against any of
the remaining ones in the context of a multiple comparison, provides a dif-
ferent picture. Whereas in the Friedman test, ranks are assigned taking all
methods together, in the multiple sign test a reference algorithm is ranked
against a single algorithm; the ”averaging” effect we mentioned above is less
pronounced. Counts of significant wins and losses also help us to make a
finer categorization of the algorithms.

In our experiments the P̂e scores didn’t show any significant differences
both in terms of the multiple sign test and in the counts of significant wins
and losses.

For the balanced error rate scores, P̂b, a different conclusion emerged.
The Friedman test found a significant difference with SVM scoring signifi-
cantly worse than CE (Dunn-Sidak test). Even though the multiple sign test
did not detect a significant difference of SVM compared against every other
method, the counts of significant wins and losses confirmed SVM performing
significantly worse than CE; moreover, the Wilcoxon test also found SVM
performing significantly worse than EXP.

In what concerns generalization, a significant difference among the al-
gorithms was found by the Friedman test for both De and Db, with SVM
scoring at least as one of the algorithms with significantly better generaliza-
tion. Counts of significant wins and losses also confirmed this finding. The
multiple sign test, however, didn’t find a significant difference of SVM with
respect to any of the other algorithms in terms of De; in terms of Db the
superiorness of SVM was only found with respect to CE.

The post-hoc Friedman tests also point to a superiorness of SVM relative
to CE and possibly to MSE (De) and HS (Db).

In the paired comparison context, the Wilcoxon test provided a remark-
ably different picture of the generalization of balanced and unbalanced error
rates: whereas it found SVM generalizing significantly better than any of
the other competitors for the unbalanced error rates, no difference was found
for the balanced error rates. Taking into account all the results provided by
the statistical tests, EXP appears therefore as a good competitor of SVM in
terms of generalization for both balanced and unbalanced error rates. For
the unbalanced error rates this conclusion can be extended to MSE.
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Table 1: The datasets.
Blood Breast Breast4 Cloud5f Cork stop.

No. cases 748 106 106 108 150
No. features 4 9 9 2 10
No. classes 2 6 4 1 3

E-coli E-coli4 Glass H. surv Inflamm.
No. cases 327 327 214 306 120
No. features 5 5 9 3 6
No. classes 5 4 6 2 4

Ionosphere Iris Jap-vowels Libras LRS100f
No. cases 351 150 196 360 531
No. features 34 4 12 90 100
No. classes 2 3 9 15 6

Lung Cancer Olive Ozone Parkinson Pb12
No. cases 31 572 1847 195 608
No. features 55 8 72 22 2
No. classes 3 9 2 2 4

P. Diabetes Robot-1 Robot-4 Robot-5 SC-chart
No. cases 768 88 88 164 600
No. features 8 90 90 90 60
No. classes 2 3 4 5 6
Sonar Spectf-Heart Telugu Thyroid Vehicle
No. cases 208 267 871 215 846
No. features 60 44 3 5 17
No. classes 2 2 6 3 4

Wdbc Wdbc-org Wine Wpbc Yeast
No. cases 569 683 178 194 1479
No. features 30 9 13 32 6
No. classes 2 2 3 2 9

Table 2: First example of the counts of wins and losses method.

SVM MSE CE EXP HS
7.79 (1.79) 8.23 (3.88) 7.29 (3.34) 7.34 (3.26) 7.71 (3.52)
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Figure 1: Learning curves for the Ozone dataset with the MLP-CE (left) and
SVM-RBF (right) classifiers. The learning curves were obtained by expo-
nential fits to the P̄ed(n) (’+’) and P̄et(n) (’.’) values. The shadowed region
represents P̄ed ± sPed); the dotted lines represent P̄et ± sPet).

Table 3: Second example of the counts of wins and losses method.

SVM MSE CE EXP HS
36.89 (2.98) 25.07 (4.73) 25.17 (4.85) 21.63 (4.81) 21.25 (4.65)
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Figure 2: Dunn-Sidak comparison intervals (column means ±2× standard
deviations) of the P̄b scores. Only the SVM and CE intervals are clearly
separated, with the SVM score significantly worse than the CE score.
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Table 4: CV estimates (% values) of P̄e (sPe) with significant wins (bold)
and losses (italic).

Blood Breast Breast4 Cloud5f Cork stop.
SVM 22.58 (0.18) 36.89 (2.98) 7.79 (1.79) 39.91 (2.56) 9.95 (0.36)
MSE 19.83 (3.06) 25.07 (4.73) 8.23 (3.88) 34.63 (10.76) 9.74 (5.49)
CE 19.88 (3.22) 25.17 (4.85) 7.29 (3.34) 32.18 (11.02) 9.55 (5.44)
EXP 19.92 (3.21) 21.63 (4.81) 7.34 (3.26) 33.20 ( 9.98) 10.01 (5.71)
HS 19.95 (3.36) 21.25 (4.65) 7.71 (3.52) 37.80 (12.64) 10.36 (5.93)

E-coli E-coli4 Glass H. surv. Inflamm.
SVM 11.00 (1.27) 4.27 (0.61) 25.54 (1.47) 24.53 (0.46) 0.73 (1.55)
MSE 11.76 (2.28) 4.82 (1.49) 27.72 (3.95) 24.74 (5.32) 0.00 (0.00)
CE 11.45 (1.77) 4.86 (1.42) 18.88 (3.83) 24.52 (4.86) 0.00 (0.00)
EXP 12.31 (3.07) 5.07 (1.23) 25.53 (3.13) 24.31 (4.92) 0.00 (0.00)
HS 11.58 (2.79) 4.69 (1.32) 21.46 (3.50) 27.63 (6.28) 0.00 (0.00)

Ionosphere Iris Jap vowels Libras LRS100f
SVM 3.66 (0.33) 2.99 (0.53) 4.67 (2.46) 10.57 (1.76) 7.60 (0.66)
MSE 6.52 (3.75) 2.30 (3.31) 6.14 (3.04) 11.63 (2.62) 6.62 (1.06)
CE 6.12 (3.58) 2.05 (3.13) 5.50 (2.35) 9.42 (2.20) 5.10 (0.97)
EXP 6.19 (3.92) 2.07 (3.22) 4.63 (2.24) 9.80 (2.61) 5.41 (1.28)
HS 6.63 (4.02) 2.06 (3.06) 4.86 (2.74) 9.62 (2.63) 5.69 (1.40)

Lung Cancer Olive Ozone Parkinson Pb12
SVM 40.24 (7.61) 2.92 (0.45) 4.94 (0.13) 4.54 (1.36) 6.91 (0.22)
MSE 24.92 (6.69) 3.57 (0.80) 5.77 (1.29) 6.69 (3.27) 6.58 (2.14)
CE 26.37 (7.95) 3.77 (0.87) 5.83 (1.17) 6.04 (3.17) 6.60 (2.17)
EXP 24.79 (7.96) 3.03 (0.88) 5.82 (1.40) 5.63 (1.91) 6.32 (2.35)
HS 27.36 (9.64) 3.65 (0.84) 5.63 (1.17) 7.61 (3.20) 7.07 (4.28)

P. Diabetes Robot-1 Robot-4 Robot-5 SC-chart
SVM 21.96 (0.19) 13.61 (2.19) 18.76 (6.61) 32.67 (2.85) 0.24 (0.10)
MSE 22.38 (3.57) 19.23 (4.40) 16.69 (6.05) 28.69 (4.90) 0.48 (0.83)
CE 22.80 (3.61) 18.21 (4.52) 16.36 (4.49) 24.48 (3.26) 0.54 (0.84)
EXP 22.42 (3.40) 18.33 (6.05) 15.31 (3.72) 25.26 (3.61) 0.51 (1.12)
HS 22.68 (3.18) 21.00 (5.74) 16.93 (4.93) 26.30 (3.84) 0.51 (1.03)

Sonar Spectf-Heart Telugu Thyroid Vehicle
SVM 4.86 (0.78) 11.54 (0.70) 14.62 (0.29) 3.35 (0.82) 14.70 (0.49)
MSE 9.29 (5.62) 16.64 (5.27) 11.05 (2.45) 2.07 (1.08) 12.77 (2.87)
CE 9.27 (5.65) 16.01 (5.00) 10.23 (2.39) 2.13 (1.31) 13.54 (2.88)
EXP 9.32 (5.70) 16.36 (5.10) 10.73 (2.58) 2.08 (1.15) 12.46 (2.90)
HS 9.31 (6.20) 14.80 (5.14) 11.79 (2.38) 2.62 (2.51) 12.98 (3.02)

Wdbc Wdbc-org Wine Wpbc Yeast
SVM 2.02 (0.13) 2.81 (0.10) 2.11 (0.83) 13.16 (0.96) 39.19 (0.63)
MSE 1.74 (1.34) 2.83 (1.30) 1.34 (1.24) 23.67 (2.45) 38.76 (2.15)
CE 1.76 (1.33) 2.76 (1.39) 1.07 (1.05) 23.71 (3.33) 39.79 (2.44)
EXP 1.81 (1.36) 2.79 (1.49) 1.32 (1.13) 23.71 (3.13) 37.77 (1.51)
HS 1.82 (1.26) 2.63 (1.30) 1.27 (1.05) 21.83 (5.19) 47.78 (5.16)
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Table 5: CV estimates (% values) of P̄b (sPb) with significant wins (bold)
and losses (italic).

Blood Breast Breast4 Cloud5f Cork stop.
SVM 46.73 (0.22) 39.48 (3.21) 10.40 (3.03) 41.54 (2.72) 9.95 (0.36)
MSE 34.82 (1.00) 26.30 (5.13) 9.97 (5.67) 34.48 (11.14) 9.74 (5.49)
CE 34.73 (4.06) 26.53 (5.19) 8.48 (4.24) 31.77 (11.56) 9.55 (5.44)
EXP 35.04 (4.18) 22.57 (5.04) 8.43 (3.95) 32.71 (10.47) 10.01 (5.71)
HS 36.14 (4.07) 22.25 (4.81) 9.11 (4.54) 37.61 (11.51) 10.36 (5.93)

E-coli E-coli4 Glass H. surv. Inflamm.
SVM 16.01 (2.32) 7.03 (2.06) 33.69 (2.99) 43.15 (0.73) 0.75 (1.59)
MSE 16.74 (4.54) 7.45 (2.71) 23.89 (4.66) 40.77 (5.89) 0.00 (0.00)
CE 15.57 (2.89) 7.35 (2.74) 20.14 (5.22) 38.06 (6.08) 0.00 (0.00)
EXP 16.46 (4.25) 7.46 (2.52) 30.22 (4.66) 38.68 (5.73) 0.00 (0.00)
HS 15.30 (4.34) 7.03 (2.52) 24.11 (4.32) 33.77 (7.04) 0.00 (0.00)

Ionosphere Iris Jap vowels Libras LRS100f
SVM 4.58 (0.43) 2.99 (0.53) 4.57 (2.38) 10.57 (1.76) 20.07 (1.72)
MSE 8.47 (4.69) 2.30 (3.31) 5.92 (2.92) 11.63 (2.62) 21.37 (2.99)
CE 7.87 (4.57) 2.05 (3.13) 5.26 (2.24) 9.42 (2.20) 13.42 (2.65)
EXP 7.59 (4.52) 2.07 (3.22) 4.47 (2.17) 9.80 (2.61) 13.27 (2.88)
HS 8.70 (5.17) 2.06 (3.06) 4.70 (2.74) 9.62 (2.63) 17.65 (3.42)

Lung Cancer Olive Ozone Parkinson Pb12
SVM 43.01 (6.81) 4.27 (0.71) 31.92 (0.76) 8.11 (2.72) 6.95 (0.23)
MSE 23.71 (7.32) 4.92 (1.19) 34.11 (5.63) 9.66 (5.69) 6.60 (2.22)
CE 25.30 (8.79) 5.07 (1.36) 36.83 (4.33) 7.75 (4.62) 6.59 (2.22)
EXP 23.65 (7.88) 4.08 (1.06) 33.32 (6.76) 6.87 (2.73) 6.30 (2.34)
HS 26.39 (9.44) 5.06 (1.37) 32.47 (4.54) 11.32 (5.69) 6.97 (4.02)

P. Diabetes Robot-1 Robot-4 Robot-5 SC-chart
SVM 28.81 (0.23) 17.96 (2.92) 23.82 (10.33) 34.58 (3.34) 0.24 (0.10)
MSE 26.67 (3.88) 20.20 (4.74) 17.42 (5.77) 31.03 (4.79) 0.48 (0.83)
CE 26.05 (4.24) 19.91 (4.83) 17.17 (6.28) 26.29 (3.55) 0.54 (0.84)
EXP 26.61 (3.97) 19.94 (5.50) 16.55 (4.93) 27.15 (4.23) 0.51 (1.12)
HS 26.39 (3.58) 22.02 (5.23) 16.66 (4.89) 28.69 (4.07) 0.51 (1.03)

Sonar Spectf-Heart Telugu Thyroid Vehicle
SVM 5.19 (0.85) 20.15 (1.42) 18.14 (0.32) 6.83 (1.67) 14.60 (0.49)
MSE 9.46 (5.72) 34.35 (8.87) 13.10 (2.90) 2.59 (1.83) 12.57 (2.58)
CE 9.41 (5.70) 29.00 (8.11) 11.65 (3.02) 2.87 (2.46) 13.41 (2.85)
EXP 9.46 (5.76) 29.65 (7.87) 12.55 (3.03) 3.46 (2.53) 12.31 (2.78)
HS 9.45 (6.29) 23.08 (8.12) 14.18 (2.90) 4.14 (5.99) 12.85 (2.78)

Wdbc Wdbc-org Wine Wpbc Yeast
SVM 2.48 (0.13) 2.75 (0.12) 1.90 (0.84) 25.63 (1.14) 51.48 (0.86)
MSE 2.07 (1.59) 2.88 (1.47) 1.20 (1.10) 49.93 (0.62) 51.30 (2.04)
CE 2.04 (1.54) 2.90 (1.58) 0.98 (0.98) 50.00 (0.00) 51.52 (1.92)
EXP 2.10 (1.60) 2.98 (1.75) 1.20 (0.99) 50.00 (0.00) 50.28 (1.93)
HS 2.16 (1.58) 2.58 (1.33) 1.16 (1.01) 29.76 (5.19) 59.68 (4.04)
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Table 6: Comparison of P̄e (% values) between SVM (control) vs. any of the
MLPs.

Dataset SVM MSE CE EXP HS
Blood 22.49 19.83 (−) 19.88 (−) 19.92 (−) 19.95 (−)
Breast 36.96 25.07 (−) 25.17 (−) 21.63 (−) 21.25 (−)
Breast4 7.62 8.23 (+) 7.29 (−) 7.34 (−) 7.71 (−)
Cloud5f 39.81 34.63 (−) 32.18 (−) 33.2 (−) 37.8 (−)
Cork stop. 9.87 9.74 (−) 9.55 (−) 10.01 (+) 10.36 (+)
E-coli 10.88 11.76 (+) 11.45 (+) 12.31 (+) 11.58 (+)
E-coli4 4.19 4.82 (+) 4.86 (+) 5.07 (+) 4.69 (+)
Glass 26.08 27.72 (+) 18.88 (−) 25.53 (−) 21.46 (−)
Hsurv 24.56 24.74 (+) 24.52 (−) 24.31 (−) 27.63 (+)
Inflamm. 0.15 0 (−) 0 (−) 0 (−) 0 (−)
Ionosph. 3.65 6.52 (+) 6.12 (+) 6.19 (+) 6.63 (+)
Iris 3.07 2.3 (−) 2.05 (−) 2.07 (−) 2.06 (−)
Jap vowels 4.43 6.14 (+) 5.5 (+) 4.63 (−) 4.86 (+)
Libras 10.02 11.63 (+) 9.42 (−) 9.8 (−) 9.62 (−)
Lrs100f 7.46 6.62 (−) 5.1 (−) 5.41 (−) 5.69 (−)
Lung cancer 37.58 24.92 (−) 26.37 (−) 24.79 (−) 27.36 (−)
Olive 2.95 3.57 (+) 3.77 (+) 3.03 (+) 3.65 (+)
Ozone 4.89 5.77 (+) 5.83 (+) 5.82 (+) 5.63 (+)
Parkinson 4.89 6.69 (+) 6.04 (+) 5.63 (+) 7.61 (+)
Pb12 6.97 6.58 (−) 6.6 (−) 6.32 (−) 7.07 (+)
P. Diabetes 22.09 22.38 (+) 22.8 (+) 22.42 (+) 22.68 (+)
Robot 1 12.56 19.23 (+) 18.21 (+) 18.33 (+) 21 (+)
Robot 4 17.72 16.69 (−) 16.36 (−) 15.31 (−) 16.93 (−)
Robot 5 32.29 28.69 (−) 24.48 (−) 25.26 (−) 26.3 (−)
SC-Chart 0.24 0.48 (+) 0.54 (+) 0.51 (+) 0.51 (+)
Sonar 5.11 9.29 (+) 9.27 (+) 9.32 (+) 9.31 (+)
Spectf-Heart 11.8 16.64 (+) 16.01 (+) 16.36 (+) 14.8 (+)
Telugu 14.47 11.05 (−) 10.23 (−) 10.73 (−) 11.79 (−)
Thyroid 3.54 2.07 (−) 2.13 (−) 2.08 (−) 2.62 (−)
Vehicle 13.4 12.77 (−) 13.54 (−) 12.48 (−) 12.98 (−)
Wdbc 1.97 1.74 (−) 1.76 (−) 1.81 (−) 1.82 (−)
Wdbc-org 2.82 2.83 (+) 2.76 (−) 2.79 (−) 2.63 (−)
Wine 2.23 1.34 (−) 1.07 (−) 1.32 (−) 1.27 (−)
Wpbc 13.09 23.67 (+) 23.71 (+) 23.71 (+) 21.83 (+)
Yeast 39.21 38.76 (−) 39.79 (+) 37.77 (−) 47.78 (+)
# minuses 17 21 22 1820
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