
Towards Safe Exploration using Demonstrations

André Correia
andre.correia@ubi.pt

Luís A. Alexandre
lfbaa@ubi.pt

Departamento de Informática
Universidade da Beira Interior
NOVA LINCS
6201-001, Covilhã, Portugal

Abstract

Reinforcement learning algorithms require large data sets to train a work-
ing policy. This is achieved by exploring the state space with trial and
error interactions. However, such algorithms disregard any safety con-
cerns. This can lead to many problems such as damage to the agent and
surrounding objects or beings. Demonstrations of the task contain crucial
information which the agent can use before interacting with the environ-
ment. We propose to train a safety model using demonstrations to eval-
uate the safety of each state. The output of this model can then be used
to enhance the reward function to promote safety. We evaluate our model
on four tasks and compare the safety of three baselines with and without
our enhancement. Results show that our model increases the safety and
performance of underlying RL models.

1 Introduction

Reinforcement learning (RL) algorithms learn a task through trial and
error interactions. The agent observes the state of the environment and
selects an action. The agent then receives a reward associated with the
quality of the interaction [5]. The task is learned by estimating a policy
that maximizes the expected accumulated rewards. To estimate a qual-
ity policy, the agent must explore the state space and try different action
combinations for the different states.

The simplest form of exploration consists of adding a small random
noise to the agent’s action causing its trajectory to change and potentially
discover a new state region [2]. Other methods separate exploration from
task learning. During the exploration phase, they estimate the entropy of
the visited state distribution and model the learning process towards its
maximization [4, 6]. However, exploration methods disregard any safety
concerns. Exploration implies testing different trajectories. Some tra-
jectories are dangerous for the agent to take, such as dropping liquids
on its circuits or colliding with surrounding objects and humans. Safe
exploration of the state space remains an open problem in RL. Existing
algorithms tackle safety by specifying constraints that the agent can not
violate during execution [1]. However, these constraints are specific to a
certain task and agent, and specifying all the constraints for each situation
is impractical. Other approaches require an existing expert policy for the
task [3].

The goal of this work is to create an algorithm that can enhance stand-
alone RL algorithms by increasing their safety during exploration. Before
training the RL agent, a model is trained using demonstrations, to deter-
mine the safety of interactions. The safety of the interaction is used to
transform the task’s reward signal for the agent to maximize. We evaluate
the performance and safety of three baseline algorithms with and without
the safety model on four tasks from the MuJoCo environment.

2 Methodology

We aim to create an algorithm that can be paired with an off-the-shelf RL
algorithm to enhance its safety. Safety can be measured in different ways.
An episode is a set of interactions between the agent and the environment.
An episode can terminate if the agent successfully completes the task or
if the agent performed a catastrophic action that caused the episode to
terminate. In this work, we focus on preventing the agent from perform-
ing dangerous actions that cause the episode to end abruptly. Hence, we
measure the safety of an algorithm by the length of the episodes.

To encourage the agent to increase the length of the episodes we pro-
vide it with an extra reward signal. This signal measures the safety of the
agent’s state. We define the safety of a state using the following formula:
Sa f ety(si) = log(N + ε − i)/ log(N + ε) ∗N/C, where si is the i-th state
in a trajectory τ = {s0,s1, ...,sN}, N is the length of the trajectory, ε is

Figure 1: OpenAI Gym MuJoCo Environments used for evaluating the
methods: Hopper, Humanoid, Inverted Double Pendulum and Walker2D.

a small constant to avoid division by zero which we set to 1e−10 and C
is a positive normalizing constant, which we set to 500 for the MuJoCo’s
environments because it is the maximum length of their episodes. The left
hand side of the multiplication gives a reward based on how early in the
trajectory a state occurred on a logarithmic scale. Later states are closer
to the last state which ended the trajectory, therefore they are considered
less safe. The division ensures that the first term is weighted regardless
of the length of the trajectory. The right hand side of the multiplication
rewards longer trajectories.

We train a neural network, with parameters θ , using L2 loss to regress
the safety value of a state. The network has two hidden layers each with
256 neurons as the safety model. We train this model alongside the RL
agent using the same batches of data. Before updating the RL agent,
the safety model predicts the safety values for the state batch. Then,
we transform the environment’s reward with the output of the model:
reward(si) = rewardi ∗ (1 + α ∗ θ(si)), where α is a safety coefficient
which we linearly decrease throughout training. At the beginning of train-
ing, the model is initialized with random values hence its output will not
contribute much towards safety. Because of this, we pre-train the safety
model on a data set of demonstrations of the task. A demonstration is a
pre-recorded trajectory of N transitions performed. Each transition con-
tains a state, action and reward τ = {(s0,a0,r0), ...,(sN−1,aN−1,rN−1)}.
We use 100 demonstrations for each task and use 10 of them for valida-
tion. The task demonstrations are not optimal. We save the best model in
the validation set to avoid over-fitting on the small training set.

3 Experiments

We evaluate the algorithms using four tasks from OpenAI Gym Mujoco’s
set: Hopper, Humanoid, Inverted Double Pendulum, and Walker-2D. We
selected these tasks due to a set of reasons. The input is non-visual, al-
lowing the focus to be on learning the task safely and disregarding feature
estimation. Additionally, an episode can achieve 500 steps but can end
abruptly if the agent performs an unsafe action. We can measure the safety
of an episode by its length. A longer episode corresponds to a longer se-
quence of interactions where the agent did not perform unsafe actions.
Hence, the algorithms are evaluated using the accumulated rewards and
the length of the trajectories as performance and safety metrics, respec-
tively.

We use three algorithms as baselines. Soft-Actor Critic (SAC) [2],



Hopper Humanoid InvertedDoublePendulum Walker2d
Acc

Reward
Exp.

Length
Task

Length
Acc

Reward
Exp.

Length
Task

Length
Acc

Reward
Exp.

Length
Task

Length
Max. Acc
Reward

Exp.
Length

Task
Length

SAC 3659 241 486 826 24 38 9360 196 498 2671 412 493
SAC+Ours 3539 386 487 1387 49 68 9360 296 499 2853 438 495

Proto 3322 415 415 4877 38 103 9360 4 394 2763 349 465
Proto+Ours 3428 450 447 4664 45 136 9360 4 392 3851 339 468

L2E 3056 93 427 129 8 7 3882 2 21 1236 67 410
L2E+Ours 3576 100 404 189 11 16 9360 3 161 1374 151 391

Table 1: Accumulated rewards, average episode length during the exploration phase and average episode length during the task phase of the baseline
algorithms with and without our safety enhancement for the four MuJoCo tasks.

0 1000 2000 3000 4000 5000
Episodes

0

500

1000

1500

2000

2500

3000

3500

Ac
c.

 R
ew

ar
ds

Hopper-v4

SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

0 1000 2000 3000 4000 5000
Episodes

0

500

1000

1500

2000

2500

Ac
c.

 R
ew

ar
ds

Humanoid-v4
SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

0 1000 2000 3000 4000 5000
Episodes

0

2000

4000

6000

8000

Ac
c.

 R
ew

ar
ds

InvertedDoublePendulum-v4

SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

0 1000 2000 3000 4000 5000
Episodes

0

500

1000

1500

2000

2500

3000

3500

Ac
c.

 R
ew

ar
ds

Walker2d-v4
SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

Figure 2: Accumulated rewards over 5000 learning episodes for the 3
baselines with and without our method.

0 1000 2000 3000 4000 5000
Episodes

0

100

200

300

400

500

Ep
iso

de
 L

en
gt

h

Hopper-v4

SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

0 1000 2000 3000 4000 5000
Episodes

0

50

100

150

200

250

300

Ep
iso

de
 L

en
gt

h

Humanoid-v4
SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

0 1000 2000 3000 4000 5000
Episodes

0

100

200

300

400

500

Ep
iso

de
 L

en
gt

h

InvertedDoublePendulum-v4

SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

0 1000 2000 3000 4000 5000
Episodes

0

100

200

300

400

500

Ep
iso

de
 L

en
gt

h

Walker2d-v4

SAC
SAC+L2E
SAC+L2E+Value
SAC+Proto
SAC+Proto+Value
SAC+Value

Figure 3: Episode lengths throughout training for 5000 episodes for the 3
baselines with and without our method.

is the underlying RL algorithm to be augmented by the different models.
We then use Proto [6] and Learn2Explore (L2E) [4], which augment SAC
with an exploration goal. The exploration goal is to maximize the esti-
mated entropy of the explored state space. Proto clusters the state space
using a set of centroids. The entropy is estimated using the distance of the
current state to the nearest centroid. In L2E, the entropy is estimated by
the variance of predictions given by an ensemble of neural networks.

We divide training into two phases as in [4, 6]: exploration and task
learning. In the exploration phase, the agent is encouraged to search the
state space while in the task learning phase it is encouraged to maximize
the expected rewards. We train the agents for 2500 episodes in each phase.
For the safety augmented algorithms, we pre-train the safety model be-
forehand for 1000 epochs on 90 demonstrations and validate the model
every 100 epochs using 10 demonstrations to avoid over-fitting. Lastly,
we linearly decrease α from 1 to 0 during the exploration phase.

The accumulated rewards and episode lengths throughout training for
the different algorithms across the four different tasks are shown in Fig.
2 and Fig.3, respectively. Additionally, we present values of the aver-
age accumulated rewards and average episode lengths for the exploration
and task phases in Table 3. Results show that the safety enhancement in-
creases the length of the episodes during the exploration phase by 55% for
the standalone SAC and for the SAC with Proto, and by 6% for the SAC
with L2E. This advantage comes at no clear cost of performance. In most
settings, the accumulated rewards of algorithms enhanced with the safety
model surpass their baseline. This indicates that the safety model suc-
cessfully transforms the reward to promote the safety of the agent during
training while additionally increasing its learning capabilities.

4 Conclusion

We present a method that can enhance off-the-shelf RL algorithms by
increasing their safety during training. We pre-train a model on demon-
strations to predict the safety value of a state. The output of the model is
used to transform the environment’s reward to promote safety. We eval-
uate the proposed method by training three baseline algorithms and eval-
uating their performance and safety during training with and without our
method. Results show that our method successfully increases the safety
of the algorithms by generating longer trajectories during training. This
increase in safety increased the performance of the agent in most settings.

Acknowledgements

This work was supported by NOVA LINCS (UIDB/04516/2020) with the
financial support of FCT-Fundação para a Ciência e a Tecnologia, through
national funds.

References

[1] Richard Cheng, Gábor Orosz, Richard M Murray, and Joel W Bur-
dick. End-to-end safe reinforcement learning through barrier func-
tions for safety-critical continuous control tasks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages
3387–3395, 2019.

[2] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine.
Soft actor-critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In International conference on ma-
chine learning, pages 1861–1870. PMLR, 2018.

[3] Kunal Menda, Katherine Driggs-Campbell, and Mykel J Kochender-
fer. Ensembledagger: A bayesian approach to safe imitation learning.
In 2019 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5041–5048. IEEE, 2019.

[4] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel,
Danijar Hafner, and Deepak Pathak. Planning to explore via self-
supervised world models. In International Conference on Machine
Learning, pages 8583–8592. PMLR, 2020.

[5] Richard S Sutton and Andrew G Barto. Reinforcement learning: An
introduction. MIT press, 2018.

[6] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto.
Reinforcement learning with prototypical representations. In In-
ternational Conference on Machine Learning, pages 11920–11931.
PMLR, 2021.

2


